Open Charm and Beauty Production at HERA

PHOTON2000 Ambleside. 29.08.2000

On behalf of the

Karin Daum University of Wuppertal

Outline

- Motivation
- Open Charm Production in DIS
- Charm Contribution to the Proton Structure F_2^c
- Open Beauty Production in γp
- Summary

Results from 1996 + 1997 data

Tests of perturbative QCD in ep interactions at $\sqrt{s} \approx 300 \text{ GeV}$

- Understanding of heavy flavour production mechanism
- Understanding of QCD evolution scheme
- Measurement of parton densities

\downarrow

Testing universality of PDFs

- Charm production cross section quite large BUT intrinsic scale (m_c) close to pQCD limit
- Beauty production: Intrinsic scale (m_b) quite far from pQCD limit BUT cross section small

PHOTON2000

 $27.5~GeV~e^{\pm}~\longrightarrow~\sqrt{s}=300GeV~\longleftarrow~p~820~GeV$

 $Q^2 = -q^2 = -(k - k')^2$ 4-momentum transfer² $x = Q^2/2P \cdot q$ fraction of p momentum carried by the struck quark $y = (p \cdot q)/(p \cdot k)$ relative energy transfer in the p rest frame $W^2 = (q + P)^2$ mass ² of the hadronic final state $Q^2 = sxy$ $\eta = -ln(tan \frac{\theta}{2})$

PHOTON2000

Heavy Flavor Production

• At low Q^2 : Boson Gluon Fusion

Fixed Flavour Number Scheme (FFNS)

• At $Q^2 \gg m_c^2$: Flavor Excitation

(Heavy quark treated as active parton in the proton)

At large Q^2 Deviation from BGF

Variable Flavour Number Scheme (VFNS)

DGLAP evolution should break down at small x

Heavy Flavor Production in the CCFM Scheme

(Ciafaloni, Catani, Fiorani and Marchesini)

Unintegrated Gluon Density $\int_{0}^{\mu^{2}} \mathcal{G}\left(x, k_{\perp}^{2}, \eta, Q_{0}^{2}\right) \mathrm{d}k_{\perp}^{2} = x G\left(x, \mu^{2}, Q_{0}^{2}\right)$

PHOTON2000

An Event in H1

Inclusive D^* **Cross Section in DIS**

kinematic region

 $1 < Q^2 < 100 \; GeV^2$

$$p_{T \ D^*} > 1.5 \ GeV$$

 $|\eta_{D^*}| < 1.5$

H1 prel.

$ \begin{array}{c} \sigma(e^+p \rightarrow e^+D^{*\pm}X) = \\ 8.37 \pm 0.41 (stat.) ^{+1.11}_{-0.82} (syst.) ^{+0.64}_{-0.39} (theo.) ~~nb \end{array} $	
HVQDIS: (NLO DGLAP) G from GRV98HO, $m_c = 1.3 \ GeV \ \epsilon = 0.035$ $m_c = 1.5 \ GeV \ \epsilon = 0.100$	5.0 — 6.6 nb
CASCADE: (CCFM) \mathcal{G} from fit to H1 F_2 $m_c = 1.3~GeV~\epsilon = 0.078$ $m_c = 1.5~GeV~\epsilon = 0.078$	8.5 — 10 nb

PHOTON2000

Single Differential D^* Cross Sections in DIS

PHOTON2000

Double Differential D^* **Cross Sections in DIS**

CCFM better at small p_t

NLO DGLAP better at large p_t

PHOTON2000

Double Differential D^* **Cross Sections in DIS**

Large η problem of HVQDIS due to discrepancies at small p_t and small inelasticity z_D

PHOTON2000

$F_2^c(x,Q^2)$

PHOTON2000

 $F_2^c(x,Q^2)$ in the CCFM Scheme

$F_2^c(x,Q^2)$

Scaling Violation in Open Charm Production

Charm data show large scaling violations

PHOTON2000

Semi-leptonic B-decays with large p_{\perp}^{μ} wrt jet

PHOTON2000

Beauty Tagging - II

Semi-leptonic B-decays with lifetime tag

PHOTON2000

Impact Parameter

Confirms P.L. B467(1996)156

PHOTON2000

Combining Impact Parameter δ with p_{\perp}^{rel}

High b purity regions

• Combined likelihood fit in $(\delta, p_{\perp}^{rel})$ plane:

H1 preliminary

 $\sigma_{vis}(ep
ightarrow eb\overline{b}X
ightarrow \mu X)$ = 160 \pm 16(*stat.*) \pm 29(*syst.*)pb

- Average with publ. H1 result: $\sigma_{vis} = (170 \pm 25)$ pb
- NLO pQCD (FNMR): $\sigma_{vis} = (104 \pm 17)$ pb

PHOTON2000

- Charm DIS data seem to favour CCFM based calculations over predictions in the NLO DGLAP scheme
- Significant scaling violations are observed in F_2^c

- First measurement of Beauty photoproduction cross section confirmed by independent data using lifetime tags
- Beauty photoproduction cross section larger than NLO QCD prediction