QCD and Monte Carlo simulation II

H. Jung (DESY, University Antwerp)
hannes.jung@desy.de

http://www.desy.de/~jung/qcd_and_mc_2015/

New tools－social reading

Social Reading project：
－you can read，comment and ask questions to this lecture and support material．
－like if you read together with your colleagues a book，and mark places， which you think are important or which are not understandable．
－your comments，questions and remarks will be visible to others，they can also reply
－your comments，questions and remarks will be answered and replied by your lecturer
－Please give feedback on this new tool！

A．nnotate

シースーロ゙

， 1 Introduction

2．A significant fraction（ $\approx 25 \%$ ）of the total inclastic proton－proton cross section a thigh energice
，can be attributed to diffractive interations，characterized by the presence of at least one non－
－particles，where for a particle of polar angle $\theta, \eta=-\ln \ln \tan (\theta / 2)$ ．In hadronic interactions an
－LRG is prssumed to be mediated by a color－singlet exchange carrying the vacuum quantum numbers，commonly refered to as Pomeron（ P ）exchange．Figure 1 shows the main types of
diffrative processes single dissocition（SD），double dissocition（DD），and central diffration ，diffrative processes：single dissociation（SD），double dissociation（DD），and central diffraction
，（CD） －（CD）．
10 Inclusive diffractive coss sections cannot be calculated within perturbative quantum chromo－
it dynamics，and are described by models based on Regee theory［1］．The predictions of these
\square models generally differ when extrapolated from centerof－mass energies of $\sqrt{5} \leq 1.96 \mathrm{TeV}$

15 diffraction and improving its moddeling in event gencators．They are aso cucuial for the proper
in modeling of the final state of indusive events，and can help improve the simulation of the
＂10 modeing of the inal state of indusive evensts，and can help improve the simulation of the
II exchange contributions，and the total inclastic cross section．
－The DD coss section has been recently measured at $\sqrt{5}=7$ TeV by the TOTEM collabora－
n tion［2］，for events in which both disscciated masses are below $\sim 12 \mathrm{GeV}$ ．Other measurments
n of diffractive coss sections at the LHC，with higher dissocation masso，have e ither a limited
${ }^{2}$ precison（3］or oo secparation between SD and DD events（I）．In this paper，we present the
a first measurement of indusive diffractive cosss sections at the Compact Muon Solenoid（CMS）
a experiment at $\sqrt{3}=7 \mathrm{TVV}$ ．The measurement is based on the prosence of forvard LRG in the
s event，with the SD－and DD－dominated event samples scparated by using the CASTOR calor
large applily

aboul psocuorapiafy：

You just need to register（for free）at
a．nnotate：
Link to a．nnotate the lecture

Literature

OUABKS \& LEPTONS:

An Introductory Course i Modern Particle Physics

Francis Halzen
Alan D. Martin
\qquad

Outline of the lectures

- 12. Oct Intro to Monte Carlo techniques and structure of matter
- 13. Oct parton evolution: DGLAP equations
- 26. Oct DGLAP/BFKL/CCFM: evolution for small x
- 27. Oct W/Z production in pp and soft gluon resummation
- 16. Nov Multiparton interactions
- 17. Nov Latest LHC results: small x, multiparton interactions, QCD in high luminosity phase: Higgs as a gluon trigger
- Exercises
- 14 \& 15 Oct
- 28 \& 29 Oct
- 18 \& 19 Nov

Inelastic Scattering: QPM

- Infinite momentum frame: $p^{\mu}=(P, 0,0, P)$ with $P \gg M$
- Virtual photon scatters off point-like quark which moves parallel (collinear) to proton, with momentum fraction $p_{q}^{\mu}=\xi p^{\mu}$
- Using DIS variables gives for $\quad e q \rightarrow e q$

$$
|M|^{2}=\frac{2 e_{q}^{2}(4 \pi \alpha)^{2} \hat{s}^{2}}{Q^{4}}\left(1+(1-y)^{2}\right)
$$

- giving

$$
\frac{d \sigma}{d Q^{2}}=\frac{2 \pi \alpha^{2} e_{q}^{2}}{Q^{4}}\left(1+(1-y)^{2}\right)
$$

- Using mass shell condition for outgoing quark gives (with $\int_{0}^{1} d x \delta(x-\xi)=1$)

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left(1+(1-y)^{2}\right) \frac{1}{2} e_{q}^{2} \delta(x-\xi)
$$

- compare this with formula for DIS

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1+(1-y)^{2}\right) F_{1}+\frac{1-y}{x}\left(F_{2}-2 x F_{1}\right)\right]
$$

Is F_{1} and F_{2} a delta function?

Inelastic Scattering QPM

- Simple model with

$$
\tilde{F}_{2}=x e_{q}^{2} \delta(x-\xi)=2 x \tilde{F}_{1}
$$

- BUT structure function is a distribution. F_{2} is a function of x : scaling, no \boldsymbol{Q}^{2} dependence
- $q(\xi) d \xi$ is probability to find q with momentum fraction $\quad \xi \ldots . \xi+d \xi$

$$
F_{2}(x)=2 x F_{1}(x)=\sum_{q, \bar{q}} \int_{0}^{1} d \xi q(\xi) x e_{q}^{2} \delta(x-\xi)=\sum_{q, \bar{q}} e_{q}^{2} x q(x)
$$

- Proton structure function is:

$$
F_{2}^{e m}=x\left[\frac{4}{9}(u(x)+\bar{u}(x)+c(x)+\bar{c}(x))+\frac{1}{9}(d(x)+\bar{d}(x)+s(x)+\bar{s}(x))\right]
$$

Parton distribution functions (pdfs)

- $f_{i}(\xi) d \xi$ gives probability that parton i carries momentum fraction between ξ and $\xi+d \xi$ with $0 \leq \xi \leq 1$
- Number of partons i:

$$
N_{i}=\int_{0}^{1} d \xi f_{i}(\xi)
$$

- Momentum fraction carried by partons i:
$\frac{\left\langle p_{i}\right\rangle}{P}=\int_{0}^{1} d \xi \xi f_{i}(\xi)=\int_{0}^{1} d \log \xi \xi^{2} f_{i}(\xi)$
- Define sum-rules for hadron target:
- Number of valence partons
- Momentum carried by partons
- Flavor contents

Picture of the Proton

- Flavor sum rules for proton:

$$
\begin{aligned}
& \int_{0}^{1} d x u_{V}(x)=2 \\
& \int_{0}^{1} d x d_{V}(x)=1
\end{aligned}
$$

- Momentum sum of quarks:

$$
\sum_{q} \int_{0}^{1} d x x[q(x)+\bar{q}(x)] \sim 0.5
$$

- Where are the other 50% of the proton's momentum ?

$$
\begin{aligned}
& \int d x x q(x) \sim 0.1[0.9+0.95+0.85+0.7+0.35+0.15+0.1+0.05]=0.1 \cdot 4.05=0.405 \\
& \int d x x \bar{q}(x) \sim 0.1[0.42+0.2+0.06+0.03+0.01]=0.1 \cdot 0.72=0.072
\end{aligned}
$$

Structure functions from HERA

H1 and ZEUS Combined PDF Fit

Proton structure
function does not
depend on Q^{2} for large X
F_{2} scales ...

른 Quarks are pointlike constituents of proton
 BUT things change at smaller $x \ldots .$. and smaller Q^{2}

Inelastic Scattering: main results

- F_{2} scaling at large x
- ~ 50 \% gluons
- F_{2} rise at small \times
- How can rising F_{2} be understood?
- Does rise continue forever?
- What limits F_{2} ?

H1 and ZEUS Combined PDF Fit

Inelastic Scattering: QPM (I)

- Key factor in QPM explanation is that over a short time in which the hard scattering takes place, the quarks behave as if they are free, i.e. no interaction between them.
- In the asymptotic limit $\left(Q^{2} \rightarrow \infty\right)$ the theory should describe quarks as free particles
- Equivalent demanding that effective charge in theory should vanish as smaller and smaller distances are probed.

Inelastic Scattering: QPM (II)

- Until 1973 in theories the reverse was true: because of screening of charge at larger distances coupling becomes smaller (QED)
- BREAK-THROUGH by 't Hooft (1972), Gross, Wilczek \& Politzer (1973) nonAbelian theory describing asymptotic behaviour QCD
- As in QED there is screening at large distances by the color charge of quarks and gluons, but this is more than compensated by anti-screening (splitting) of gluons. Thus for $Q^{2} \rightarrow \infty$ the effective coupling tends to vanish !

Deeper look to x-section:

separate leptonic from hadronic part

Separate er part

- calculate

$$
\gamma^{*} q \rightarrow q^{\prime}
$$

- define:

$$
z=\frac{Q^{2}}{2 p_{q} \cdot q}
$$

BLACKBOARD

- results

$$
\hat{\sigma}=\frac{4 \pi^{2} \alpha}{2 p_{q} \cdot q} e_{q}^{2} \delta(1-z)
$$

extract flux of virtual photons

- flux of virtual photons: different definitions exist....
- QCD is in $\hat{\sigma}$

Higher order corrections to DIS

- lowest order:

$$
\begin{aligned}
& e+q \rightarrow e^{\prime}+q^{\prime} \quad \mathcal{O}\left(\alpha_{s}^{0}\right) \\
& \frac{d \sigma}{d y d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}} \frac{x}{y}\left(1+(1-y)^{2}\right) \frac{1}{2} e_{q}^{2} \delta(x-\xi)
\end{aligned}
$$

- higher order: $e+q \rightarrow e^{\prime}+q^{\prime}+g, \quad e+g \rightarrow e^{\prime}+q+\bar{q} \quad \mathcal{O}\left(\alpha_{s}^{1}\right)$
- factorise electromagnetic vertex or calculate full $\quad 2 \rightarrow$ Brocess

$$
\begin{array}{ll}
\text { from: } & \frac{d \sigma}{d y d Q^{2}}=\frac{\alpha}{2 \pi} \frac{1}{y Q^{2}}\left(1+(1-y)^{2}\right) \frac{4 \pi^{2} \alpha}{Q^{2}} e_{q}^{2} x \delta(x-\xi) \\
\text { obtain: } & \frac{d \sigma}{d y d Q^{2}}=F_{\gamma / e}\left(y, Q^{2}\right) \sigma\left(\gamma^{*} q \rightarrow q^{\prime}\right)
\end{array}
$$

Kinematics

Using $s+t+u=-Q^{2}$ gives:

> Define: $\begin{aligned} \xi & =\frac{p_{2} k}{p_{1} p_{2}}=1-\frac{p_{2} p_{3}}{p_{1} p_{2}} \\ z & =\frac{Q^{2}}{2 p_{1} p_{2}} \\ x_{b j} & =z \xi\end{aligned}$

$$
k_{\perp}^{2}=\frac{\hat{t} \hat{u} \hat{s}}{\left(\hat{s}+Q^{2}\right)^{2}}
$$

- and for $\hat{t} \ll \hat{s}$

$$
k_{\perp}^{2}=\frac{-\hat{t} \hat{s}}{\hat{s}+Q^{2}}=-t(1-z)
$$

Partonic cross sections

$$
\begin{aligned}
& \hat{s}=\left(p_{1}+p_{2}\right)^{2}=Q^{2} \frac{1-z}{z} \\
& \hat{t}=k^{2}=\left(p_{1}-p_{3}\right)^{2} \\
& \hat{u}=\left(p_{2}-p_{3}\right)^{2}
\end{aligned}
$$

- Flux for virtual photons:

$$
F=4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}+m_{1}^{2} m_{2}^{2}}=2\left(\hat{s}+Q^{2}\right)
$$

- x-section with virtual photons:

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{1}{16 \pi} \frac{1}{\hat{s}^{2}}|M|^{2} \rightarrow \frac{1}{16 \pi} \frac{1}{\hat{s}+Q^{2}} \frac{1}{\hat{s}}|M|^{2} \\
& \text { real photons }
\end{aligned}
$$

Isolate dominant parts

in the matrix elements:

region of small k_{t} !!!

Higher order corrections to DIS

- lowest order:
- higher order:
$e+q \rightarrow e^{\prime}+q^{\prime} \quad \mathcal{O}\left(\alpha_{s}^{0}\right)$
$e+q \rightarrow e^{\prime}+q^{\prime}+g, \quad e+g \rightarrow e^{\prime}+q+\bar{q}$
$\mathcal{O}\left(\alpha_{s}^{1}\right)$
- What is the dominant part of the x-section ?
- Investigate full x-section of QCDC and BGF
- dominant part comes from small transverse momenta ...
- rewrite x-section in terms of k_{\perp}
- use small t limit:

$$
\begin{aligned}
\frac{d \sigma}{d k_{\perp}^{2}} & =\frac{d \sigma}{d t} \frac{1}{(1-z)}=\frac{1}{(1-z)} \frac{1}{F} d \operatorname{Lips}|M E|^{2} \\
& =\frac{1}{(1-z)} \frac{1}{16 \pi} \frac{1}{\hat{s}+Q^{2}} \frac{1}{\hat{s}}|M E|^{2}
\end{aligned}
$$

QCDC - contribution

$$
\begin{aligned}
|M|^{2} & =32 \pi^{2}\left(e_{q}^{2} \alpha \alpha_{s}\right) \frac{4}{3}\left[\frac{-\hat{t}}{\hat{s}}-\frac{\hat{s}}{\hat{t}}+\frac{2 \hat{u} Q^{2}}{\hat{s} \hat{t}}\right] \text { BLACKBOARD } \\
& =32 \pi^{2}\left(e_{q}^{2} \alpha \alpha_{s}\right) \frac{4}{3} \frac{-1}{t}\left[\frac{Q^{2}\left(1+z^{2}\right)}{z(1-z)}+\cdots\right]
\end{aligned}
$$

integration over k_{\perp} generates \log BUT what is the lower limit

$$
\sigma^{Q C D C}=\hat{\sigma}_{0} e_{q}^{2} \frac{\alpha_{s}}{2 \pi}\left[P_{q q}(z) \log \left(\frac{Q^{2}(1-z)}{\chi^{2} z}\right)+\cdots\right]
$$

Correction to cross section

- Connect with F_{2} :

$$
\begin{array}{lc}
\sigma^{\gamma * p}=\frac{4 \pi^{2} \alpha}{Q^{2}}\left(F_{2}\left(x, Q^{2}\right)-F_{L}\left(x, Q^{2}\right)\right) \sim \frac{4 \pi^{2} \alpha}{Q^{2}} F_{2}\left(x, Q^{2}\right)=\frac{4 \pi^{2} \alpha}{2 q P} \frac{F_{2}\left(x, Q^{2}\right)}{x} \\
\sigma^{\gamma * p}=\sigma_{0} \frac{F_{2}\left(x, Q^{2}\right)}{x} & \begin{array}{c}
\xi \begin{array}{l}
\text { is parton momentum } \\
\text { fraction }
\end{array} \\
\sigma^{Q P M}=\sigma_{0} e_{q}^{2} \delta\left(1-\frac{x}{\xi}\right) \\
\sigma^{Q C D C}=\hat{\sigma}_{0} e_{q}^{2} \otimes P_{q}(z) \otimes \log \ldots
\end{array} \\
\sigma_{0}=\frac{4 \pi^{2} \alpha}{2 q P}
\end{array}
$$

QCDC contribution to F_{2}

again divergency for $k_{\perp} \rightarrow 0$ or $\chi \rightarrow 0$

$$
\begin{aligned}
\frac{F_{2}}{x}= & \sum e_{q}^{2} \int \frac{d \xi}{\xi} f_{q}(\xi)\left[\delta\left(1-\frac{x}{\xi}\right)+\right. \\
& \left.\frac{\alpha_{s}}{2 \pi} P_{q q}\left(\frac{x}{\xi}\right)\left[\log \left(\frac{Q^{2}}{\chi^{2}}\right)+\log \left(\frac{1-z}{z}\right)+\ldots\right]+C_{q}(z, . .)\right]
\end{aligned}
$$

Boson gluon fusion

$$
\begin{aligned}
& |M|^{2}=32 \pi^{2}\left(e_{q}^{2} \alpha \alpha_{s}\right) \frac{1}{2}\left[\frac{\hat{u}}{\hat{t}}+\frac{\hat{t}}{\hat{u}}-\frac{2 \hat{s} Q^{2}}{\hat{t} \hat{u}}\right] \\
& \text { BGF } \\
& P_{\text {BGF }}^{?} \\
& P_{q g}(z)=\frac{1 \sigma}{2}\left(z^{2}+(1-z)^{2}\right)
\end{aligned}
$$

- integration over k_{t} generates log, BUT what is the lower limit

$$
\sigma^{B G F}=\hat{\sigma}_{0} e_{q}^{2} \frac{\alpha_{s}}{2 \pi}\left[P_{q g}(z) \log \left(\frac{Q^{2}(1-z)}{\chi^{2} z}\right)+\cdots\right]
$$

BGF contribution to F_{2}

again divergency for $k_{\perp} \rightarrow 0$ or $\chi \rightarrow 0$

$$
\begin{aligned}
\frac{F_{2}}{x}= & \sum e_{q}^{2} \int \frac{d x_{2}}{x_{2}} g\left(x_{2}\right) \\
& \frac{\alpha_{s}}{2 \pi}\left(P_{q g}\left(\frac{x}{x_{2}}\right)\left[\log \left(\frac{Q^{2}}{\chi^{2}}\right)+\log \left(\frac{1-z}{z}\right)+\ldots\right]+C_{g}(z, \ldots)\right)
\end{aligned}
$$

Adding up everything

- Connect with $\mathrm{F}_{2}: \quad \sigma^{Q P M}=\sigma_{0} e_{q}^{2} \delta\left(1-\frac{x}{\xi}\right)$

$$
\begin{aligned}
\sigma^{Q C D C} & =\hat{\sigma}_{0} e_{q}^{2} \otimes P_{q}(z) \otimes \log \ldots \\
\sigma^{B G F} & =\hat{\sigma}_{0} e_{q}^{2} \otimes P_{g}(z) \otimes \log \ldots
\end{aligned}
$$

Collinear factorization (part 1)

- bare distributions $q_{0}(x)$ are not measurable (like the bare charges)

$$
F_{2}=x \sum e_{q}^{2}\left[q_{0}(x)+\int \frac{d \xi}{\xi} q_{0}(x) \frac{\alpha_{s}}{2 \pi} P_{q q}\left(\frac{x}{\xi}\right) \log \left(\frac{Q^{2}}{\chi^{2}}\right)+C_{q}(z, . .)\right]
$$

- collinear singularities are absorbed into this bare distributions at a factorization scale μ^{2} $\gg \chi^{2}$, defining renormalized distributions

$$
q_{i}\left(x, \mu^{2}\right)=q_{i}^{0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[q_{i}^{0}(\xi) P_{q q}\left(\frac{x}{\xi}\right) \log \left(\frac{\mu^{2}}{\chi^{2}}\right)+C_{q}\left(\frac{x}{\xi}\right)\right]+\ldots
$$

- now F_{2} becomes:

$$
F_{2}=x \sum e_{q}^{2} \int \frac{d \xi}{\xi} q\left(\xi, \mu^{2}\right)\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{s}}{2 \pi} P_{q q}\left(\frac{x}{\xi}\right) \log \left(\frac{Q^{2}}{\mu^{2}}\right)+C\right]
$$

- separating or factorizing the long distance contributions to structure functions is a fundamental property of the theory
- factorization provides a description for dealing with the logarithmic singularities, there is arbitrariness in how the finite (non-logarithmic) parts are treated.

Splitting functions in lowest order

$$
P_{q q}=\frac{4}{3}\left(\frac{1+z^{2}}{1-z}\right)
$$

$$
P_{g q}=\frac{4}{3}\left(\frac{1+(1-z)^{2}}{z}\right)
$$

similarity to EPA...

$$
P_{q g}=\frac{1}{2}\left(z^{2}+(1-z)^{2}\right)
$$

$$
P_{g g}=6\left(\frac{1-z}{z}+\frac{z}{1-z}+z(1-z)\right)
$$

From factorization to DGLAP

BLACKBOARD

Collinear factorization: DGLAP

- introduce new scale $\mu^{2} \gg \chi^{2}$ and include soft, non-perturbative physics into renormalized parton density:

$$
q_{i}\left(x, \mu^{2}\right)=q_{i}^{0}(x)+\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[q_{i}^{0}(\xi) P_{q q}\left(\frac{x}{\xi}\right)+g^{0}(\xi) P_{q g}\left(\frac{x}{\xi}\right)\right] \log \left(\frac{\mu^{2}}{\chi^{2}}\right)
$$

V.V. Gribov and L.N. Lipatov Sov. J. Nucl. Phys. 438 and 675 (1972) 15, L.N. Lipatov Sov. J. Nucl. Phys 94 (1975) 20,
G. Altarelli and G. Parisi Nucl.Phys.B 298 (1977) 126, Y.L. Dokshitser Sov. Phys. JETP 641 (1977) 46

$$
\frac{d q_{i}\left(x, \mu^{2}\right)}{d \log \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[q_{i}\left(\xi, \mu^{2}\right) P_{q q}\left(\frac{x}{\xi}\right)+g\left(\xi, \mu^{2}\right) P_{q g}\left(\frac{x}{\xi}\right)\right]
$$

- BUT there are also gluons....

$$
\frac{d g\left(x, \mu^{2}\right)}{d \log \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[\sum_{i} q_{i}\left(\xi, \mu^{2}\right) P_{g q}\left(\frac{x}{\xi}\right)+g\left(\xi, \mu^{2}\right) P_{g g}\left(\frac{x}{\xi}\right)\right]
$$

- DGLAP is the analogue to the beta function for running of the coupling

Collinear factorization

$$
F_{2}^{(V h)}\left(x, Q^{2}\right)=\sum_{i=f, \bar{f}, G} \int_{0}^{1} d \xi C_{2}^{(V i)}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \frac{\mu_{f}^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right) \otimes f_{i / h}\left(\xi, \mu_{f}^{2}, \mu^{2}\right)
$$

- hard-scattering function $C_{2}^{(V i)}$ Is infrared finite and calculable in pQCD, depending only on vector boson V, parton i, and renormalization and factorization scales. It is independent of the identity of hadron h.
- pdf $f_{i / h}\left(\xi, \mu_{f}^{2}, \mu^{2}\right)$ contains all the infrared sensitivity of cross section, and is specific to hadron h , and depends on factorization scale.
- Generalization: applies to any DIS cross section defined by a sum over hadronic final states but be careful what it really means....
- explicit factorization theorems exist for:
- diffractive DIS (... see above....)
- Drell Yan (in hadron hadron collisions)
- single particle inclusive cross sections (fragmentation functions)

Factorization proofs and all that ...

 887-971)
tions $F_{a}^{\prime \hat{}}\left(x, \frac{v_{e}}{m}, \alpha_{s}(\mu)\right)$ ($a=$ all parton flavors). Although the underlying physical ideas are relatively simple, as emphasized in the last two sections, the mathematical proofs are technically very demanding. ${ }^{7,15,19}$ For this reason, actual proofs of factorization only exist for a few hard processes; and certain proofs (e.g. that for the Drell-Yan process) stayed controversial for some time before a consensus were reached. ${ }^{15}$ Because of the general character of the physical ideas and the mathematical methods involved. however, it is generally assumed that the attractive quark-parton model does apply to all high energy interactions ith at least one large energy scale.

$$
\frac{d \sigma}{d y}=\sum_{a, b} \int_{x_{A}}^{1} d \xi_{A} \int_{x_{B}}^{1} d \xi_{B} f_{A}^{a}\left(\xi_{A}, \mu\right) f_{B}^{b}\left(\xi_{B}, \mu\right) \frac{d \hat{\sigma}_{a b}(\mu)}{d y}+\mathcal{O}\left(\left(\frac{m}{P}\right)^{p}\right)
$$

- The problem with Drell-Yan: initial state interactions...
- factorization here does not hold graph-by-graph but only for all

Collinear factorization

- So far considered only "leading twist"
twist = dimension (spin) of operators in Operator Product Expansion (OPE)
- Factorization theorem (Colins hepophy9roas9):

Ellis, Webber, Stirling, 123

$$
F_{2}\left(x, Q^{2}\right)=\sum_{i} C_{2}{ }_{i} \otimes f_{i}+\text { non-leading power of } Q
$$

- in general:

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n} \frac{B_{n}\left(x, Q^{2}\right)}{Q^{2 n}}
$$

$n>0$ higher twists non-leading powers ...

- NOT covered by factorization theorem.... but contributions can be large ?!?

Warning on Factorization:

- The limits are factorization (i.e., the universality) of $\mathrm{h} h \rightarrow \mathrm{~h}+\mathrm{X}$ is not yet fully explored!
- You must surely sum over (i.e., not ask questions about) the soft stuff (as we do with jets)
- Some limits are becoming "clear" in $\mathrm{h} \mathrm{h} \rightarrow \mathrm{h} \mathrm{h}$ (b-to-b) +X See, e.g., J. Collins, hepHoh/0708.4410
- The INTRO discussion in
G. Sterman, hepH-ph/0807.5118
- The application of SCET (Soft Collinear Effective Theory)
C. W. Bauer, et al., hepHph/0808.2191
- See also, M. Seymour, et al., hepHph/0808.1269

But even this is not the full story...

- factorization breaking in $p p \rightarrow j_{1} j_{2} X$
J. Collins, J.W. Qiu hep-ph 0705.2141

FIG. 8 (color online). The exchange of two extra gluons, as in this graph, will tend to give nonfactorization in unpolarized cross sections.

- factorization breaking also in $t t$ production at large $p_{t}{ }^{\text {top }}$
S. Catani, M. Grazzini, and A. Torre. Transverse-momentum resummation for heavy-quark hadropro- duction. arXiv 1408.4564

Collinear factorization schemes

- DIS scheme: absorbing all finite contributions C_{q} into quark densities, with no finite $\mathcal{O}\left(\alpha_{s}\right)$ corrections:

$$
F_{2}^{D I S}\left(x, Q^{2}\right)=x \sum e_{q}^{2} q\left(x, Q^{2}\right)
$$

- $M S$ scheme: only minimal contributions from the finite parts are absorbed in the quark distributions:
$F_{2}^{\overline{M S}}\left(x, Q^{2}\right)=x \sum e_{q}^{2} \int \frac{d x_{2}}{x_{2}} q^{\overline{M S}}\left(x, Q^{2}\right)\left[\delta\left(1-\frac{x}{x_{2}}\right)+\frac{\alpha_{s}}{2 \pi} C^{\overline{M S}}\left(\frac{x}{x_{2}}\right)+\ldots\right]$
- once the scheme is chosen, it MUST be used in all other cross section calculations
- higher order corrections will of course depend on the chosen scheme...
- BUT..... there are still other contributions to be included... gluon induced processes

PDFs in different fact. schemes

- differences between LO and NLO ĎIS, MS scheme in quark and gluon densities
- can make significant effects for x-sections

But back to the evolution equation

Splitting functions at higher orders

S. Moch, HERA-LHC workshop, June 2004

The calculation (in a nut shell)

$$
P\left(z, \alpha_{s}\right)=P^{(0)}(z)+\frac{\alpha_{s}}{2 \pi} P^{(1)}(z)+\ldots
$$

- Calculate anomalous dimensions (Mellin moments of splitting functions)
\longrightarrow divergence of Feynman diagrams in dimensional regularization $D=4-2 \varepsilon$

$$
\gamma_{\mathrm{ij}}^{(n)}(N)=-\int_{0}^{1} d x x^{N-1} P_{\mathrm{ij}}^{(n)}(x)
$$

- One-loop Feynman diagrams
\longrightarrow in total 18 for $\gamma_{\mathrm{ij}}^{(0)} / P_{\mathrm{ij}}^{(0)}$ (pencil + paper)
- Two-loop Feynman diagrams \longrightarrow in total 350 for $\gamma_{\mathrm{ij}}^{(1)} / P_{\mathrm{ij}}^{(1)}$ (simple computer algebra)

Splitting functions (cont'd)

LO and NLO singlet splitting functions

$$
P\left(z, \alpha_{s}\right)=P^{(0)}(z)+\frac{\alpha_{s}}{2 \pi} P^{(1)}(z)+\ldots
$$

$$
\begin{aligned}
& P_{P_{\mathrm{s}}^{(0)}(x)}=0 \\
& P_{\mathrm{gB}}^{(0)}(x)=2 n_{f} P_{\mathrm{Pg}}(x) \\
& P_{\mathrm{g}}^{(0)}(x)=2 C_{F} P_{g 9}(x) \\
& P_{\mathrm{gg}}^{(0)}(x)=C_{A}\left(4 P_{\mathrm{gg}}(x)+\frac{11}{3} \delta(1-x)-\frac{2}{3} n_{f} \delta(1-x)\right.
\end{aligned}
$$

$$
\begin{aligned}
& P_{\mathrm{Ps}}^{(\mathrm{l})}(x)=4 C_{F} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+6 x-4 \mathrm{H}_{0}+x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{56}{9}\right]+(1+x)\left[5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]\right) \\
& P_{\mathrm{gg}}^{(\mathrm{l})}(x)=4 C_{A} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+25 x-2 p_{\mathrm{qg}}(-x) \mathrm{H}_{-1,0}-2 p_{\mathrm{4g}}(x) \mathrm{H}_{\mathrm{l}, 1}+x^{2}\left[\frac{44}{3} \mathrm{H}_{0}-\frac{218}{9}\right]\right. \\
& \left.+4(1-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{0}+x \mathrm{H}_{1}\right]-4 \zeta_{2} x-6 \mathrm{H}_{0,0}+9 \mathrm{H}_{0}\right)+4 C_{F} n_{f}\left(2 p _ { \mathrm { qg } } (x) \left[\mathrm{H}_{1,0}+\mathrm{H}_{\mathrm{l}, 1}+\mathrm{H}_{2}\right.\right. \\
& \left.\left.-\zeta_{2}\right]+4 x^{2}\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}+\frac{5}{2}\right]+2(1-x)\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}-2 x \mathrm{H}_{1}+\frac{29}{4}\right]-\frac{15}{2}-\mathrm{H}_{0,0}-\frac{1}{2} \mathrm{H}_{0}\right) \\
& P_{\mathrm{gq}}^{(1)}(x)=4 C_{A} C_{F}\left(\frac{1}{x}+2 p_{\mathrm{gq}}(x)\left[\mathrm{H}_{1,0}+\mathrm{H}_{\mathrm{l}, 1}+\mathrm{H}_{2}-\frac{11}{6} \mathrm{H}_{\mathrm{l}}\right]-x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{44}{9}\right]+4 \zeta_{2}-2\right. \\
& \left.-7 \mathrm{H}_{0}+2 \mathrm{H}_{0,0}-2 \mathrm{H}_{1} x+(1+x)\left[2 \mathrm{H}_{0,0}-5 \mathrm{H}_{0}+\frac{37}{9}\right]-2 p_{\mathrm{gq}}(-x) \mathrm{H}_{-1,0}\right)-4 C_{F} n_{f}\left(\frac{2}{3} x\right. \\
& \left.-p_{\mathrm{gq}}(x)\left[\frac{2}{3} \mathrm{H}_{1}-\frac{10}{9}\right]\right)+4 C_{F}^{2}\left(p_{\mathrm{gq}}(x)\left[3 \mathrm{H}_{1}-2 \mathrm{H}_{1,1}\right]+(1+x)\left[\mathrm{H}_{0,0}-\frac{7}{2}+\frac{7}{2} \mathrm{H}_{0}\right]-3 \mathrm{H}_{0,0}\right. \\
& \left.+1-\frac{3}{2} \mathrm{H}_{0}+2 \mathrm{H}_{1} x\right) \\
& P_{\mathrm{gg}}^{(\mathrm{l})}(x)=4 C_{A} n_{f}\left(1-x-\frac{10}{9} p_{\mathrm{gg}}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x) \mathrm{H}_{0}-\frac{2}{3} \delta(1-x)\right)+4 C_{A}^{2}(27 \\
& +(1+x)\left[\frac{11}{3} \mathrm{H}_{0}+8 \mathrm{H}_{0,0}-\frac{27}{2}\right]+2 p_{\mathrm{gg}}(-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}-1,0-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12 \mathrm{H}_{0} \\
& \left.-\frac{44}{3} x^{2} \mathrm{H}_{0}+2 p_{\mathrm{gg}}(x)\left[\frac{67}{18}-\zeta_{2}+\mathrm{H}_{0,0}+2 \mathrm{H}_{1,0}+2 \mathrm{H}_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3 \zeta_{3}\right]\right)+4 C_{F} n_{f}\left(2 \mathrm{H}_{0}\right. \\
& \left.+\frac{21}{3} \frac{10}{x}+\frac{10}{3} x^{2}-12+(1+x)\left[4-5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]-\frac{1}{2} \delta(1-x)\right) .
\end{aligned}
$$

Splitting functions (cont'd)

$P\left(z, \alpha_{s}\right)=P^{(0)}(z)+\frac{\alpha_{s}}{2 \pi} P^{(1)}(z)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P^{(2)}(z)+{ }^{\text {s. Moch, HERA-LHC workshop, June 2004 }}$
NNLO singlet splitting functions

NLO contributions to $F_{2}\left(x, Q^{2}\right)$

Evolution kernels - splitting fcts

- some of the splitting functions are also divergent...

$$
\frac{1}{1-z}
$$

- use plus-distribution to avoid dangerous region:

$$
\int_{0}^{1} d z \frac{f(z)}{(1-z)_{+}}=\int_{0}^{1} d z \frac{f(z)-f(1)}{1-z}
$$

- divergence cancelled by virtual corrections ...
- use splitting functions with plus-distribution

Conservation rules with DGLAP

$$
\int_{0}^{1} d x x\left[\sum_{i=-6}^{6} q\left(x, \mu^{2}\right)+g\left(x, \mu^{2}\right)\right]=1
$$

- use DGLAP

$$
\begin{aligned}
\frac{d q_{i}\left(x, \mu^{2}\right)}{d \log \mu^{2}} & =\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[q_{i}\left(\xi, \mu^{2}\right) P_{q q}\left(\frac{x}{\xi}\right)+g\left(\xi, \mu^{2}\right) P_{q g}\left(\frac{x}{\xi}\right)\right] \\
\frac{d g\left(x, \mu^{2}\right)}{d \log \mu^{2}} & =\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[\sum_{i} q_{i}\left(\xi, \mu^{2}\right) P_{g q}\left(\frac{x}{\xi}\right)+g\left(\xi, \mu^{2}\right) P_{g g}\left(\frac{x}{\xi}\right)\right]
\end{aligned}
$$

\rightarrow to obtain:

$$
\begin{aligned}
\int_{0}^{1} d x x\left[P_{q q}(x)+P_{g q}(x)\right] & =0 \\
\int_{0}^{1} d x x\left[P_{g g}(x)+2 n_{f} P_{q g}(x)\right] & =0
\end{aligned}
$$

How to apply these results

Applying DGLAP to DIS data ...

H1 and ZEUS Combined PDF Fit

- Theory describes measurement ${ }^{2}$ oferer ${ }^{2}$ huge range in x and Q^{2}
- Success of theory (DGLAP)

Extraction of PDFs from DGLAP fits

- Sum rules are essential to constrain starting distributions
- Solve DGLAP equations
- adjust input parameters (starting distributions) such that F2 is best described
- extract PDFs as fct of x
- then DGLAP gives PDFs at any Q^{2}

H1 and ZEUS Combined PDF Fit

Solving DGLAP equations ...

- Different methods to solve integro-differential equations
- brute-force (BF) method (M. Miyama, S. Kumano CPC 94 (1996) 185)

$$
\frac{d f(x)}{d x}=\frac{f(x)_{m+1}-f(x)_{m}}{\Delta x_{m}} \quad \int f(x) d x=\sum f(x)_{m} \Delta x_{m}
$$

- Laguerre method (S. Kumano J.T. Londergan CPC 69 (1992) 373, and L. Schoeffel Nucl.Instrum.Meth.A423:439-445,1999)
- Mellin transforms (M. Glueck, E. Reya, A. Vogt Z. Phys. C48 (1990) 471)
- QCDNUM: calculation in a grid in x, Q2 space (M. Botje Eur.Phys.J. C14 (2000) 285-297)
- CTEQ evolution program in x,Q2 space: http://www.phys.psu.edu/~cteq/
- QCDFIT program in x,Q2 space (C. Pascaud, F. Zomer, LAL preprint LAL/9402, H1-09/94-404,H1-09/94-376)
- MC method using Markov chains (S. Jadach, M. Skrzypek hep-ph/0504205)
- Monte Carlo method from iterative procedure
- brute-force method and MC method are best suited for detailed studies of branching processes !!!

Evolution code in LHAPDF

LHAPDF the Les Houches Accord PDF Interface

- LHAPDF Home
- Publications
- Installation
- PDF sets
- Downloads
- User manual
- Theory review
- C++ wrapper (v5.4)
- C++ wrapper (old - v5.3))
- Python wrapper (v5.4)
- LHpdf files
- .LHgrid files
- Mailing list
- ChangeLog
- Subversion repo
- Contact

Home

LHAPDF provides a unified and easy to use interface to modern PDF sets. It is designed to work not only with individual PDF sets but also with the more recent multiple "error" sets. It can be viewed as the successor to PDFLIB, incorporating many of the older sets found in the latter, including pion and photon PDFs. In LHAPDF the computer code and input parameters/grids are separated thus allowing more easy updating and no limit to the expansion possibilities. The code and data sets can be downloaded together or inidivually as desired. From version 4.1 onwards a configuration script facilitates the installation of LHAPDF.

Contents:

Installing LHAPDF.
List of all available PDF sets. On-line user manual.
PDF set numbers
A wrapper for C++.
A wrapper for C++. (old version)
A little bit of theory.
Description of the .LHpdf files
Description of the .LHgrid files
PDFsets.index
How to join the announcement mailing list. How to email the developers of LHAPDF
View the Subversion repository.
Tracker/Wiki
ChangeLog.
Publications/LHAPDF reference
Name conflicts with CERNLIB

Patches: patches to 5.7.0

Downloads:

Latest released version (16/02/2009): 5.7.0 (full): lhapdf-5.7.0.tar.gz
5.7.0 (nopdf): Ihapdf-5.7.0-nopdf.tar.gz Extra PDF sets
Old versions:
5.6.0 (full): Ihapdf-5.6.0.tar.gz 5.5.1 (full): lhapdf-5.5.1.tar.gz 5.5.0 (full): Ihapdf-5.5.0.tar.gz 5.4.1 (full): Ihapdf-5.4.1.tar.gz 5.4 .0 (full): lhapdf-5.4.0.tar.gz 5.3.1 (full): Ihapdf-5.3.1.tar.gz(patches) 5.3 .0 (full): Ihapdf-5.3.0.tar.gz(patches) 5.2.3 (full): Ihapdf-5.2.3.tar.gz 5.2.2 (full): Ihapdf-5.2.2.tar.gz 5.2.1 (full): Ihapdf-5.2.1.tar.gz 5.2 (full): Ihapdf-5.2.tar.gz 5.1 (full): Ihapdf-5.1.tar.gz

Can use LHAPDF to evolve starting distribution to any Q^{2} with

- CTEQ, QCDNUM, and other evolution packages...

