QCD and Monte Carlos

University Antwerp 2015

Exercises for Lecture 2 (15. Oct 2015)

6. use the LHAPDF library to calculate the flavor sum rules:

$$\int_{0}^{1} dx \ u_{V}(x, Q^{2}) = 2$$
$$\int_{0}^{1} dx \ d_{V}(x, Q^{2}) = 1$$

use the LHAPDF library and calculate the momentum sum rule:

$$\int_0^1 dx \, \sum_{i=-6}^6 x p_i(x, Q^2)$$

use the MRST (MRST2004nlo) set and the LO* (MRST2007lomod) set. How much is the momentum sum rule violated in the LO* set ? Is the momentum sum rule satisfied (or violated in the same way) for different Q^2 values (use $Q^2 = 5, 10, 100, 1000 \text{ GeV}^2$).

7. use the Monte Carlo method to generate x, y and Q^2 according to the cross section in DIS: $\frac{d^2\sigma}{dydQ^2} = \frac{2\pi\alpha^2}{yQ^4}(1+(1-y)^2)F_2(x)$ using $F_2 = \sum_i e_i^2 xq(x)$ with both MRST sets from above. Use $xus = Q^2$ with $\sqrt{s} = 320$ GeV and $u_{min} = 0.001$, $u_{max} = 0.9$, $Q^2 = 5$ GeV²

Use $xys = Q^2$ with $\sqrt{s} = 320$ GeV and $y_{min} = 0.001$, $y_{max} = 0.9$, $Q^2_{min} = 5$ GeV², $Q^2_{max} = 100$ GeV². Plot the differential cross section $\frac{d\sigma}{dy} \left(\frac{d\sigma}{dQ^2}\right)$ normalised to $nb (nb/GeV^2)$, respectively) and integrate the cross section to obtain the total cross section within the visible range specified above.

- 8. Calculate $\sigma(\gamma^* g \to q\bar{q})$ using the matrix element and flux and phase space factors. Plot the differential cross section as a function of p_t of one of the outgoing quarks. Use $\sqrt{s} = 320$ GeV, y = 0.3, $Q^2 = 10$ GeV² and $|t_{min}| = 1$ GeV². Use 4 flavours and take $x_g = 0.01$, $|u_{min}| = 1$ GeV² and a fixed $\alpha_s = 0.3$ (for the formulas look in lecture writeup).
- 9. Calculate $\sigma(\gamma^* p \to q\bar{q} + X)$ using the results from before with a gluon density $xg(x) = 3(1-x)^5$. Calculate $x_{g\,min} = \frac{\hat{s}_{min}+Q^2}{ys}$, with $\hat{s}_{min} = 10 \text{ GeV}^2$ being the minimal center of mass energy squared for the $q\bar{q}$ pair (for the formulas look in lecture writeup).
- 10. Plot the cross section $\frac{d\sigma}{dp_t}$ for $\gamma^* p \to q\bar{q} + X$ as a function of p_t using the full matrix element and also using the small t approximation. What is different, and where ?
- 11. Construct a program to calculate the cross section for $ep \rightarrow e'q\bar{q}X$. Use 0.05 < y < 0.8and $5 < Q^2 < 100 \text{ GeV}^2$, define the photon flux and use all the other parameters as above.