HERMES status and future running

Benedikt Zihlmann University of Gent

on behalf of the

collaboration

Access to Transversity

Single spin azimuthal asymmetries on a transverse polarized Target

$$ep^{\uparrow} \longrightarrow e'\pi X \qquad \sigma^{ep \rightarrow e\pi X} = \sum_{q} f^{N \rightarrow q} \otimes \sigma^{eq \rightarrow eq} \otimes D^{q \rightarrow \pi}$$

$$interpretation for the second secon$$

Data on Transversity

Statistics

- **9** 02: 0.94 M DIS
- **9** 03: 0.50 M DIS
- **9** 04: 1.30 M DIS
- **J** TOTAL 2.8 M DIS
- **GOAL 6 M DIS**

Very First Results on TRANSVERSITY

Access to Collins

Beam spin azimuthal asymmetries

Beam Spin Asymmetry

more results on Deuterium target to come

The Hermes Quest for ${\rm L}_{\rm q}$

exclusive: all products of a reaction are detected \implies missing energy (ΔE) and missing Mass (M_x) = 0

GPDs Introduction

quantum numbers of final state ⇒ select different GPDs

What does GPDs characterize?

unpolarized	polarized
$H^q(x,\xi,t)$	$ ilde{H}^q(x,\xi,t)$
$E^q(x,\xi,t)$	$\tilde{E}^q(x,\xi,t)$

conserve nucleon helicity $H^q(x,0,0) = q$, $\tilde{H}^q(x,0,0) = \Delta q$ flip nucleon helicity not accessible in DIS

- x, t, ξ defined on the light cone
- x: longitudinal momentum fraction t: momentum transfer ($t = \Delta^2$)
- ξ : exchanged longitudinal momentum fraction ($\xi = \frac{x_{Bj}/2}{1-x_{Bj}/2}$)

DESY PRC Mai 2004 - p.8/18

How to Measure E, \tilde{E} ?

meson production $\rightarrow \sigma_{\rm L}$

O Hermes kinematics:

	vector mesons		pseudoscalar mesons		
	$\sigma_{ m L}$	A _{UT} (nominator)	$\sigma_{ m L}$	$A_{ m UT}$ (nominator)	$\xi \approx \frac{x_{\rm B}}{2 - x_{\rm B}}$
Η	$(1-\xi^2)$	$\sqrt{1-\xi^2}$			$\varepsilon \approx 0.01 - 0.3$
\tilde{H}			$(1 - \xi^2)$	$\sqrt{1-\xi^2}\cdot\xi$	$\xi_{ x=0.1} \approx 0.05$
E	$\left(\xi^2 + \frac{t}{4M^2}\right)$	$\sqrt{1-\xi^2}$			+
\tilde{E}			$\xi^2 \frac{t}{4m^2}$	$\sqrt{1-\xi^2}\cdot\xi$	$\left \frac{\iota}{4M^2} \approx 0.02 - 0.1\right $

Exclusive π^+ result

How to Measure E, \tilde{E} ?

	DVCS $A_{\rm C}, A_{\rm LU}$ (twist-2 a)	$A_{ m UL}$ mplitudes of th	$A_{\rm UT}$ e interference terms only)
Η	F_1	$\xi(F_1 + F_2)$	$\xi^2 F_1 + \frac{t}{4M^2} (1 - \xi^2) F_2$
\tilde{H}	$\xi(F_1 + F_2)$	F_1	$\xi^2(F_1 + F_2)$
E	$\frac{t}{4M^2}F_2$	$\frac{\xi^2}{1+\xi}(F_1+F_2)$	$\xi^2 F_1 + \frac{t}{4M^2} (F_1 + \xi^2 F_2)$
\tilde{E}		$\frac{\xi^2}{1+\xi}F_1 + \xi \frac{t}{4M^2}F_2$	$\xi^2 \frac{t}{4M^2} (F_1 + F_2)$

 F_1 and F_2 ...Dirac and Pauli form factor \Rightarrow to access *E* transverse target polarisation is essential

Exclusive Scattering

Missing Mass to select exclusive events

Recoil Detector

Measure the recoiling target nucleon

Recoil Detector

Silicon Detector

- Silicon strip detector
- in HERA machine vacuum
- 2-sided readout
- two layers for dE/dx
- 4096 channels
- 135 to 400 MeV/c momentum coverage
- HELIX chip with HADC
- charge division (2 gain ranges)

All modules necessary at hand.

Silicon Detector

Silicon Detector

- Silicon strip detector
- in HERA machine vacuum
- 2-sided readout
- two layers for dE/dx
- 4096 channels
- 135 to 400 MeV/c momentum coverage
- HELIX chip with HADC
- charge division (2 gain ranges)
- DESY test beam (e+ beam) S/N = 6.2
- Erlangen test beam (< 11 MeV p)</p>

Scintillating Fiber Detector

- 300 to 1400 MeV/c momentum range
- Two separate planes (barrel)
- each plane two cylinders of stacks two layers of scintillation fibers
- 4992 channels
- 64-pixel PMTs for light conversion

Scintillating Fiber Detector

- momentum 300 MeV/c
- response of the sum of the two layers

Scintillating Fiber Detector

Photon Detector

- detect neutral particles
- **photons from** π^o decay
- 3 layers of scintillator strips
- fiber light guides
- tungsten as pre-shower
- gain monitoring system

DESY PRC Mai 2004 - p.17/18

Coffee is approaching

- Collins FF with transverse pol. target or BSA
- GPDs give access to orbital angular momentum of quarks
- \checkmark transverse pol. target needed to access E
- \checkmark exclusive π production access to \tilde{H}, \tilde{E}
- **DVCS** access to H
- Install the Recoil Detector in sumer 2005
- focus on DVCS with e- and e+ beam
- other topics: Hyperon (strange quark), Penta-quark, exclusive VM, target fragmentation ...