Open Charm and Beauty Production at HERA

PHOTON99 Freiburg, 26.05.1999

On behalf of the

Karin Daum University of Wuppertal

Outline

- Motivation
- Open Charm Production in DIS F_2^c
- Charm Charm Production in γp
- Direct measurements of the gluon density
- Open Beauty Production in γp
- Summary

Results from 1995 + 1996 data

Motivation for Heavy Flavor Physics

Parton density calculations include heavy flavors

in the massless quark evolution at Q_0 Flavor Excitation (FE)

exclusively via Boson Gluon Fusion (BGF)

- Direct access to the parton densities (HQ or gluon) in the proton or photon
- HQ hadron unequivocally defines the parent parton

An Event in H1

Differential D^* **Cross Sections in DIS**

NLO predictions in reasonable agreement with data

 $F_2^c(x, Q^2)$

Single Differential D^* Cross Sections in γp

Open Charm and Beauty Production at HERA PHOTON99

Double Differential D^* **Cross Sections in** γp

W = 194 GeV

Massive calculation reproduce data for $p_{\perp} < 5 \text{ GeV}$

Massless approach does not describe data

How to get the Gluon Density

• Reconstruct x_a^{obs} from kinematics in the γg system (LO)

- Get correlation $x_g \Leftrightarrow x_q^{obs}$ from NLO calculations
- Unfold iteratively to determine $\sigma(x_g)$

Open Charm and Beauty Production at HERA PHOTON99

Gluon Density from Charm Production

$$egin{aligned} &\sigma(x_{g,i})^{exp} = g(x_{g,i},\langle \mu_i^2
angle)^{exp} \cdot \hat{\sigma}_{\gamma g}(x_{g,i}) \ &g(x_{g,i},\langle \mu^2
angle)^{exp} = g(x_{g,i},\langle \mu^2
angle)^{th} \cdot rac{\sigma(x_{g,i})^{exp}}{\sigma(x_{g,i})^{th}} \end{aligned}$$

Open Charm and Beauty Production at HERA PHOTON99

Beauty Tagging - I

Semi-leptonic B-decays

Open Charm and Beauty Production at HERA PHOTON99

Visible Beauty Production Cross Section

$$N_{\pm\pm} = N_{bb} + N_{bf} + N_{cf} + N_{ff}$$

$$\rightarrow N_{bb} + (N_b + N_c + N_f) \otimes N_f$$

$$\rightarrow N_{bb} + single \ lepton \ evts \otimes P_h^{\mu}(p, \Theta)$$

 $\bar{b} \rightarrow \bar{c} \mu^+ \nu$ $\bar{b} \rightarrow c \mu^- \bar{\nu}$ $\bar{s} \mu^- \bar{\nu}$ $\bar{s} \mu^+ \nu$

Open Charm and Beauty Production at HERA PHOTON99

Visible Beauty Like-sign Dimuon Cross Section

- Massive NLO calculations are found to agree with Charm data in DIS and in γp
- Charm contributes significantly (25 %) to F_2 at HERA Measurement of F_2^c in agreement with NLO fit to F_2
- The extracted gluon density from Charm data agrees with the determination from the NLO fit to the F_2 data from H1
- The cross section of Beauty production in γp is found to be about five times larger than the LO expectation The like-sign di-muon analysis shows the same tendency as the single muon analysis