5. Vorlesung

- Zusammenfassung: Grundzüge der starken Wechselwirkung
- 6. Die Protonmasse
 - Die Energiedichte des QCD-"Vakuums"
 - Hadron-Massen im statischen Quarkmodell
 Literatur: Perkins, Introduction to High Energy Physiscs
 - Proton-Masse aus Summe der Partonen
 - Protonmasse: Fazit

Die laufenden Kopplungskonstanten

QED:

laufende e/m Kopplungskonstante:

$$\alpha(Q^2) = \frac{\alpha(Q_0^2)}{1 - \alpha/3\pi \ln(Q^2/Q_0^2)}$$

(siehe 3. Vorlesung)

 $\alpha(0) \sim \alpha(2m_a)$ endlich

QCD:

laufende starke Kopplungskonstante:

$$\alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + \alpha_s (33-2N_F)/12\pi \ln(Q^2/Q_0^2)}$$

alternativ:

N_E = Zahl der Quark-Flavour

laufende starke Kopplungskonstante:

$$\alpha_{\rm s}({\rm Q}^2) = \frac{4\pi}{(11-2/3 N_{\rm F}) \ln({\rm Q}^2/\Lambda^2)}$$

1~300 MeV = "Energieskala, bei der $\alpha_s \rightarrow \infty$ "

The Nobel Prize in Physics 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

1/3 of the prize Kavli Institute for

Theoretical Physics, of Technology University of California Santa Barbara, CA, USA

b. 1941

H. David Politzer Frank Wilczek 1/3 of the prize

California Institute Massachusetts (Caltech)

Pasadena, CA, USA Cambridge, MA,

Institute of Technology (MIT)

1/3 of the prize

ь. 1949

Ь. 1951

Die laufende Quarkmasse

QED: Elektronmasse (nach Renormierung):

für Q $< 2m_e$: klassische Formeln gelten ($\Delta m = klassische Feldenergie ~1/r$)

für Q $>> 2m_e$: $m(Q) = m(0) (1 - \alpha/\pi - 3\alpha/4\pi \ln(Q^2/m(0)^2))$ renormierte Masse

Integral über "klassischen" Anteil

Vakuumfluktuationen (Ladungsverschm.) $m(0) = 0.511 \text{ MeV}, \quad \alpha = 1/137$

QCD: Quarkmasse, z.B. u-Quark (nach Renormierung)

für Q $\approx \Lambda_{QCD}$: α_s divergiert -> klassische Feldenergie divergiert
-> kein klassischer Grenzfall! (freie Quarks existieren nicht)

effektive Masse $m_u \sim 350$ MeV $\sim \Lambda_{QCD}$ für Q $>> m_{u_s} \Lambda_{QCD}$: $m(Q) = m(Q_0)$ (1 - α_s/π $\ln(Q^2/Q_0^2)$)

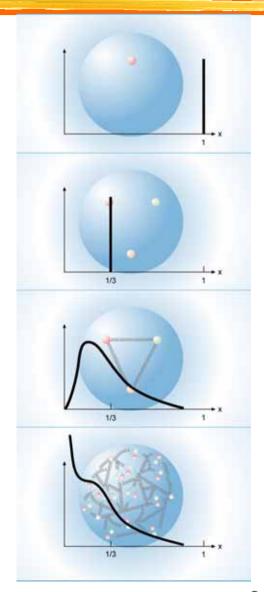
wie QED, nur mit zusätzlichem Faktor C_F =4/3

z.B. Q \approx 2 GeV: $m_u \approx$ 2 MeV, $\alpha_s \approx$ 0.3

Das Proton: Einleitung

- Im Gegensatz zum Elektron: Proton ist zusammengesetztes Teilchen
 - -> Proton-Masse = Summe der Energien der Konstituenten und/oder Felder im Proton, prinzipiell berechenbar!

 (analog zu Aufgabe 1 und 2)
- Atome, Moleküle, Kerne, ...: Masse ist im wesentlichen = Summe der Massen der Konstituenten, mit kleinen Korrekturen aufgrund der Bindungsenergie/Felder (siehe z.B. Aufgabe 3)
- Proton: Neu: Masse wird dominiert von Feld/Bindungseffekten. Viele verschiedene Darstellungmöglichkeiten (Näherungen):
 - NUR Feldenergie oder
 - NUR effektive Quarkmassen oder
 - Kombination von "nackten" Quarkmassen + Bewegungsenergie + Gluon-Felder (dynamische Energie der Gluonen)

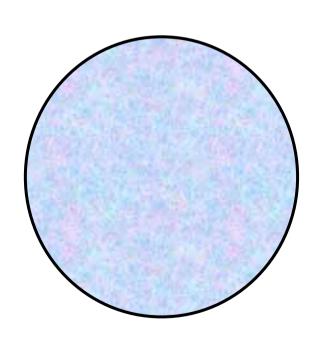

Warum ist die Proton-Masse wichtig?

- 99% der Masse, aus der wir und unsere unmittelbare Umgebung bestehen, steckt in den Massen der Protonen und Neutronen der Atomkerne (~ 1% Elektronmasse + Kern-Bindungsenergie).
- Protonen und Neutronen bestehen aus Quarks und Gluonen. Ihre Dynamik wird von der QCD beschrieben, $m_p \sim= m_n$ Besonderheit: Laufende Kopplungskonstante α_s liefert charakteristische Energieskala $\Lambda_{\rm QCD}$
- Asymptotische Freiheit -> Effekte bei kleinen Abständen tragen wenig zur Proton-Masse bei.
- Confinement ("große" Abstände) => Die Proton-Masse wird dominiert von Effekten bei der Skala $\sim \Lambda_{QCD}$ (~ 1 fm).

Proton-Struktur und Proton-Masse

Strategien:

- 1. Das ganze Proton: Masse = Energiedichte x Volumen? (semi-klassisch, Übungsaufgabe)
- 2. Statische Valenzquarks:
 Protonmasse = Summe der "effektiven"
 Valenzquarkmassen? (Übungsaufgabe)
- 3. Dynamische Valenzquarks:
 Berücksichtigung von "effektiven" Quark-Quark-Wechselwirkungen
- 4. Vollständige Quantenchromodynamik: Berechnung der Proton-Masse aus Dynamik der (See-)Quarks und Gluonen
 - -> brauche Verständnis der Protonstruktur!


22.11.06

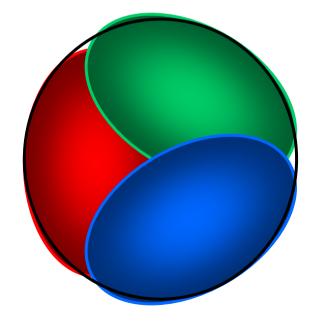
Das Proton als gleichförmige Kugel

sehr grobe Näherung!

- Radius r ~ 0.8 fm (aus Streumessungen)
- Energiedichte ~ Λ^4 Λ ~ 250 MeV ("Quark-Gluon-Suppe")

 $m_p \sim 4/3 \pi r^3 x \Lambda^4 \sim 1 \text{ GeV}$

Das Proton als statisches 3-Quark-Objekt


sehr grobe Näherung!

 $\rho: q\bar{q}, m_{\rho} = 776 \text{ MeV} \implies m_{q} \sim 388 \text{ MeV}$

p: qqq => mp ~ 3*388 MeV ~ 1 GeV

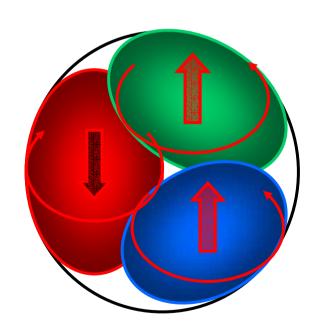
("Quark-Gluon-Suppe",

verteilt auf 3 quarks)

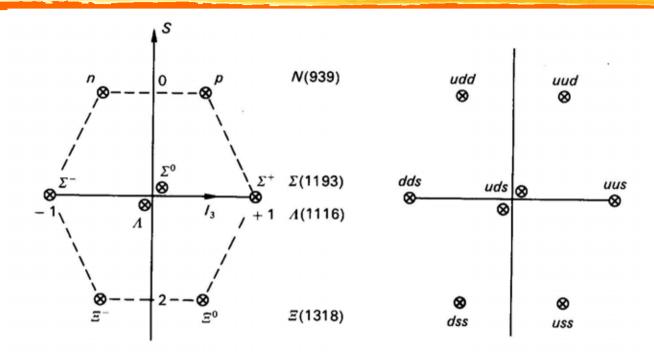
Das Proton als 3-Quark-Objekt mit Spin

Effektive Quarkmasse (wie vorher), aber Berücksichtigung von Spin-Spin-Wechselwirkungen

("Hyperfeinstruktur")


$$m_p = 2m_u + m_d + \Delta E$$

Farb-Dipolmoment (e=Farbladung)


$$\mathbf{\mu}_i = \frac{e_i}{2m_i}\mathbf{\sigma}_i$$

analog zu Bohrschem Magneton, liefert Beitrag

$$\Delta E = \frac{2\pi}{3} \frac{e_i e_j}{m_i m_i} |\psi(0)|^2 \mathbf{\sigma}_i \cdot \mathbf{\sigma}_j,$$

Baryon-Oktett und Proton-Wellenfunktion

Fig. 5.4 The baryon octet of spin-parity $\frac{1}{2}$. The observed states are given on the left, and quark flavor assignments on the right.

Proton-Wellenfunktion (aus Symmetrieargumenten):

rieargumenten):

jedes qq-Paar liefert Beitrag ∆E zur Hyperfeinstruktur

$$\phi(P, J_z = +\frac{1}{2}) = \frac{1}{\sqrt{18}} \left[2u\uparrow u\uparrow d\downarrow + 2d\downarrow u\uparrow u\uparrow + 2u\uparrow d\downarrow u\uparrow - u\downarrow d\uparrow u\uparrow - u\downarrow u\uparrow d\uparrow - u\downarrow u\uparrow d\uparrow - u\downarrow u\uparrow d\uparrow - d\uparrow u\downarrow u\uparrow - u\uparrow d\uparrow u\downarrow - d\uparrow u\uparrow u\downarrow \right].$$

Berechnung der Spin-Spin-Kopplungen

$$\Delta E(Q\bar{Q}) = \frac{8\pi\alpha_s}{9m_im_j}|\psi(0)|^2\mathbf{\sigma}_i\cdot\mathbf{\sigma}_j,$$

$$\Delta E(QQ) = \frac{4\pi\alpha_s}{9m_im_j}|\psi(0)|^2\mathbf{\sigma}_i\cdot\mathbf{\sigma}_j,$$

QQ - Kopplung schwächer als QQ-Kopplung (siehe Farbkreis)

$$\mathbf{\sigma}_{i} \cdot \mathbf{\sigma}_{j} = 4\mathbf{s}_{i} \cdot \mathbf{s}_{j} = 2[S(S+1) - s_{i}(s_{i}+1) - s_{j}(s_{j}+1)]$$

$$= \begin{cases} +1 & \text{for } S=1, \\ -3 & \text{for } S=0. \end{cases}$$

$$K=4\pi\alpha_s|\psi(0)|^2/9.$$

$$\Rightarrow \text{mit } S = s_i + s_j + s_k,$$

$$\sum \sigma_i \cdot \sigma_j = 4 \sum s_i \cdot s_j = 2[S(S+1) - 3s(s+1)]$$

$$= \begin{cases} +3 & \text{for } S = \frac{3}{2}, \\ -3 & \text{for } S = \frac{1}{2}. \end{cases}$$

$$(\Delta E)_{\Delta} = + \frac{3}{m_u^2} K,$$
(uî uî uî)

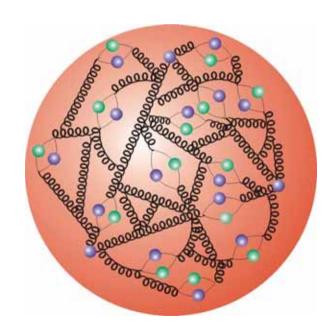
(uî uî uî)
$$(\Delta E)_N = -\frac{3}{m_u^2} K,$$
 Wellenfunktion vorige Seite

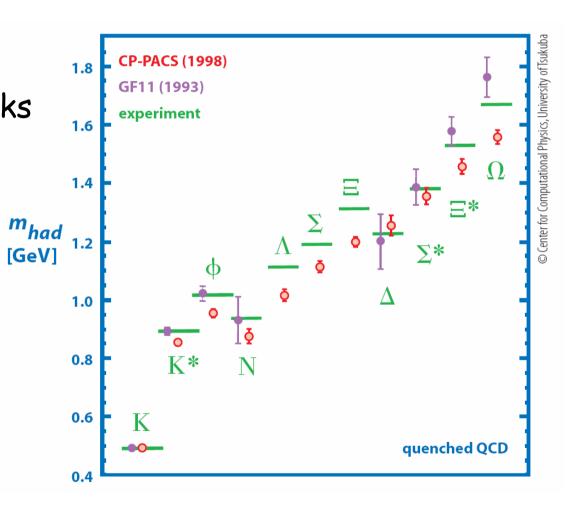
Resultat des Fits aller Baryonen

$$m_n (= m_u = m_d) = 363 \text{ MeV},$$

 $m_s = 538 \text{ MeV},$
 $K/m_n^2 = 50 \text{ MeV}.$

alle Baryonmassen gut beschrieben (~1%) mit nur 3 Parametern


TABLE 5.4 Masses of baryons predicted from hyperfine-splitting effects (from Rosner 1980).


Baryon and mass (MeV)	Quark composition $(n \text{ denotes } u \text{ or } d)$	$\Delta E/K$	Predicted mass, MeV
N(939)	3 <i>n</i>	$-3/m_n^2$	939
A(1116)	2n, 1s	$-3/m_n^2$	1114
$\Sigma(1193)$	2n, 1s	$1/m_n^2 - 4/(m_n m_s)$	1179
$\Xi(1318)$	1n, 2s	$1/m_s^2-4/(m_n m_s)$	1327
△(1232)	3 <i>n</i>	$3/m_n^2$	1239
$\Sigma(1384)$	2n, 1s	$1/m_n^2 + 2/(m_n m_s)$	1381
Ξ(1533)	1n, 2s	$1/m_s^2 + 2/(m_n m_s)$	1529
$\Omega(1672)$	3 <i>s</i>	$3/m_s^2$	1682

Das Proton: Quarks und Gluonen

Gitter-Eich-Theorie:

- masselose Gluonen
- (fast) masselose Quarks
- sonst (fast) nichts

Fazit zur Proton-Masse:

- 99% der Masse, aus der wir und unsere unmittelbare Umgebung bestehen, steckt in den Massen der Protonen und Neutronen der Atomkerne (~ 1% Elektronmasse + Kern-Bindungsenergie).
- ~90% der Protonmasse ergibt sich aus der Bewegungsenergie
 (Feldenergie) der (fast) masselosen Quarks und masselosen Gluonen.
 => dynamische Massengenerierung.
 Rest stammt aus Einfluss der (renormierten) Quark-Massen und QED-Beitraegen.
- Im Gegensatz zu den Quark- und Lepton-Massen ist die Protonmasse berechenbar! (aus gemessenen Werten von α_s oder $\Lambda_{\rm QCD}$). Derzeitige Genauigkeit: ~ 10% (Gittereichtheorie)