DEUTSCHES ELEKTRONEN — SYNCHROTRON

LY
DESY
/“

DESY 91-146
December 1991

A Fokker-Planck Treatment of Stochastic Particle
Motion within the Framework of a Fully Coupled
6-dimensional Formalism for Electron-Positron
Storage Rings including Classical Spin Motion in
Linear Approximation

D. P. Barber, k. Heinemann. H. Mais, G. Ripken
Deutsches Elektronen-Synchrotron DESY. Hamburg

ISSXN (418-9833

NOTKESTRASSE 85 - D-2000 HAMBURG 52



DESY behilt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Berich enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX,
send them to the following (if possible by air mail):

DESY DESY-ifH
Bibliothek Bibliothek
Notkestrafie 85 Platarenallee 6

W-2000 Hamburg 52 | 0-1615 Zeuthen
Germany Germany




DESY 21-146
December 1991 ISSN (0418-9833

A Fokker-Planck Treatment of Stochastic Particle
Motion within the Framework of a Fully Coupled
6-dimensional Formalism for Electron-Positron
Storage Rings including Classical Spin Motion in
Linear Approximation

D.P. Barber, K. Heinemann, H. Mais, G. Ripken
August, 1991

Abstract

In the following report we investigate stochastic particle motion in electron-positron
storage rings in the framework of a Fokker-Planck treatment. The motion is described
by using the canonical variables z, p;, z, p;, 0 = s — ¢, p, = AE/E of the fully
six-dimensional formalism. Thus synchrotron- and hetatron-oscillations are treated si-
multaneously taking into account all kinds of coupling (synchro-betatron coupling and
the coupling of the betatron oscillations by skew quadrupoles and solenoids). In order
to set up the Fokker-Planck equation, action-angle variables of the linear coupled motion
are introduced. The averaged dimensions of the bunch, resulting from radiation damping
of the synchro-betatron oscillations and from an excitation of these oscillations by quan-
tum fluctuations, are calculated by solving the Fokker-Planck equation. The surfaces of
constant density in the six-dimensional phase space, given by six-dimensional ellipsoids,
are determined. It is shown that the motion of such an ellipsoid under the influence of
external fields can be described by six generating orbit vectors which may be combined
into a six-dimmensional matrix B(s). This "bunch-shape matrix”, B(s), contains complete
information about the configuration of the bunch.

Classical spin diffusion in linear approximation has also been included so that the
dependence of the polarization vector on the orbital phase space coordinates can be
studied and another derivation of the linearized depolarization time obtained.
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1 Introduction

In an earlier paper 1] we studied the influence of synchrotron radiation on spin-orbit
motion within the framework of stochastic differential equations and calculated the damping
constants, the beam emittance matrix and the depolarization time (7p) of the spin motion.

In this report we represent an alternative way of investigating orbital and classical spin
motion, namely on the basis of a Fokker-Planck treatment. This has the advantage that,
besides the calculation of the damping constants, the beam emittance matrix and the de-
polarization time, it is also possible to study the charge distribution in the phase space of
the orbit motion. Furthermore, in this way additional insights into the spin depolarization
process can be obtained.

To set up the Fokker-Planck equation, we follow an approach similar to one used by
J.M. Jowett [2] but in addition concentrate on a fully coupled treatment of synchro-betatron
motion.

To achieve this, we introduce in addition to the variables =, p,, z, p. describing the
(transverse) betatron oscillations, the small and oscillating variables 0 = s — ¢ - ¢ and p, =
AFE/Ey which describe the longitudinal motion.

With the complete set, =, p,. =, p-, &, p,, we are then in a position to provide, in the
framework of this six-dimensional formalism, a linear analytical technique which handles the
external magnetic forces in a consistent canonical manner and which includes consistently
and canonically the synchrotron oscillations in the electric fields of the accelerating cavities.

The starting point of our investigation is the Lorentz equation and the BMT equation
(chapter 2) applied to the motion of classical spins.

In chapter 3 the coordinate syvstem of the orbital motion 1s introduced.

The stochastic equations of meotion, taking into account the synchrotron radiation, are
derived in chapters 2 - 4.

In chapter 5 a new reference orbit, the six-dimensional closed orbit, 1s introduced and the
spin-orbit equations with respect to this new orbit are presented in a combined form.

The linear equations of spin-orbit motion, neglecting non-symplectic orbital terms (i.e. the
unperturbed problem), are investigated in chapter 6 by defining the 8-dimensional trausfer
matrix and by studying the eigenvalue spectrum of the revolution matrix. Furthermore.
action-angle variables for the coupled orbital motion are introduced.

The perturbed problem, taking into account the non-symplectic terms, is investigated in
chapter 7.

We are then in a position to rewrite the equations of stochastic motion in terms of the
orbital action-angle varizbles and the corresponding variables for the classical spin motion
(chapter 8). These equations are the basis for a Fokker-Planck treatment of stochastic spin-
orbit motion.

The Folkker-Planck equation for spin-orbit motion is finally discussed in chapter 9. Fur-
thermore. analytical expressions for the damping constants of the {coupled) synchro-betatron
oscillations are derived in this chapter and an alternative way of obtaining these constants
is given in Appendix D where a simple proof of the well-known Robinson theorem is also
presented.

A solution of the Fokker-Planck equation is derived in chapter 10.

For the orbital motion we only consider the stationary distribution and we show that the
surfaces of constant deunsity in the six- dimensional phase space are given by six-dimensional
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ellipsoids and that the motion of such an ellipsoid under the influence of external fields can
be described by six generating orbit vectors which may be combined into a six-dimensional
matrix B(s). This "bunch-shape matrix", B(s), contains complete information about the
configuration of the bunch. The projections of this six-dimensional ellipsoid onto the different
phase planes determine the beam envelopes (chapter 10.1).

For the spin motion, the linearized depolarization time (chapter 10.2) obtained by these
methods agrees with the expression obtained previously but these methods allow the phase
space dependence of the polarization axis to be calculated in addition ! .

In Appendix E we prove that the stationary solution of the Fokker-Planck equation for
the orbital motion is unique.

A summary of the results is presented in chapter 11.

Finally we remark that much of the contents of chapters 2 - 7 has already been derived
in Ref.[1]. These results are only mentioned here again in order to present a complete set
of definitions for setting up the Fokker-Planck equations. Readers familiar with the notation

can begin at chapter 6.

2 Spin-Orbit Motion in an Electromagnetic Field

‘We begin the description of classical spin-orbit motion in electron-positron storage rings
with a statement of the Lorentz- and the BMT-equations.

2.1 Orbital Motion (Lorentz-Equation)

The equation of motion for a relativistic charged particle in an electromagnetic field, the

Lorentz-equation, is:

- € 4 = = d (E -
€E+ETXB+R:E(EET) (2.1)
with R
E=- —2C. = ¥ - mgc’ (2.2)

1- (,J:_.')Z"f'c'.’

(energy of the particle)

and with the following defimtions:

e ¢ = charge of the particle (electron or positron) ;
e mg = rest mass of the particle ;
e ¢ = velocity of light;

electric field;

™y
l

—

e B = magnetic field ;

1A ful] semiclassical description of the polarization process in storage rings has been given by S.R. Mane
[3] and by Ya.S. Derbenev and A.M. Kondratenko [4]. Part of the object for our investigation is to expose
similarities between the classical and semirclassical ireatments.



¢ R = radiation reaction force;
¢ 7 = radius vector of the particle;

o v = E/myc.

We adopt an "ansatz” in which the radiation force in (2.1) is separated into two parts:
R=RP + R, (2.3)

a continuous part RP describing the smoothed radiation process and a discontinuous part §R
describing the quantum fluctuations. The explicit expression for R” is given by '5.6.7]:

. 2 ¢? . ~? .
D 4 5 [ SRy
R” = -2 =7 -r-{(r) +C—2(r-r)] (2.4)
and we model 6B by a white noise process [2,8] with
<éR> = 0; (2.5a)
< 6R(1)6R;(t') > = Cy(t)-8(t -t (2.5b)
where < > indicates a statistical average [9,10].
We also introduce the radiation power
P=R.i=pP Lsp (2.6)

of a (ultrarelativistic) particle in a purely magnetic field. For the case where

-

7-B=0 (2.7)

(2 good approximation in storage rings) one then may write '2J:

.7, -y 2
PP = E2-ﬁm-(z-13|) (2.8)
and
< §P(s)-8P(s') > = ER%{’LT)&-GqE;)s-é(S—S') (2.9)
with
.
=5, (2.10)

where s designates the arc length of a reference orbit (see chapter 3).

Note that in purely magnetic fields and where (2.7) applies, (2.8) can be derived directly
from (2.4).

The photons are emitted in the direction of the momentum of the particle with an opening
angle of order

(2.11)



so that at high energy we are justified in taking the radiation reaction force to be collinear
with 7 [11,12].
With this assumption the coefficients C;;(#) in (2.5) are then determined by eqn. (2.9).
If we neglect the radiation force, eqn. (2.1) can be written in Lagrangian form:

S 2.12
with the Lagrangian (see e.g. [13]) :
v? € 5
L= —moc”4fl—— 1 —-(rA)—e-¢; (2.13)
¢t ¢

(v = |7)

where A and ¢ are the vector and scalar potentials from which the electric field € and the
magnetic fleld B are derived as

194
c &t ’
B = curl 4. (2.14b)

€ = —grad ¢ — (2.14a)

2.2 Spin Motion (BMT-Equation)
The equation of relativistic classical spin motion, the BMT-equation, reads as [14,15]:

d -

—& = Qox€ 2.15
T o % § (2.15a)
where
meye = - ar? 1 Lo .
‘Qg = ﬁ(]‘l"";’a.)'B—i- _2(T'B)’."
€ l-7 ¢
Y R R (2.15b)
14+ ¢

The following abbreviations have been used:

. E = classical spin vector in the rest frame of the particle;

¢ a = (g—2)/2 which quantifies the anomalous electron g factor.

In this paper we do not include the spin polarizing effect of synchrotron radiation [11] but
only a classical model for the depolarizing effect of orbit excitation. Therefore the Lorentz-
equation (2.1) and the BMT-equation {2.15) together with the equations (2.8—10) for the
radiation force cover the whole of the physics we need here for a Fokker-Planck treatment of

stochastic orbit and classical spin motion.
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3 Reference Trajectory and Coordinate Frame

The position vector 7 in eqns. (2.1) and (2.15) refers to a fixed coordinate system.
However, in accelerator physics, it is useful to introduce the natural coordinates z,z,s in a
suitable.curvilinear coordinate system. With this in mind we assume that an ideal closed
design orbit exists which describes the path of a particle of constant energy E,, i.e. we
neglect energy variations due to cavities and to radiation loss. In addition, to define the
design orbit we ignore field errors and correction magnets. We also require that the design
orhit comprises piecewise flat curves which lie either in the horizontal or vertical plane so
that it has (plecewise) no torsion. The design orbit which will be used as the reference system
will. in the following, be described by the vector 7p(s) where s is the length along the design
orbit. An arbitrary particle orbit 7'(s) is then described by the deviation é7(s) of the particle
orbit r'(s) from the design orbit 7y(s) :

7(s) = Fy(s) + 67 (s) . (3.1}

The vector ér" can as usual [16] be described using an orthogonal coordinate system
("dreibein”) accompanying the particles which travels along the design orbit and comprises

the unit tangent vector  €,(s) = Eﬁ)(s) = ro(s),
a unit vector €z(8)
which lies perpendicular to €, in the horizontal plane [1]
and the unit vector  €.(s) = €,(s) X éx(s) .
In this natural coordinate system we may represent 67 (s) as:
57 (s) = (67 - €x) - € +(é7 - €.) - €.

(since the "dreibein” accompanies the particle the €, - component of 87 is always zero by
definition).
Thus. the orbit-vector 7'(s) can be written in the form

T(z,z,8) =To(s) + (s) - €.(s) + z(s) - €(s) (3.2)

and the Serret-Fresnet formulae for the dreibein (€,, €,.¢.) read as:

d

n ex(8) = +RAL(s)-€.{s); (3.3a)
4 €:(8) = +K.(s)-€(s); {3.3b}
ds
k) = Eule)-Els) - Ko(s)- ls) (2.3¢)
where we assume that
K,(s) - R, (s})=0 {3.4)



(piecewise no torsion) and where K.(s}, K.(s) designate the curvatures in the z-direction and

in the z-direction respectively.

Note that the sign of K.(s) and K.(s) is fixed by eqns. (3.3).
From eqns. (3.2) and (3.3) one then has

:, . |d7o " de,
= . — :t: .
4 5 ds ds

= g-§-(l—z-K,+2z-K,)+Z-€+z-¢

dgz] ] — . -+
+z:-— 1 t+x-6.+ 26
ds

1-% and (7

=y
Ly

i o 1 . 1/2
\/1—_2 = {1——2-[.i:2+z'2+(1+Km-9:+K;-z) 52]} :
C [

(F-A) = 2-Ag+3 A, +(1+ K-z + K. 2) 4

with

-

A=A, -, +A,-e.+ A4, €.
In the new coordinate system z, z, s, the Lagrangian in eqn. (2.13) then becomes

1 X ) 1/2
Lla,z,8,@,5,8,1) = —mucz{l——z[iz—x—iz+(1+K¢-$+Rz-z)2-s2]} (3.5)
Fad .

FEfE At A+ B nt Eoz) - A) - e
8

and eqn. (2.14) leads to

8¢ 1 04,
_ _9 1 : 3.6
fx Or ¢ Ot (3.62)
O¢ 1 0A, ‘
£. = — —_—— - . 3.6b
- : ¢ O ( )
do 1 04,
- T _ ., 3.6c
Fo 8s ¢ Ot (3.6c)

(cavities in the straight sections only}) and

1 o 0
B, = S —[1+ L, -2+ K, -2)-A,|——A.; ; 3.
’ (L+ K, -r+ A.-z) {3:( the-e 4 K -z) ] s } ’ (3.7a)
1 J a .
B, = — A, — —i(1+ K, - K.-z)-A,] 0 3.7b
- (1+A,-r+ K. -zj) {33 3.1‘( i zt ) }} (3.7b)
o o
= —A. - —A,. 3.7c
B, BIA“ 3- A, (3.7¢)



Finally, the equations of motion

doL &L 0 (3.8a)
— e — .Ga
dt Oz or ’
d 8L 0L
————— =0 3.8b
dt dy Ay ’ ( )
doL ac
—_— _ = _ 3.8
di 85 Os 0 (3.8¢)
take the form
d . , 2 g
E[mov-m'] = e-c.+mgy-(1+ K, 2+ K.-2)-§° K,
+5.{:-B,—i-(1+K.-2+K,-z) B.) ; (3.92)
a4
d .
—CE[mg*y-z'] = e-e,+mey-(1+K,-2+ K, -2)-5° K.

+E'{—IB,+S'(1+.B-’11'+A-2Z)Bm}a (3'9b)
c

d - -
Eg[mofy-(l—l—ffm-:c+Ix'z-:)-.§] = e-e,-mpy(A,-2+HK, -2} 3

+<-{¢-B.—:-B,} . (3.9¢)
C

4 The Equations of Motion

The variables z(s) and z(s) introduced in eqn. (3.2) can now be used to describe the
transverse (betatron) oscillations. In order to describe the longitudinal (synchrotron) oscilla-
tions we introduce the additional variables ¢ = s — ¢t and p, = AE/Eg, where the quantity
o defines the longitudinal separation of the particle from the equilibrium particle and Po
describes the energy deviation of the particle.

Using the arc length, s, as independent variable the equations of motion for spin and
orbit then can be rewritten using the results of Appendix A, where the Hamiltonian M of the
orbital motion is derived.

In order to include the radiation effects we note that by eqn. (2.11), #'(s) and 2/(s) in
(A.33) remain essentially unchanged during a photon emission. i.e. we neglect transverse
recoil effects {11]. Then by energy conservation only a change in p,(s) need be considered ? .
We do this via the relationship |2]

oH oH 1
Apa_—a-zﬁs — —EMAS-EB-A]E-P(S)
B OH  1'(s)
_As.[_:g;rﬁ_ EG P(S)]

which leads to the replacement of the relation

, OH
Poo) = "5,

?See also the discussion in Ref. [2], Section 6.
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of Appendix A by the relation

__6H _Ps) |, K
Ps = do Eg-c Op,|

Using eqns. (2.8) and (2.9), the radiation term in (4.1) becomes in first order:

P(s) oH _ -2 2
Ep- e [1 - 3%] = 0K R
~Cy- [(Kl+ K2)- Ko+ 2K, g -2
~Cy - [(K2+ K2) K. —2K. g2
—2C, - [K7 + KX} -p.
+é¢c
with
be = P(s) P + | K.]?) -
where the coefficents 'y and C; are given by
22 7o
C, = —€-—;
: 3¢ " E,
53 -3 7]
C, = ‘[-01-1\-73 with A= —
48 MgC

(4.1)

(4.2a)

(4.2b)

(4.3a)

(4.3b)

and where by eqns. (2.9) and (A.8a, b) the factor P(s) of écin eqn. (4.2) obeys the equation:

(P(s), P(s")) = &(s — &) .

4.1 Orbital Motion

(4.4)

Combining now the equations {4.1), (4.2), (A.32), (A.33) and (A.36) we thus obtain:

d 4 4 -
E;;lf:(é+‘5é)'§'+€o+cl+6c

with

)

Pz

1. s
P-
a

P } Y

™l
(l

2
I
oo oo

vV . -2
EOT = (0,0,0:010’ .EE_gSin‘p - Cl ! {I\j - K;]) ;

+AB,,0,0) ;

&' =005 =

—-— -ABRB,,0,
? EU =7 +E0

11
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(4.6a)

(4.6h)

(4.6c)



0 1 H 0 0 0\
—(Gy+H?) 0 N H 0 K,
- 0 0 1 0 0 i
A(s) = N _H (Cy+HY 0 0 K. (4.7)
— K, 0 —K, 0 0 0
\ 0 0 0 0 . h.Zeosp 0
and
$4 = ((44i));
'Lf
8Az = _eE(Os) - sin g ;
4a = —Cy- [(K2+K?) K. +2K.-g|
édes = —Ci- [(Kf-FKf)'Kzf?K; -g] ;
$4;, = 0 otherwise , (4.8)

where the lens functions Gy, G2, g, N, H, K., K, are defined as follows:

g = —. 5B, ; (4.9a)
EO BT r—z=—
1 € oB 0B
N o= . 5. = _ 07 : 4.91
‘ 5 Eo ( Bz bz ) e (4.9b)
1 e
H — E'E'Bs 5 (4:9(.'}
K, = —.B®,; K.=—~- .B9, (4.9d)
EQ EO
G, = Kl+g; G, = Kl—g. {4.9¢)

Here the matrix A(s) results from the Hamiltonian Hy (see eqn. (A.32a)), the vector ¢
from the last two terms in the Hamiltonian H; (see eqn. (A.32b)) and the vector ¢p results
from the first term of H, (induced by the cavities) and the constant term in (4.2) (averaged
energy loss by radiation).

The matrix 6 A(s) contains non-symplectic terms representing damping effects which are
caused by acceleration fields (see eqn. (A.36)) and by radiation loss described by the linear
terms in eqn. (4.2).

Finally we remark that the cavity phase ¢ is to be determined by the condition that the
average energy radiated away in the bending magnets 3 :

so+L
Eo-/ di -1 [K? + K] = U,

sq

3Note that in this linearized treatment we ignore radiation originating in quadrupole and sextupole fields.

12
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must be compensated by the average energy gain in the cavities:

s0+L e‘:f—
Eo-/ di-—sine = Ugqy
g ED

i.e. we require that

ap+1 so+L
Eo-/ d§-Cl[I{§—|—Kf]:Eg-f ds- = sing = Up . (4.10)

4.2 Spin Motion

Introducing again the arc length s of the design orbit as independent variable and using
eqn. (3.4) and the relationship

d _d d _ds d 1 d (4.11)

gt " dt d "l ds I ds

where [ is the length of the particle orbit with

dl = |7'| - ds,

we obtain:

F=+/lz)+ (P + 1+ K-z+ K, -2) (4.12)

so that the Thomas-BMT-equation (2.15) (with v = ¢) becomes:

SE = =l (Sox ). (413)

=68+t e+t (4.14)
and using eqn. (3.3) we have:
d - . . o .o d _ d d
E = E,'fs+g_-ﬂ'€m+€;'€:+€w'£er+§s'££s+£z'£f.:
= {;-534—6;-?&,_}6;-5__#{3 '(K-T'€I+I{r'€:)+§w'f{r;x +§Z'K:€3
= &Gt E b e —Ex (R, & — K, &), (4.15)
Thus eqn. (4.13) can be rewritten as:
i e e =0 E (4.162)
with
I
Q=--Q%-K..e,~RK,-€.. (4.16D)
¢



It follows from eqns. {4.15) and (4.16a) that for two spins {: and E_; with the same ﬁ(.s)
(i.e. the same position in the (z — p, — z — p. — ¢ — p,) phase space) the scalar product

£1(s) - Eals)
is a constant of motion:
d , - -
g, (&ls)-&ls)) = oy
= &(s)-&ls) = const (4.17)

i.e. the modulus of {and the angle between .f; and {; are invariants:

|ﬂs){ = const ; {4.18a)
# (€1(s),€2(s)) = comst . (4.18b)
In linear approximation ( is given by (see Appendix B):
Q, — —2H. [1—0—& o ]+2H-n- [1+a—-7—‘2’:—}
1-F 7 (14002
—a%3 +°% ('K, - 'K} ; (4.19a)

VG, = K.-ay+[1+4av| K:-:-K.-q
Yo

*(1+a'ro)-[(N—H’)-a:+g:’]+a‘rol " -2He
0
7o € . ' €
+ [a’yo + ] - —V{(s)sinp -2 — (1+ ay) - =—AB, ; (4.19b)
1+ Eo EO
0. = —K,-a'yo—[l—}ra’}’o]'K§'$+Kz'77
+(1 + avo) - (N + H') - z - g] + avor—o— -2H '
1+
4o © V(s)si (1 ) S AB (4.19¢)
— [ 8 . — - . — - . c
ayg | E sing - r @) g AB:

(—no solenoid field in the bending magnets and in the cavities : K, - H=K.-H=
0; V-H=0)with

AE

?]Epa-:?.
0

5 Introduction of a New Reference Orbit (Closed Or-
bit)
5.1 The Determining Equations of the New Orbit (Closed Orbit)

The equations (4.5) of the orbit form a system of linear and inhomogeneous differential
equations with inhomogeneous parts é¢, & and ¢;. The term &é¢ which is proportional to
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h'/? describes the quantum fluctuations of the radiation field and & is due to the variation
of the energy of the circulating particles resulting from radiation losses and the presence of
accelerating fields. The vector & originates from fields AB, and A B, which can be interpreted
as field errors or perturbing external fields. The term 64 which contains the accelerating fields
and the radiation losses {see eqn. (4.8)) will be treated with perturbation theory.

The description of the orbital motion and the spin motion can now be simplified by
eliminating the inhomogeneous parts ¢y and ¢; in equ. (4.1). This is achieved in the usual
manner by looking for the (unique) periodic solution iy of the inhomogeneous equation

¥ ' =(A+84) g+ +a

namely

o' = (A+864)H+&— o ; (5.1a)
Yo(so+ L) = %o(se); (condition of periodicity) . (5.1b)

Then the general solution of (4.5) can be separated into
Y="% +¥ (5.2)

where the vector § describes the synchro-betatron oscillations around the new closed equilib-
rium trajectory gp, which we call the "six-dimeunsional closed orbit”.

5.2 The Linearized Equations of Orbital Motion with Respect to
the Closed Orbit

The six-dimensional closed orbit may be determined by setting up the transfer matrices
for the different types of lenses of a siorage ring as demonstrated in Ref. [1]. Thus we assume
in the following that #(s) is known.

By inserting (5.2) into (4.5) and using (5.1a) we then obtain:

7'(s)=(A+64)g+67 (5.3)

where the inhomogeneous parts ¢ and ¢; have indeed disappeared as required. Equation (5.3)
now describes the free synchro-betatron vscillations around the new reference trajectory 4o(s).

Later we will need to use the fact that the orbit equation (5.3) without the radiation
terms 8.4 and &¢

d - .
—y=4-9 5.4
=49 (5.4)
can be written in canonical forin
d - OH
-y = -5 —= (5.5)
ds 0y

with the Hamiltonian

-~ 1 - - -
H:5-{[gsﬁff-zjzﬂgaz—H-512+G1-:cuc-'g-zuzjv..c:}
1 1V 2 .
352-;—U-h-%cow—[ﬂm-ﬂm E By (5.6)



where the matrix S is given by

5= 0 52 0 ’ ﬁz:(-l—l 0) (57)
0 ¢ 5,

5.3 Spin Motion
5.3.1 Perturbation Theory

In analogy to the separation of the oscillation amplitude 3 into two parts we can divide
the vector () (see eqn. (4.19)) iuto two components, namely:

07 =20+ 3 (5.8)

with
0© = ¢ (5) (5.9a)

and
F=0-900=3(3). (5.9b)

The components of the precession vector Q) are given by (eqns. (4.19) and (5.2)):

2
Q) = 2 |14a—" | +2H no-[1+a—10
’ 1+ b (1+ )
—a (zg K. — z,K,) ; (5.10a
0 + 0 )] )
Qi_,o) = K. ay¢+ [l +ao)- K:Z czo— K. -0
(14 av){(N — H') - 20 + g=o} + ayo—— - 2Hz}
1470
Yo ¢
_'[, 1 —ABRB, ; 5.10b
+ [0‘70 + I _'_70] Z, (s)sine -z — (1 4 avo) - E { )
0Pt = _K,-avo— [t +av] K2 -z + K, -1
+(1+av)[(N + H) - ~0—9-1'm'+‘17011 “2Hz
Yo : '
_ —I/ srg — (1 —AB b.
[aw 1+%] EV(s)sing -2f - (1= a0) - o (5.100)
With the help of this precession vector
20(s)
2%s) = | QO(s)
Ql(s)

which describes the spin motion along the closed orbit we can introduce a suitable periodic
reference frame for spin, (7o, 71, !}, (see Appendix C) in which the unit spin vector £ may
be represented as

{:Vm-:?0+n-rﬁ+ﬁ-T. (5.11)
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In this paper we retrict the discussion to the case where the spins are only slightly tilted
with respect to 7ip (i.e. o® + 3% < 1). The formalism is lincarized as in Appendix C, and the
linearized equation of spin motion with respect to this spin frame is then given by:

d -

$0=Go § 4+ Dy ¢ (5:12)
with
I v,
= 5.13
- (5) (513
and
l, l, I,
Go = (kms o, _mz)'E(sxG); (5.14a)
_ 0
Doy = (*d" 0) : (5.14b)

Here the matrix G, describes the spin-orbit coupling. The function ¥(s) designates the spin
phase function and F (3xe) is given by eqn. {C.26) of the Appendix C.
5.4 The Spin-Orbit Equations in a Combined Form

By combining the orbital part ::j and the spin part 5 into an eight-dimensional vector as

first done by A. Chao [11:
. (7
U=\ % 5.15
(%) (5:19)

we can rewrite the orbital equation (3.3) and the spin equation (5.12) in a compact matrix

notation as follows:

S0 = (4+e4) i+ 8 (5.16)
with _
. 4 0 ,
A4 = (QD D, ) ; (5.17a)
4 0 | .
64 = ( 0 Q), (5.17b)
) §é
¢ = 0 . {5.17¢)
0

These equations describe the spin-orbit motion in a storage ring under the influence of

radiation damping and radiation fluctuation.



In detail, one has:

a) g+#0; N=H=HkK,=k,=V =0: quadrupole;

b) N #0; g=H=K,=K,=V=0: skew quadrupole;
¢c) K2+ K2+£0; g=N=H=V=0: bending magnet;
d} H #0; g=N=K,=K.=V=0: solenoid;

d) V #0; g=N=H=HK,=HkK.=0: cavity.

In the language of the theory of stochastic differential equations, eqn. (5.16) is a linear
Langevin equation [8] with periodic s dependent coefficients and linear drift terms. As such,
the equations of motion for the moments of the canonical variables (r, p., z, p:, @, p,), can
be solved exactly and the asymptotic (long time) distribution function over the phase space
1s a periodic Gaussian function with a correlation matrix given in terms of the asymptotic
solution for the first and second moments. A detailed treatment of this problem has been
given by [1,17,18]. Further material may be found in {8,19,20].

However, in this paper we wish to anticipate extensions to the work to include non-
linear orbit motion and radiation (see for example Refs. [2,21]) and instead of working in
the variables (z, ps, 2, p., 0, p,), we choose to reexpress (5.16) in terms of action-angle
variables. The transformation to action-angle variables will be made in section (6.2.1).

6 The Unperturbed Problem

As a first step in solving the spin-orbit motion it is reasonable to neglect in a first
approximation the small terms 64 and §¢ and to consider only the "unperturbed problem”

d i = A7 6.1
U =A-F (6.1
with the orbital part
d - o
—y =47 6.2
I =4 (6.2)
and the spin part
d ~ - -
{=Go G+ Dy (. (63)

The radiative perturbations described by 64 and §¢ will then be treated in a second step
with perturbation theory.

6.1 Definition of the Transfer Matrix for Spin-Orbit Motion

Since eqn. (6.1) is linear and homogeneous, the solution can be written in the form:

u(s) = M(s,so)-ﬂ(so) (6.4)

which defines the transfer matrix M (8, s0) of spin-orbit motion.

By eqn. (6.1), M (s, so) is determined by the differential equation

— M(s,s0) = A(s)- M(s, s0) ; (6.5a)

=
S
o
g
w
[=2]

I
[

(6.5b)
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If we write M as

v M 0
M= (Q 2) (6.6)
we obtain from eqn. (6.5):
d(M o\ (4 0\[(Mo
QEa) (A 0)EE
_ AM 0
~ \ GoM + DG DD
and
M(s0,50) 0 )
= 1 6.7b
(G(SOaSO) D3, sp) = ( )
or
d
I) (TSM(S’SO) = A(s) -M(s.s0); M(sg,50)=1; (6.5)

(M{s. sq)= transfer matrix for the orbit) ;

d
II) E 2(57-50) = &(8) -Q(«S, So) ; -'Q(SO,SO) — l

o Dleay - [ cos[bls) = w(s0)] sin hb(s)—w(s»o)]),
= D(s %) (fsin [4(s) — (s0)] cos [Bls) — b(s0)] ) (6.9)
d
III) E_G.(Saﬁo) = &(ﬂ'M(SaSO)—_D_D(S)'Q(S,SO) ; G(s0,80) =10
~ G(s,50) = D(s,50)- a:dé-g(slﬁ,é)-go(s)-M(s'.,sc.)
= [ d5-D(s,5) Gy(5) - M(3, s0) - (6.10)

By eqns. {6.8-10) the transfer matrix jﬁ[(s,sg) is determined in a unique way.
In particular, one finds the following expressions for the revolution matrix M(se + L, s0):

N _ _A_I(30+L,50) Q
Mlso+ Lyso) = ( G{so + L,s0) Dfso+ L, s0) (6'11)

with

08 [27Q pin]  5in [27Q pin] ) (6.12)

D(so+ L,s0) = (—sin 27 Q pin] €08 [27Q 4pin]

where the quantity @, (the spin tune) is defined by eqns. (C.8) and (C.19a). Note that in
this formalism we neglect Stern-Gerlach tertns [22] so that the orbital motion is not influenced

by the spin motion.
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6.2 The Eigenvalue Spectrum of the Revolution Matrix; Floquet-
Theorem

In order to define our action-angle variables we need to investigate the eigenvalue spectrum

of the revolution matrix.

6.2.1 Orbital Motion alone

Firstly, we investigate the orbital motion alone which is described by the transfer matrix

M. In this case, the revolution matrix is symplectic:
M7 (s,50)- S M(s,50) = S (6.13a)

since the equations of motion for the orbit can be written in canonical form (see eqns. (5.4)
and (5.5)), i.e. &, P, Z, Ps, &, P, are canonical variables. This condition can directly be

derived from (5.5} and (5.7) [23].
Differentiating egn. (6.13a) with respect to s and using (6.8), one obtains an alternative

relation for symplecticity in the form:
AT(s)- S+ 5-A(s) =0 (6.13b)

which is equivalent to eqn. (6.13a).

The symplecticity condition (6.13a) or (6.13b) ensures that the transfer matrix, M(s, s¢),
contains complete information about the stability of the synchro-betatron motion.

The following statements are then valid for the eigenvalue spectrum

M(SO + L,SU) 1—;”“(50) = )\“ . 1_7‘”(50) ) (614)
(¢ = 1,2,3,4,5,6)

of M(sg+ L, s0):
1) The eigenvectors of M can be separated into three groups
(Thy Ton); k=1, II, IIT
with the properties

M 'Ek = )\k -’t_’},. : M F_k = )\—k - 17_;: y )\k . /\—k =1 H (6.15&)

:‘l_"_k(so)}T ’ §-f’}e(50) = —[Fk(so)]T -5 7?—k(50) ?é 03

i'Fp(Su)]T - 8- 7,(8) =0 otherwise ;

(k =1I,II,III) .

In the following we put :

Ak = eii .szk ;
(6.16)
A—f(‘ = e_i ) 271—Q—k‘ ’
(k= I, IT, III).



Then using eqn. (6.15a) we get
Q-r = —Qk, (6.17)
where the quantity @ can be either real or complex.
2) Eqns.(6.16) and (6.17) imply that the eigenvalues of M(so + L, s0) always appear in
reciprocal pairs
(Ar, Aop =1/2); (6.18)
(k =1,II1,1IT).

Since M(so + L, sg) is real, then A* as well as A is an eigenvalue.

For the eigenvalue spectrum of M{sy + L, s¢) there are then the following possibilities :
a) All 6 eigenvalues are complex with unit absolute value and therefore lie on a unit circle

in the complex plane :

Al = A =15
(k= I.II,III).

Then :

Q) real ; (6.19)

A]c = Aik H f.“_j‘. = ('l-;k)* .
b) One reciprocal pair is real and the others lie on a unit circle :

}‘I = A;, A_II)\*_I; /\_]II/AI;
Aorr = A |Arrl = Al =1

Ao = Ay Al =12 =1.
¢) Two reciprocal pairs are real and the third pair lies on the unit circle :

Moo= AT ALr =AM Ao =1/,
Mi o= A A=A Al =1/Am;

A= A Al = Doml =1
d) All reciprocal pairs are real :

A;‘. = )\: : A_k = )\’_;\ H )‘—k = 1/"A,l‘- )
(k= 1,1I,III).

e) One eigenvalue e.g. A; is complex and does not lie on the unit circle :
Ar|# 17 Ar# Ay
Then we must have :
A_p =1/Xf
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and

A= A1
A= 1/A}
or
AII = 1/A; H
Ay =A%

The third, remaining pair must lie on the unit circle or on the real axis.
In the following it will become clear that only case a) leads to stable particle motion.

3) We write:
T,(8) = M{(s,80) T.(s0) . (6.20)
Then the vector ¥,(s) is an eigenvector of the matrix M(s + L,s) with the eigenvalue A,:

M(s + L, s) Tu(s) = Ap o vu(8) . (6'21)

Proof:

M(s+ L,s) v,(s) = M(s+ L,s)- M(s,s0)0(s0)
= M(s+ Lyso+ L) M{(so -+ L,sq) t,(s5)
= Mis,s0)- M(so+ L,30) ¢,.(50)
= Ar M(s,50) 7l50)
= Ay Uyu(8); q.ed

The eigenvector ,(s) thus has the same eigenvalue as 7,(sq): The eigenvalue is therefore
independent of s.

4) We put
Tu(s) = Bu(s) - et 2mQu - (s/L) (6.22a)
Then :
(s + L) = B,(s) . (6.22b)
Proof:

We put eqn. (6.22a) into (6.21). Using equ. (6.16) we obtain :

5,,(5 _|_L).e—i‘27rQ,u -(s+ L)/L _ e—i-?ﬂ'QP _5“(5)_6—3' 2wQ, - s/L _
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One now gets eqn. (6.22b} when one cancels the factor

e.—i 2mQu (s + L)/L _ —i-27Q,  —i-27Q, - s/L
on each side.

Eqn. (6.22) is a statement of the Floquet theorem : Vectors ¥,(s) are special solutions of
the equations of motion (6.2) which can be expressed as the product of a periodic function

?,(s) and a harmonic function

(1 2mQ, - (s/L) _

5) The general solution of the equation of motion (6.2) is a linear combination of the
special solutions (6.22a) and can be therefore written in the formn

is)= % {AA. Fus) e 2@ (S/L) 4 5 (s) e 2Tk (S/L)} .(6.23)

k=111 111

We now see that the amplitude of the betatron oscillations only remains limited and the
particle motion under control if the @, are real,i.e. if all eigenvalues, as already predicted,

lie on the unit circle ;
Al = Aok|=15 (=1, 11, 1II); (6.24)

(Stability criterion) .

On the contrary, if at least one of the exponents @, is complex, according to (6.17) either
@: or Q _; has a positive imaginary part. In this case the components of ¢(s) grow exponen-

tially and the motion is unstable.

6) In the following, we always assuimne that the stability condition (6.24) is satisfied.
Then from eqn. (6.19):

o =(vy); (k=1I, II III) _ (6.25)
and (6.15D) simplifies to (t—"* = (ﬁ'T)*):
vy (S0} - 8- Ur(s0) = f'ﬁtk(ﬁo) -5 -T_ 1 (s0) F 0

v7(so) - 8- v.{s0) =0 otherwise ;
(k =1, 11, III).
Because the terms T_":(So) +S-7,(s¢) in eqn. (6.26) are purely imaginary :
K H
= —[&(s0) - 8- 8u(s0))]

since 57 = -5
( )

|5 (50) - S Fuls0)] = 5/ (s0)- 8* - E(s0)



the vectors vi(se) and 9_k(so) (k = I, II, III) can be normalised from now on as:

5:(30) -8 - vh(80) = —ﬁk(ﬁo) 8-V p(s0) =24 (6.27)
(k=1 II, IIT) .

From the validity of the symplecticity condition (6.13) it then follows that the vectors
Ui(s) and ©_g(s) (k =1, II, IJT) satisfy the conditions (6.26), (6.27) also at position s :

T(s) S -ta(s) = =07 is)- S - T w(s) =12 ;
(6.28)
¥ (s) - 8- v,(s) =0 otherwise .
The same relationships are fulfilled by the "Floquet-vectors” g#(s):
-+ = = = .
T (8) S Ur(s) = —0_,(8)-8-0_p(s)=1;
(6.29)

't?':(s) -5 gy(s) =0 otherwise .

7) Using these results we are now able to introduce a new set of canonical variables in
which to write the Fokker-Planck equation.
To do this we express the coefficients 4, 4 (k= I,II,1II)in equn. (6.23) as :

A = o1 = 2mQues/T (6.30a)
Ay = J7, etil® - 2mQu-s/L) (6.30b)

Then eqn. (6.23) takes the form:

i)=Y \/i-{a(s)-e“”’*ﬁk(s)-e*'“”’*}- (6.31)

k=111,111

From (6.31} we now have:

3‘: .. f e —1 r ]

HB;;? = —iyJi- {M(s) CeT Rk O_n(8) - e-HcI)"‘} ; (6.32a]
oy 1 (= —i®, =z —id

o, = Taym tle)e T okls) e } ' (8.525)

Taking into account the relations (6.29) we obtain the equations:

> T

. -7 -
oy oy Ay Oy
T 5. L = = 8. = & 6.33
a1, = 0%, 58, = aJ, K (6.33a]
- T = - T -
Ay oy ay a7
5.9% 5. 28 6.33b
or. — 8J; o®, — 09, ( |
which can be combined nto the miatrix form
JT.8.7=5 (6.34)
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where J signifies the Jacobian matrix

_ (aﬁ 85 85 08y 9y 9y ) (6.35)

L 8%y’ 8J; 0%y’ BJy” 0% 11’ 8Jrn

which is 6 x 6-matrix just written as a row of column vectors (35/8'1);) etc.
Equation (6.34) proves that eqn. (6.31) represents a canonical transformation [13]

&, Pe, Z5 Poy 0, Do — ®r, J1, @npy Jir, R1r, Jna (6.36)

and that ®,, J, (k = I,II,1II) are indeed canonical variables which can now be interpreted
as action-angle variables since

i =0 == Jp = const; (6.37a)
ds
d®, 2% 21

S J— = — Q- 51 37
7e 7 Q. i I Qr - s+ cons (6.37b)

in the unperturbed system.
The corresponding orbital Hamiltonian is

y = 2% S e Qu (6.38)
k

and eqns. (6.37) are the resulting canonical equations of motion. {In Ref. [24 it is shown
how to construct the Hamiltonian (6.38) in a general way starting from the Hamiltonian (5.6)
in terms of the variables #, p,, z, ., &, D5.)

The orbit vector 5(s) in (6.31) is thus an explicit function of the canonical variables J;
and ®; and of the longitudinal variable, s, via the eigenvectors, vj(s).

8) For the limiting case of a vanishing coupling between the synchro-betatron oscillations
the revolution-matix, M(s + L, s) takes the form:

m:r(s + L,S) QZ QZ
M(s+ L,s) = 0; m_(s - L,s) 0, . (6.29)
92 QZ ﬂa(b’ + L,S)

The symplecticity condition (6.13) now reads:
Qli -8y m, = S, (6-40)

) or

—

o
I
i
[T
=]}

det (m,)=1. (6.41)

Generally, the corresponding submatrices

Lo [ Mu M)
- My My )7
Lo Mss My
= Myz My, ’
d Mss Mse
= Mes Mg
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of the revolution matrix for the coupled synchro-betatron oscillations have determinants
differing from 1. Therefore we may consider the difference

det (d,) — det (m,) = det {(d,) — 1

of the determinant, det (d,), from the value 1 as a measure for the coupling strength of the

betatron and synchrotron oscillations at the position s [25].
According to Courant-Snyder [16] we now can write for the revolution matrix m, :

m,(s+L,s) = cos21Qy -1 +sin27Q, - K (s} (6.42a)
with
. o(s)  B,(s) )
I3\ = ¥ ¥ 6.42b
Eilo) ( “ls) —ay(s) (6420)
and
By y—ol=1 (6.43)
where in addition we require:
4,20, (6.44)

Using this representation of m,(s + L, s) we may calculate the normalized eigenvectors of

the revolution matrix (6.38):

W,

& = | 6 |; (6.45a)
0; /
0z

vy o= | W | (6.45Db)
0,
0y

T = 0, (6.45¢)
w,

with the eigenvalues:

A = e—i-Zn’Qr;

diy = e t2m0Q: (6.46)

A = et 2y

and where the vector &', (y = #, #, &) is given by

G (s) — 1 ] Ay(s) .e“"’: - 1hy(8) A .
J(9) /_2/33,(3) ( —lay(s) + 1 ) (647)

Comparing (6.45) and (6.16) we can make the following identifications for the decoupled case:

QI — Qn‘;
Qi +— Q.;



The stability condition (6.24) then reads:
@Gz, Q., @, real
or using (6.42):

-2 < Sp(m,) =< +2.

(6.48)

In order to obtain differential equations for the "Twiss parameters” a,(s), Gy(s), v(s)
and the phase function, ¥,(s), defined by (6.42) and (6.47) we remark that the Hamiltonian
for uncoupled synchro-betatron oscillations in its most general form can be written as:

Ho = Hoz + Hoz + Hos (6.49)
with (y = ,2,5)
1 1
Hoy = ;Fy(s)‘Pz‘i'Ry'y'Py"‘ icy(s) -y (6.50)
from which result the corresponding canonical equations of motion become:
d(y y )
- =4,- 6.51
ds ( Py ) - (py ; ( )
with
— R‘Q Fy D)
Ay('s) - ( —Gy —Ry ) - (65—‘)
Furthermore, from the condition
my(s + L,.S) = ﬂy(s + L: so + L) ) my(so + L"SO) : ﬂy(.ﬁo,s)
= ﬂy(s,so)‘my(SO‘*‘L,so) -m;l(,g’so) (6'53}
and using (6.42a), we obtain:
_Il:_y(S) = my(sv's()) 'Ey(sﬂ) '251(37 50) . (6'54)
For the derivative w.r.t. s
oL als) Als) i
Ly(‘s) = ( _ ’;(.5) _QL(S) ' (6°5J)
we now get:
t _ 1 . - -
Ey(s) = - lim (K (s~ As) = K,(s)}
= i " Al.;ni) 0 {m'y('s -+ AS‘)S) ' E'y(‘s) - m;l(s + AS,S) - _h:y(S)}
1 . - -
= Al g U as Ak () - [L - ds- 4 0)] - Efo)]
= A (s) K, (s)— B (s)-A4,s)
( (=7 - Fy + Byls) - Gy 2-[3, - Ry(s) — a, - F] ) . (6.56)
2-[~a, -Gy + 7y - Ry — v Fy ot 3y Gy
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By comparing (6.55) and (6.56) we then find that

o (s) = -y -Fy+8, Gy (6.57a)
By(s) = 2-[By Ry~ ey F] (6.57b)
2W(s) = 2-|ay-Gy—7 R . (6.57c)

Finally, using the fact that the eigenvector o, in (6.47) must be a solution of the equation
of motion (6.51) and by taking into account eqn. (6.57) we obtain:

Yy ls) = ?((_3 (6.58a)
=  y(s) = /;d- ;'gs)) Yoy - (6.58b)

The Floquet vector
+1-27Qy - (s/L)

l?Jy(S) = wy(s)-e

as defined by eqn. (6.22) now reads :

1‘.3 —# »511(5) . ex i ox s s :S'Fy(é)_ l}
¥y = 2/33,'(-9) ( _[ay(3)+?:] ) P{ [-‘ QyL [J d 6y(§) lboy (6.59)

and the "action-angle representation” (6.31) of the orbital motion with the action variable
Jy, and the angle variable @, takes the form:

() =V o (2-)

xexp{—z [‘I’ (s )+¢0y—|—j ds - Fy(a)—Qwai}}

+compl.conj. 16.60)

or, written in components:

F, (s s
y(s) = /2J, -8, cos[ 4(8) —l—z,bgy—r/ ds - ;8}5)) 2TI'QyE]; (6.61a)
)

2J, (3 s
Pls) = 5= {sin[ o(8) +d.,y+fd“ S)‘ZWny]

+oy, - cos[ u(8) +1,b0y+f ds - Fy 5) —27.-Qy%}} . (6.61b)

This can be the starting point for a canonical perturbation treatment of coupled synchro-
betatron oscillations as demonstrated in Ref. [26].

9) From eqn. (6.23) and the relations (6.22a) and (6.28) we obtain
A= —i T (s) S G(s) (6.62)
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and from (6.30a,b) we have: B
Te(s) = | (s) - S G(s)f7 . (6.63)

In the specia,l- case, (6.47), of vanishing coupling we may thus write:
1
28,(s)

The terms on the r.h.s. of (6.64) just represent the well known Courant-Snyder invariants [16]
for the linear uncoupled-case. Therefore the term on the r.h.s. of (6.63} may be interpreted
as the generalized Courant-Snyder invariant for the linear coupled case.

Ty(s) Alay -5+ 8BS+ 7} - (6.64)

10) From equs. (6.61a, b) one obtains the relation :
e, = 2J, (6.65)

where ¢, designates the emittance of the uncoupled oscillation in the y-direction (note, that
at a fixed position s, eqns. (6.61a, b) describe an ellipse in the (y — p, ) phase plane and that
the area of this ellipse is given by F = 2w - J, = 7 - ¢, [25]). Generalizing this equation for
coupled motion, we may write:

e = 2Js, (6.66)

defining €; as the emittance of the k** {coupled) mode.

6.2.2 Spin-Orbit Motion

The eigenvectors of the whole eight-dimensional revolution matrix M(so+ L, s0) for spin
and orbit * which are defined by

]L_E[(SO + L,so) - g = Au - G (6-67)
can now be written in the form:
— _ 'Ek(Sg) i — N ey -
Gr(s0) = ( Ge(50) ) s 4 k(50) = [gals0]] (6.68a)
for k=1, II, II]
and
— _ 66(‘50) . — = *
dvise) = (o) )5 vl = (@ (o) (6.68b)
for bk =TV .

By combining eqns. (6.67), (6.68), (6.11), (6.12) and (6.15a), the two-dimensional vectors
Wr(so) (k=1I, II, III) and wry(se) can be written as:

Wi(s0) = — [Q(sg + L, sq) — ;\k]—l -G(sg+ L,s0) - vr(s0) (6.69a)

*A description of a method to determine the eigenvectors of the transfer matrix may be found in Ref. [25].
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fork=1, 11,6 IIIl;

Wry(se) = % y ( _1%- ) -7 (s0) (6.69b)
for k =1V
and
W_p(so) = [Wu(so)|"; (k =1, II, ITI, IV) (6.70)

(¥%(50) being defined in (6.15a)).

The corresponding eigenvalues are
Se =2 =e P2 (=1, 11, 1IT) (6.71a)
and
Srv = VIV with Qv = Qupin - (6.71b)

For the eigenvectors 7,(s) of the transfer matrix M(s + L, s) (initial position s) we also
have;

Z.(5) = M(s,50) Guls0) = ( () ) . (6.72)

wk(s)

In particular we find (see eqns. (6.6) and (6.9)):

—_ 6 — — L] lrd
qrv(s) = ( L v g-rv(s) = [qav(s)] (6.73a)
'u’IV(S)
with
d(s) = [ L) e ) i (s) = in(s))” (6.73b)
\/E —; ' j
The eigenvalues remain independent of s:
Aa(s) = Au(s0) . (6.74)
The following orthogonality relations for @y (s) are important for our later investigations:
Wry(s) -8y - Wpy(s) = —@(8) - Sy -w_pp(s) =i ; (6.75a)
Wy (s) - Sy Wrv(s) = —@y(s) - Sy - pv(s) = 0. (6.75b)

These relations resemble those for #;(s) (see eqn. (6.28)).
Defining

- i (s) e 2mQu - (s/L) (6.762)
we find
g, (s +L)=g.ls). (6.76h)

Eqn. (6.76) is an extension of the Floquet-theorem to the spin-orbit motion and it will play
an important role in our further investigations. '

We write the spin parts of the (}A. as ur.
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7 The Perturbed Problem

The general solution of the unperturbed equation of motion (6.1) can now be written in
the form

W(s)= D {Ae Gls)+ Aok - doils)}

k=T ITIIII IV

where Ay, A_; are constants of integration and k = I, II, III, IV. Note that the orbital
part of this equation is identical with eqns. {6.23, 31), and that for k = I, [T, IT], the A,,A_
are given by eqns. (6.23), (6.30), (6.62). In order to solve the perturbed problem (5.16) we
make the following "ansatz” where the 4, now depend on s (variation of constants) :

d(s)= D {Au(s)-Gils)+ A_i(s) - d(s)} (7.1)

k=IIIIILIV

[nserting (7.1) into (5.16) we obtain :
S {4s) G +AL(s) g = 64 {4i(5) - G + Ak(9) - §-i}
k=I,ILIIIIV k=1, I1IILIV
+6¢ (7.2)

and dividing this equation into its orbital part and spin part we find :

S {difs) T+ A () k) = 84 Y {Aw(e) T+ Aa(s) - Foi}

k=ITITIT k=1 01,111
+ é¢; (7.3a)
Apy(s) By + Al p(s) iy = — 3 {A(s) i + AL(s) F_i). (7.3b)
k=II1IIT

Equation (7.3) shows that as expected in this treatment, the spin motion is not directly
affected by radiation but only indirectly via the orbital motion.
The orthogonality conditions {6.28) allow eqn. (7.3a) (for & = I, II, IIT) to be rewritten

as:
Ai(s) = Xp(s)—i-v7(s)-S-éc; (7.4a)
A (s) = [As)” (7.4b)
with
Xals) = % Als)-(—i)- 77 -S04
I=1ITIT]
+ ST A(s) (=) 5 8A VL (7.5a)
I=II1ITT
X (s} = [Xi(s)]". (7.5b)
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Taking into account (4.2) and (5.7) we can write the last term on the r.h.s. of (7.4a) as:

—i-T(8) - S-8C= = +i-vis(s)-bc(s)
= i-vigls) - wls) - P(s) (7.6)
with (see eqn. (4.2))
w= (K> + |K.]) - C2 . (7.7)

Also, from (7.3b) and (6.75):

Ap(s) = i Y {Ails) - ThSydh + 4L, (s) - iy Sy 4}

k=1 I11II
= i Y {Xu(s) Ty Sy — Xoils) - By Sy}
k=111 11T
— Y {vis e By Sah — vhe - b By Saii} (7.8)
k=IJTrIII
Alp(s) = [Ap(s)]". (7.8b)

Using the relations:

1 2 n —1 w
-~ 5 - - . | . k1
Wiy Wy 75 € (1 2)(1 0)(1“2)
1 .
= Eemb . [—?.Ukz + - wkl} 3 (79&)
—. — 1 ) * ' * 7 -
Wiy S = Eem’b mwpy + L wiy, (7.9b)

we obtain from (7.8a):
! . 1 1) r . ta Ed . * ]
As) = o S (X)X als) - —ug - ]}
V2 k=1 I1,ITI
+ wls)-Pls) V2.t Y {Smvly - wal 41 Smlv cweel} . (7.10)

k=II1I1I

8 Stochastic Equations for the Variables J;(s) and ®(s)

Before preparing the Fokker-Planck equation we define two more action-angle like variables,
Jiv(s), ®1v(s), (for spin) by

Arv(s) =/ Jrv(s)- i [Brv(s) — 27 Qv - s/ L] (8.1a)

or, using eqns. (C.19b) and (6.71b} :

Ap(s) = \./J”.(S) Le—t [ RBrv(s) —w(s)) (8.1b)



Then for k = I, II, III, IV it follows that:

. J; —s. _;,r .5 X , 2T
Ai(s) = % _;k-e i [ — 27 /L]—z-[‘i’k——LQk]-Ak
1T ,
- a3 3 - [m- o)

and for J{(s) and ®(s) we get (with Jp = Ax - A_y):

T(s) = Ay(s)-Aa(s) + Au(s) - A4 (s)
= 2. Re{AY(s)- Asls)} ;

' 2 B Al (s) - A_x(s) 1 AL(s) - A xl(s )+—4k( A ()
k(s)—T-Qk = - le(S) -{-—2 = Jk()

1 A(s) - Ak(s) — Ar(s) - AL, (s)

B 2 i+ Ji(s)

7(s) -Fm {AL(s) - A_(8)} .

Here the terms (A} - A_,) appearing in (8.2a,b) are given by:

AL(s)-Ai(s) = Yils)+i-y/Tu-o55(s) - Jor(s) - Ps) et Bu(8)
for k=1, II, III

and
A (s)- A v(s) = Yyu(s) + v - (Jw(s) - P(s V2. ez‘}”’
Z {Sm[vgs - wia] + ¢ - Smivgg - wk?]}
h=I 11111
for k =TIV
with
Yi(s) = Xi(s)-A_k(s)
- ¥ \/}l.\/g_k.(_i).gz.ﬁ.gé.gl.ez-[%—@z]
I=FIIIII
S RIS B B
1=FIL i1
for k=1, II, II1
and
w(s) = i.i Jwei‘f'rv N
V2
Z {Xk(s) |—wea 1 wia] + X_p(8) - [-wiy +1 cwil}
k=1, 11017
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1
=t 7 Jrve
> {—[Xu(s) - wk2 + compl.conj.]
k=I,ILIII

i®ry

+i - [Xi{s) - wir + compl.conj.|} (8.4b)

fork =1V

where for the term X - wy, (v = 1,2) in (8.4b) we can write:

X, w,, = 3 1/jl(s).e—i-¢‘1.(_i).5:.§.5A.5l.ﬁ)kv_
I=LITIIT
= Y Vas)eT P (i) 5, 5645 (8.5)
I=IILIIT

If we then write Ji(s) and ®}(s) in the form:

Ji(s) = K@, 7)+ QP (&, J) - Pls) s (8.6a)
B(s) = KP(84,70) + QY(®4, T) - P(s) (8.6b)

we obtain the drift and diffusion coefficients [8], proportional to C; and v/C, respectively.
For k=1, Il, III we have: |

K = 2.Re{Va(s)} ;

O Jk-["{';S-ei'@k—ﬁ%-e_i'@k] : (8.7a)
(k) 2_71- _ L,C\ Y, .
K@’ - + L Qk J}‘.(S) ‘Sm{ I’-‘('s)} H
1 " P R .
Ebk) = Ve AR : [Uks e’ L + D € " (I)kJ (8.7b)

and for k = IV ;:

K'Y = 2.Re {Yiv(s)} ;

QYY) = Viw -2 y/20py %

Y {cos@py - Smiveg - wi] — sin @y - Smv] - wpe]}; (8.8a)
k=IILIIT

. Wtio
K’(Il ) — "'_ B _ . 0x 1:— _ ;
P + 7 Qv Tre(5) Im {¥7y(s)}

- 1
W= —Vov2
Qe T
Z {sin @y - Smv); - wia] + cos Bry - Smfvy; - wial} . (8.8h)
h=IITIIT

X

In making the transformation from the variables (z, p., z, p., o, ps) to (Jx, ®x) we have
used the usual rules of algebrai.e. in our classical model of photon emission we are interpreting
the Langevin equations according to the Stratanovich convention (see for example [8,27]).
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A comparison of eqns. (8.6) and (8.8) with eqn. (6.37) shows explicitely how the .J] and
$} are modified by radiation effects. Note also from (8.6) that the stochastic motions of J,
and ¥, are driven from a common noise source. Furthermore, it is clear that the variables
(Je, ®;) which by consiruction originally described uncoupled normal modes, have become
coupled via the radiation emission. Also, in contrast to the use of (2, p., z, p., &, p.)
variables in eqn. (5.16), the Langevin equations for the (J;, ®,) are non-linear.

The relations (8.6), (8.7), (8.8), now provide the basis for a Fokker-Planck (8] treatment

of spin-orbit motion.

9 The Fokker-Planck Equation of Stochastic Spin-Orbit
Motion

With the stochastic differential equations (8.6) of our white noise model for photon
emission, the Fokker-Planck (F-P) equation for the spin-orbit phase space density function
W(J, ®;s) reads as [2]:

oW a a .
- (o0t w) - o2 o} (0.2)
s w=riringy U 0k 0
1 & om0 & ) A
- o @8 Wl 5ol o wi
k,t:].;]u,rv 20J,.8J, 0J, 09,
1 &
1 ® o0 .y
358,58, % % ]}
with the drift coeflicients given by
D = KPIED, 020
DY = KA 01

and where the guantities I;'_‘Ik) and .ﬁ'ék) are the artificial drift terms which arise when using
the Stratanovich interpretation of eqn. (5.16):

(h (k)
gy _ 10057 w199 S (9.32)
g 281, 7 2088, T

} 1 BQ(k) . 1 BQ(“ A

KR - —Zxe ol CTRe  al) 9.3b
* 2 aJ Qs 2 0%, ® (8:35)

(Note that ng) and Qf;) only contain the two variables J; and ®,; see equs. (8.7, 8).)

From (9.3a,b) we have with the help of (8.7) and (8.8).
fork=1I,IIIII:

K = fows|* - w(s) ; (9.4a)
Lb’(s) . (-, )2.£‘i-2{)k ﬁ(ﬁks)z_e—i-Z‘Inc (9.4}3)

k5

i
rs.

o'



and for k =TIV :

~ 1 2 2
vy _ ) TA]?
N A [QJ ] + Jrv [ s ] ; (9.5a)
- 1 r v
D = o= Q" (9.5b)
2-Jiy

with Q" Q") given by (8.8).

It is clear that the F-P equation (9.1) is very complicated and that the drift and diffusion
coefficients are oscillating functions in s. However, in this paper we will be interested in the
long time (asymptotic) equilibrium behaviour and therefore it will be sufficient to deal with
the distribution of quantities averaged over times on the scale of damping times |2]. Denoting
the one-turn averages by the bracket { ), we therefore write the F-P equation in the form:

ow { J (%) d (k)
- = —=UD;") W] - 52-[(De) - W] (9.6)
8s k:I,IIZ,III.IV 07,7 0% "
1 & o
(*) () 1 (k) (1
+ : QM w s —Z o . 0%y . w
k'i:],]z],:IILIV { 2 aJkaJl K J ) 8«]_&_6@1 [( J P ) ]

L1 8 oW by
209,0%, ' * ¢

whereby oscillating terms due to the (linear) s-dependence of the angle variables ®,:

27

©.(s) =~ ®u(s0) + (5 — s0) - ka

(see eqn. (6.37h)) may be neglected since they are approximately averaged away by integra-
tion, and only one turn averages of the periodic integrands remain.
To do that, we first introduce the following abbreviation:

1 sy +L
800 = = [ dsEl(e) - 5-84() - Eylo)

27

1 sg+L

= oo [ dseis) - 5-8A(s) - fuls) (9.7)
271' 80

(k=1, II, III)

and the quantities (tke "damping constants”; see forward to eqn. (9.17)):
PINE

oy, = —2r - %m{éQk} (98)
so that from (8.4a) and (8.3) :
L 2
W = -0 Ze

.2 1
= Jyo (=)= |Re{6Qr} —i -y (9.9a)

L . 2m

for k=1I,1II III;

(Yrv) = 0. (9.9b)
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In Appendix B it is shown that éQ; is just the (complex) Q-shift of the k" oscillation

mode (k = I, II, III) caused by the perturbation A.
Then from (9.2) and using (8.7), (8.8), (9.4) and (9.5) we obtain

fork=1,11,111:

2 1 petl _ .
(D) = —dgoxr g [T i () w(9);
2T .
(DY) = T Qe+ Re{sQu}];
1 sotL N 3
(@) = 247 ds - Jous (5)2 - w(3) ;
1 1 pm+l i i
((Qgc))z) = 2_J,|¢E ds-|vk5(s)\2-u(s)

and for k= IV :

(D_(]IV)) — %/5:0+L ds - w( )z (E\ﬂm E [v4s() 'wkﬁ(g)]) 3

8
p=1 k=IIT 11T
(DY = 0;
(V)2 1 jeotl 2 . ) 2
Qs = 4w ¢ ds-w(3)- Y (Sm > [vf(5) - weu(3)] ]| ;
30 =1 e=IiI11IT
(V)2 1 1 pee+l L2 L _ 2
(@) = =g @wE) X [em X (ei(6) - wal)
IV ‘30 u=1 k=110 11T
and
QP . QMY = 0 for k#£1;
QY- Q%) = o0 for k£I;
QP = o,

Introducing the constants

1
a = ox-i (b=LILII;
1 -
b, = ZW'E'Q.‘:;
1 so+L
M, = f/ 45 uis(3)?-w(3); (k= I,IIIII);
ery = 0

i
by = 2m-7 Qv
2
1 o+l N : . . - .
Mw = 2 E/ di-w(3) Y, |3m D [ris(5) - we,
50 p=1 k=III,IIT

with

O = Qi + Re{6Qy}

37

(9.10a)
(9.10b)
(9.10c)
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(9.11b)
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(9.11d)

(9.12a)
(9.12b)
(9.12¢)

(9.13a)
(9.13b)

(9.13¢)
(9.13d)
(9.13e)

(9.13f)

(9.14)



we may finally write:

aw { P s
s —o—[(~2a4 - Ti + M) - W] — b - W]
s k:I,I%I!,IV aJy 8%,
1 & 187 71
——[2J, - A - W —
oo M Me W gag ["Jk M W]}
2 {a[(°aJ+M)W 5™ W)]
= k k k — w e My .
keI IFIIIIV dJ, 8J,
5] 1 o
bW — e My W
8%, [ £ 47, ' 8%, ”
oW
= {— 9 [ 2ap - Jo - W - M, - T, - ]
wergrirav U 0dk aJ,
0 M, W
o — 2R _
8% [ba . MJ} (9.15)

This equation determines the averaged charge and spin distribution of the particles in a
bunch. On comparison with eqn. (9.1} we see that the s-dependent coefficients have been
replaced by s-independent constants given by the one turn averages and that the r.h.s. has
separated into a sum of four terms, one for each pair of action-angle variables.

Remarks:

1) The averaging procedure indicated by the bracket { ) only results in the forms (9.10),
(9.11). (9.12) away from the linear resonances

@ = Qi =~ integer.

On resonance the common noise source would canse the modes to be correlated and also extra
terms would appear [18]. But on resonance the particle motion can be unstable so that this

case is of no interest here.

2) In eqn. {8.6) the first terms on the r.h.s. describe the influence of the continuous
emission of synchrotron light on the synchro-betatron oscillations and the second terms the
influence of quantum fluctuations of the radiation field (the function P(s) in (8.6}). If the
quantum fluctuation term is neglected and if we take into account egns. (8.7a) and (9.9a),
eqn. (8.6a) may approximated by the form :

I',
Ji(s) = - Eak A (9.16)
Egn. (9.16) can be integrated to give:

Jls) = JTafse)-e 2 (s —s0)/L

== WJals) = Tu(se)- e O (s —s0)/L (9.17)
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Since \/J}; represents the amplitude for the k** mode of the synchro-betatron oscillations, the
quantity a; may be interpreted as the damping constant of the k** mode [1,28]. From (9.7)
and (9.8) we have: '

op = ;_) .f:u-l—L ds -5 (s) [564(3) +5AT(-S) §] - Tr(s) . (9.18)

This formula may be used for a calculation of the damping constants ® . An alternative way
to calculate «; is described in Appendix D.

Note, that oy vanishes if §4 cortains only symplectic terms, as may be seen by eqn.
(6.13b). In this case the tune shift §Q; of the &' mode induced by the perturbation §4
is a real number. Thus an imaginary part of 6@}, i.e. a damping of the oscillation modes
(ax # 0), only appears if the perturbation terms are nonsymplectic.

3) Equation (9.16) can be generalized if we calculate the derivative of the average < .J; >
of the action variable J;, using the Fokker-Planck equation (9.15).
Then we obtain:

d d
d_ < Jk(s) > = d_ / f dedJ”deH'd.Ilv d@[d‘-l’[f d@[”d@jv -Jh - W
. as S
a
= / / dj]dj[[dj[]jdj]vd@]d@]] dq’ju dq)nf '-]k EW

= f : / dIrdJirdJirrdIyy d®yd®r d®yy d®py - T,

o a
X a7 (_2GI'J£+MI)'W———(Jg-M;-W)}
l:I.II,II.l,IV{ aJ, aJy
a 1 a
W MW
8%, | a7, " 8%, ]}

= f : f dlidTyrdJippdIyy derd®y d®yy d®py - T,

9 2 Jo oW — M, - J Q—VK
x 73.];& —aay k ko Jk YA

- f . / dT1dT;1dd111d Iy d®d® 1 d® 1d® 1y

oW
—%a. . - W — .  —
x [ @, J}i Mk Jk 3.]&]

- f - f Ay dT11d Ty ddpyd®d® 1 d® 111 d® 1y
X [—2(1& I W+ M, - W'}

= —2ap-<Jpy > + M, (919)
(see also Ref. [2]).

5The sum of the three a; is a measure of ike relative decrease in the 6-dimensional phase space volume over

one turn{2].
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In this equation there appears the same damping term

—2ap- < Jp > = 2ok, < T >
L
as on the r.h.s. of (9.16) and an additional term M, due to the influence of quantum fluctu-
ation on the spin-orbit motion (characterized by the function w(s) in eqns. (9.13c, f)). Thus
the constant M; which is proportional to \ is a measure of the stochastic excitation rate of
spin orbit motion.

In the case of orbital motion alone where the damping constants oy, are different from
zero, the stochastic excitation of synchro-betatron motion caused by quantum fluctuation
of the radiation field and the damping of the oscillations caused by continuous emission of
synchrotron light, can lead to the equilibrium condition

M,

9.20

<€ > (stat) = < J, >(atat) —

B2 =

which represents the stationary solution of eqn. (9.19).
Finally we remark that the relation (9.19) can also be derived by solving the siochastic
differential equations (7.4) and (7.8), as is shown in Refs. {1,28].

4) Inspection of eqn. (9.15) shows that for the angle variables there is no analogue of the
coeflicients ¢, which lead to damping of the action variables. Thus the angle variables are
only subject to diffusion and we can thus assume that the angles ®; are uniformly distributed
in [0,27] [2]. See also Appendix E.

5) Since {eqn. (9.13d)), arv is zero, there is no spin damping effect. On the contrary, the
stochastic orbit motion causes spin diffusion at a rate proportional to M. This is discussed

in section 10.2.

10 Solution of the Fokker-Planck Equation

10.1 Orbital Motion

In order to solve the Fokker-Planck equation (9.15) we first investigate the orbit motion
alone. This is, in our treatment, independent of the spin motion so that for the orbital phase
space density, W, , and using the separability of (9.15) we have:

o o 0
= Worbr = Y. {—— [—2% Ik Woppit — My - T, - -—Wwbit} (10.1)
Bs k=riin U 07k 8.y
8 M, @& __
o b Worpit — =+ W -
8%, |- M ag, 09, “]}

With our assumption that the phases ®, are uniformly distributed (see Appendix E),
Worpi is independent of the ®, and we may write:

3

1 -
Worbit (Jkaék) = (g) ' I/I’,orbit(JfaJIfsJIIf) ; (102&)
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a .. g - o ..
—Wortir = Z {*— —2a) - Ji - Wopae — Mp - I - "‘-meit]} . {10.2b)
ds : k=111 1I] oJ: dJ;,

The relation (10.2b) has the form of a continuity equation:

g _. g
— Worbit + Z — S =0 (10.3a)
ds k=T IFIT1 2 l‘
with
: 3 ..
B = —2ak - T - Worpir — Mie - Jie - 77~ Worsat - (10.3b)

0J,.

Thus 3\ may be interpreted as a current density for the probability Wbt

10.1.1 Stationary Distribution

We are only interested in the "“stationary distribution” for which ¢ :

2
— Wepiz = 0. 10.4
Js b (104)
Equation (10.4) is fulfilled with the condition:
) a .
F = 0 — —2q;- me” — Mk c— Woir = 0 (10.5)
o,
leading to the solution [29]:
Worsst = Wr- Wi - Wi ; (10.6a)
W, = €. % 2a/My) . (o111 1II). (10.6b)

Here the factor C is fixed by the normalization condition *

fdek TWilJe) = 1
A |

8The asymptotic solution of the full F-P equation {9.1) can be expected to exhibit the periodicity of the
lattice so that W(J,®;s) = W(J, &:s+ L) (see also [18]). In general 37 Wbt # 0. However, in the absence of
radiation 3—' Woepie = 050 that W /8s = {H,W}. Then in (J, ®) variables and when the phases are uniformly
distributed we have 8W/3s = 0. Although radiation clearly has a decisive effect on the asymptotic form of
W, the radiation effects act slowly. as can be seen from the fact that the damping times are usually equivalent
to hundreds or thousands of turns. Thus in the presence of radiation effects, W' Y™ is expected to differ only
slightly from a form for which §17/8s = 0. In fact it can be shown [18] that the difference is of O(6) where
§ is the relative energy loss per tuen. Thus even in the presence of radiation it is still a good approximation
to put SW Y™ /85 = 0. In our formalism, the F-P equation has s-independent coeflicients given by one turn
averages and for such an equation, the asymptotic (periodic) solution will indeed have 8W . ¥"% /@5 = 0. And
we can expect that this solution differs from the true W."*™ only by terms of O(&). Note that in the variables
(%, Pz, Z, P:, &, Po)and even in the absence of radiation, we may only require periodicity and that aW/8s #£0
even for uniformly distributed phases. Thus our use of action-angle variables leads to non-linear Langevin
equations but together with averaging results in simplified equilibrium conditions.

“We assume that az = az/L > 0 for k = I,1I,I11. Since M, are positive definite (see eqn. (9.13¢)) then
with @, < 0 {antidamping; sec eqm. (9.16)) the density funktion Wi cannot be normalized, i e. a stationary

solution of the Fokker-Planck equation {10.2b) does not exist.
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which leads to:

1 2ak
Cp = 7 M,
Thus we have for W, :
gy lotat) _ 1 - e [JI/jI + Jar/ Tir + JJII/qu] (10.7)
(27)® Jr-Jiy - Jo
with
] M,
Jo = 2%
k 2a.k
1 ag+L
- m/ di - lus(8)? - w(3); (k=1 II, III) (10.8)
20’.k 0

(see eqns. (9.13a, b)). In Appendix E it is shown that this solution is unique.

From eqn. (10.7) the average < J;, > of J; (k = I, II,IIT)is

27 27 2T oo a0 e <}
< Jp> = f dd; d‘i‘”/ d‘I)IIIj d.f]/ d.]”/ dJI]I
0 ] 0 [} 0 0

x Wi T, @) - T = Jy (10.9a)

o

which agrees with eqn. (9.20). Using this result and the expression (6.31) for 33(3), the beam

emittance matrix

2 27 27 o0 oo oo
< gmy.n > = f dd; d‘I’[}f d@]{]/ d.]]/ dJ_H/ dJrrr
0 0 0 0 0 1]

ijfzit)(Jk, ®.) - I (8)in(5)
is given by:
1 1 20 2 2 o . o
el > = G g ) den [ den [T dn [T dn [T dnn
w e [JI,/jI + I/ Jr + qu/fnr]
x 3 \/J_k- {i*km(s) ce Ty CHN R e+i¢k}

k=LILIIT

x \/}z {iqn(s) ceT 8 5t (s) - e+i¢'1}

=111 I

Z Ji - Re{Opm - Of, }

= 2. 3 T - Re{vgm - vi 1 . (10.9b)

[
(X}

This formula was already derived in Ref. [1] and (within the framework of a dispersion
formalism) in Ref. [17] (see also Ref. [18], where the emittance matrix is parametrized in
terms of products of eigenvectors from the outset).
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Furthermore, the density of the particle distribution in the (£ —p, — z — p. — & — p,) phase
space is given by:

P&, PayEy Per 020 ) = Witpe) - [det(T )™ (10.10)
where J signifies the Jacobian matrix (6.35).

But from egn. (6.34) it follows that:

det(7)| = 1
so that eqn. (10.10) finally takes the form:
1 1 [T/ T4 T/ T+ Trnaf
P(:c)pz'vzapzaaapo) = 3 3 = _ . € I:I/ I 4”/ I III/ III]
(2m)® Jy- Ty Ji
1 1

o X
(2m)* Jr-Ju T
_— [5F851*/ Fr + 55,85/ ar + 151 SHI e (10.11)
Here we have used the relationship

Jy = |5 S g’

which may be derived from equs. (6.31) and {6.28)

10.1.2 The Surfaces of Constant Density in the (7 — p, — zZ — 5. — & — p,) Phase
Space

We now look for the surfaces of constant density in the (z — p, — Z — p. — & — p,) phase
space i.e. the surfaces for which

p(i-:‘)ﬁm,‘fjﬁ:’&gﬁg) = COIlSt

Jro JiJ
— L I onst (10.12)
JroJin Jin

(see eqn. (10.11)).

With the constraint (10.12) the variables Jy, Jy7, Jrr may be parameterized as

\/J-I = C-cosxlcosh.\/?“
\/J—u = C'COSx1sin)(2-\/f;
VIur = C-sinxs -V i
and then from (6.31) (with & = ®, — 2mQ, - s/L = const) :
9083 X1, x2, 61, 611, 6031) = CVJi-cosxscosxa - [;.1(3) . bbr +6f(s)-e‘i‘51]
v OV -eosxasinx - [fn(s) - €400 4 (s e HE

+ Oy Ty -sinag - [-E}H( )-e 11 vr3(8) - € “51”] (10.13)
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Equation (10.13) defines a six-dimensional ellipsoid in the (Z — p, — # — p. — & — 5, ) phase
space [30,31] which by (6.21) is periodic with period L {30] :

(s + Lix1, X2, 61,611, 6111) = 9(53 X1, X2:61 — 27Q1, 811 — 21Qy1, 6111 — 27Quyr)
By decomposing the vectors
C -7
into a real and imaginary part:
c i =
C - oy =

C-vVJur-vmmr =

eqn. (10.13) takes the form:

P B = B

9(83X1s X201, 611, 8111) = cosx1cosxz - [§i(s) - cos &y + Fa(s) - sin &y
+ cosyisinx; - [#a(s) - cos 857 + Ya(s) - sin érg]
+ sinxy - [gs(s)- cosébrr + Ye(s) -sinéryy] . (10.14}

It follows from eqn. (10.14) that the motion of this ellipsoid under the influence of the
external fields can be described by six generating orbit vectors ¥:

Gi(s) = M(s,s0) Gils0) ; (k=1,2,3,4,5,6) . (10.15)
Combining these vectors into a six-dimensional matrix B(s):
B(s) = (v1(s), v2(s)s @s(s). dals), Fsls). els)) (10.16)
we have:
B(s) = M(s,s.) Bls.) . (10.17)

This "bunch -shape matnx”, B(s), now contains complete information about the config-
uration of the bunch and enables projection of the ellipsoid {(10.14) onto the individual phase
planes [30,31,32] as discussed in the next section.

10.1.3 The Projections of the 6-dimensional Ellipsoid. Beam Envelopes

In order to determine the projections of the six dimensional ellipsoid which characterize
the beam envelopes [32] we first of all write eqn. (10.14) in component form:

z(s;x1,x2, 60,007, 677) = cosy:-cosxz-[yi1(8) - cosép +1m1(s) - sin ér +
cos x1 - 510 X2 - (Ya1(s) - cos &7 + ya1(s) - sinéyy) +
sin x1 - [Y51(8) - cos i1 + yer(s) - sindryf] ; (10.182a}
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P=(8; X1, X2, 61,811, 6111) = cos x1 - €08 X2 - [y12(s) - cos ér + y22(s) - sinéy] +
coS Y1 * Sin Xz - [ya2(s) - cos 8rr + yaz(s) - sin brp] +
sinyq - [ysa(s) - cos érz1 + yaz(8) - sinéyyry] (10.18b)

Z(s;x1,X2: 01, 601, 6011) = cos x1 - cos Xz - [y13(s) - cos éy + yaa(s) - sinéy] +
cos Y1 - Sin Xz - [y3a(s) - cosérr + yas(s) - sin §7] +
sinx1 - {ys3(s) - cos drzr + yes(s) - sinbypy] ; (10.18¢)

P.(85%1, X2, 81, 611,8111) = cosx1-cosxz - [y1a(s) - cosér + you(s) - sinéy] +
o8 x1 - sin X2 - [ysa(s) - cos rr + yaa(3) + sin bp] +

sinxi - |ysa(8) - cosdprr + yea(8) - sin bsr11] 3 (10.18d)
(83 X1>X2:61, 851, 6001) = cosxy - cos )z - [y15(8) - cos ép + yas(s) - sinéy] -+
oS Y1 - Sin Xz - [yss(s) - cos &r7 + yus(s) - sin bpz] +
sin x1 - lyss(s) - cosrzr + yas(s) - sin érr1] ; (10.18e)
Po(83x15 %2, 61, 811, 6111) = cos x1 - €08 X2 - [y16(5) - 08 b + yaa(s) - sin é1] +
cos x1 - sin Xy - [yas($) - cosépr + yas{s) - sin 811 +
siny1 - [yse(s) - cos 8711 + yee(8) - sin b7ry) . (10.18f)

The computation of the single projections is then similar to that in Ref. [30] in which the
functional relationship between pairs of components was investigated.

Since the details of the method have already been given in Refs. [30] and [31] only a
summary will be needed here.

1) Projection on the z — = plane.

We first investigate the projection on the & — > plane. This describes the beam cross
section. We will need the maximum amplitude in the z and z directions.

a) Maximum oscillation amplitude in the & direction:
Using the relation

Maz;s) {A-cosé+ B -siné} = vV A? 4 B?

and eqn. (10.18a), the largest possible # amplitude is

ﬂfaw(x:;.‘xzvénﬁnaénr) :E"(S; X1 X2s 617 orrs 6[11) = \/ygl -+ y%] + ygl + yil + y§1 + ygl

= E,(s). (10.19)

This occurs for the values:
Y11 Un

cosdy = —————; sinéd; = ———=—
vV y121 + ygl Y ‘yfl + y%l
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l - X
Figure 1: Projection on the r — 2 plane (beam cross section)
cos b5y = b sinéy; = __ Y
g - H - 2
vV y3 + Vi v '.9%1 + ¥i
cosdry = N sinérzr — Yol ;
- b Y e — b
Y 3151 + vé vV ya + y621
Y Yt + vh
COSYya2 — y
'\/y121 + yh t+ Y+ uh
Sinye — \ ¥5h + Vi .
Xz = \/ 2 2 2 z !
Yi1 1 Yot Ysi T Ui
cos v — \/yfl + yh + ¥t i .
08 X1 = 2 2 2, .2 2 2
Yin T Y T Y3+ Y4+ Y1 T Ya
/2 2
. Y51 +
sin y; = b1 T Y (10.20)

\/9%1 +y5 +vh + vh v+ ud

The corresponding # -coordinate is given by equ. (10.18c) together with egn. (10.20):

1
Ga. = E.(s)’ {910 Y13 + Y21 Yas + Va1 - Y3z + Va1 - Va3 + Ys1 - Yss + Yer - Yes) . (10.21)
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o
Figure 2: Projection on the z — o plane
b) Maximum oscillation amplitude in the z direction:
Correspondingly. the maximum amplitude in the = direction is obtained from (10.18¢}):
Max(\, xobrsnsin 208 X1, 12,010,001, 8011) = \/yfa + Y35 T Y33t Yis T uss + v
= E.(s). (10.22)
The accompanying 7 -coordinate is then:
1
G.,= E(s) (5] {yr1 - vis + 21 - Was + Ys1 - Ysa + Yar - Yas + Ys1 - Ys3 + Yer - Yes) - (10.23)
Thus
E, G..=E.-G.,. (10.24)

¢) The boundary curve of the beam cross section.
The projection of the ellipsoid (10.14) is an ellipse, and this is described by the three
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independent quantities E_, GI;, E.. The parameter G, depends on the other three (see eqn.
(10.24)). In terms of E,, G,., E., the ellipse can be written as:

E?. 7 - 92E,G,, - 2i+ E?.:?2 = ¢ (10.25a)

T2

with

€x: = Ei" Y EZZ - Gﬁ.z (10.25b)

and where me,, is the area of the ellipse.
The half axes E; and F; of the elliptical beam cross section are:

1 N
Bip=3 {[Eif + E? 4\/iB2 - E2)? +4E2 GZ} (10.26)
and the twist angle # of the beam is given by:
tan 26 = 2. Lz G 10.27
ain v = o- ﬂ . ( e d )

2) Projection on the & — o plane.

To find the projection of the ellipsoid (10.14) onto the ¢ — o plane we need equations
(10.18a, e). Since these have the same general form as egns. (10.18a, ¢), we can obtain the
projection using exactly the same methods as in the previous section.

The boundary curve of the elliptical projection on the r — ¢ plane is:

E}.¢*-2E,G,, -Gz + E?-3* =€ (10.28)
with
E, = \Jub+vh — v+ vk + 0B + 0 : (10.29a]
1
Gor = I8 {11 - Y15 + Ya1 - Y25 + Ys1 - Yas + Va1 - Yas + Ys1 - Yss + Yer - Yes r; (10.29b)

e = BEo-\JE2—(Gsu) . (10.29¢)

The meaning of £, and G,, is explained by Fig.2. me,, 1s the area of the ellipse (10.28).

3) Projection on the z — & plane.

Finally. the projection of the ellipsoid on the z — o plane (see Fig.3) has the boundary

curve:
E?. ' -2F,G,, -6+ E2- 7 =¢, (10.30)
with
1
G,, = ok {913 - Y15 + Y23~ Y25~ Yas - Yas + Yaz - Yas + Ys3 - Yss + Yoz - Yes b (10.31a)
€: = E;-\/E! - (G,.) (10.31b)
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- N

P

Figure 3: Projection on the z — o plane

(me,. is the area of the ellipse (10.30)).

The projection on the y — p, plane (y = 7, z, ¢) can be found in a similar way [30,31].
We obtain:

4) Projection on the r — p, plane.

For the projection of the ellipsoid (10.14] ento the ¥ — p, plane the corresponding
equations are (10.18a, b). Since these two relations have the same form as eqns. (10.18a, c),
we obtain an elliptical projection onto the z — p, plane by analogy with eqn. (10.25). We
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write the ellipse in the form:

2 2
A TPy

T

82— 2E, G, ip, + E} -5 = ¢

with
A'-T'(S) = Ma‘z(kl.‘{z.érjn.&fu) ﬁx(‘s?;\.l?X%‘SIaélIa‘sffI)
= \/9122 =+ y%z + ygz + ygz + ygz + ygz ;
1
Gap.(s) = E_(-S) Ay - Y2+ yon Y22+ Ys1 sz o+ Yar  Yaz + U1 “Ysz + Ys1 - Ve2} ;

Teap, = By JAL — E2

(area of the ellipse(10.32)).

(10.32)

(10.33)
(10.34)

(10.35)

Here, the function A.(s) represents the maximum amplitude of the momentum p, and could
be called the momentum envelope for the z — p, plane. me,,, gives the area of the ellipse

(10.32) and the meaning of E,_ is indicated in Fig. 4.

5) Projection on the z — p. plane.

A similar treatment can be used to describe the projection on the = — p, plane. We
write
Al-2 —2E.G.p, - ip. + Bl -pl = &2 (10.36)
where
A.(s) = JMGT(A,.W,&;,&“,&,H) P8, X1: X2, 61,017.8411)
= Vol 9B+ v vl v+ s (10.37)
1
G:p.(s) = _E_(.s) Y13 - Y1a + Yoz - Y2u + Y33 ' Y34 T Ya3 * Yaa T Y53 - Ysa + Yes3 - ysq} 7 (10.38)
-
mep, =7 E.\/AZ — EY (10.39)
{area of the ellipse (10.36)).
6) Projection on the ¢ — p, plane.
For the projection on the ¢ — p, plane we may write:
Ai " 5'2 - 2-E¢7-Go'pcr * &I-)cr + Eg b _';53- = Egpo (1040)
where
AU’(‘S) = Ma'a‘(:xh\z.lS[.&‘”.&”]] ﬁG(S'X17X2761361I16III)
= \/ylzﬁ + Yde + yde + Yis + vl + Yl ; (10.41)
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Figure 4: Projection on the y — p, plane; (y = z,z,7)

1

E,(s) {y1e - Y1s ~ Y25 - Y26 + Yas - Yae + Yas - Yae & Yss  Yse + Yes - Yee ) 5 (10.42)

Gop,(8) =

T€op, = T - Eo\/Ag - E2 (10.43)
(area of the ellipse (10.40)).

This is all represented by the ellipse 1n Fig. 4.

Finally we mention that all the projections of the ellipsoid already considered are included

in the formula
E} -5 —2E.Gy - §1ji + B - 3} = €, (10.44)

with

Eis) = \uh - vk~ v vkt ¥R Vh (10.45a)
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E(s) = yh+yh+oh +yh+ v+ ; (10.45b)

1
Gki(s_) = & {91k - Y1 + Yok - Y2+ Yok Yz Yak - Yar + Ysh - Ysi + Yer - Yer |3 (10.45¢)
I d

e = Ev-E} -G (10.45d)

describing the projection onto the y;, — v plane (see Fig. 5) where we have used the notation:

B = T
Yz = Pr:
ys = Z;
Ys = P ;
¥s = &
Y6 = Do
and

E,= A,
E,= A, ;
E,=4,.

(mert is the area of the ellipse (10.44)).

10.2 Spin Motion

In order to describe the spin motion we adopt the ansatz:

W= Wi (T &1, Tary 811, Tian, B1ir) - Wapinl Jrvs @1v, 8) (10.46)

orbit

1. e. we assume a stationary distribution for the orbital motion and that W ypin 1s independent
of the orbital variables Jy. @, {(k = I,II,I1II).
Then, putting (10.46) into eqn. (9.15), and using (10.7):

2 5 o
_ﬂrs in — a M I - ‘—'mrs in
ds' 7 oI [ W Sy }

a
0%y

My 8
4Jn 00pv

[bn' *Wopin — W,,,m] . (10.47)

which is valid at orbital equilibriun.
~ In the case that the spin phase ®;1 is uniforinly distributed {see also Appendix E) eqn.

(10.47} reduces to
1 .
W?spin(JIV7¢IV1S) = % 'I’IT(JIVHS) (1048)

and we may write (with J = Jrr):

8 ] 8
—W = Mp. =7 .= w|. 0.
Bs Mve i 17 a5 } (10-49)



In contrast to the case of orbital metion, ajy = 0 i.e. the spin motion is not damped
(eqns. 9.13) and we do not expect that the spin distribution reaches equilibrium. Thus
here, we make no attempt to find a solution for which —g; Wipin = 0. If we had included a
phenomenclogical classical description of polarization build up via a model of spin damping,
we would have been able to find equilibrium.

Now, writing out the spin part of eqn. (7.1), and using (5.13}, (5.15) and (6.72):

(2) = o {Aw(s) - dikls) + A_wls) - Wr(s)}

k=1 ILIILIV
= n(s)+ {Anr(s} . ”U?Iv(s) + A_gv(s)- IE_Iv(S)} (10.50)
with
7= > {Au(s) - wi(s) + A(s) - wu(s)}
k=I1111!I
_ \./Jk(s) _ {e—z’ " Bl8) LG (s) 4 et $y(s) .@;k(s)} ) (10.51)
k=I,01.0111

The vector 7i represents a solution of the linearized BMT equation on the trajectory
(Je,®r); k=1, 11, 111

which depends explicitely on the orbital phase space point and on s 8 . Under Fourier analysis
7 contains no spin frequency component. This property is equivalent to the periodicity
conditions [4]:

A Jr, 11y Irirs B, @10, 8101, 8) = A(Jr, Jrn, Jorp 81 + 27,807, 8111, 5)
(I, Ty Jirr, @1, 811 + 21, B111, 8)
(
n(

-3

= Aa(Jy T, Jinr @1, 811, 111 + 27, 8)
Jr, i, Jir- @1, 851, @711, + L) . (10.52)

The general non-linearized form for 7, is an important quantity in the quantum theory of the
polarization process [4,3]. The linearized form in terms of eigenvectors used here was first
given by $.R. Mane [33] who also suggested a way to calculate 7 to higher order [3].

Introducing now the spin vector

& . - : .
( ~ ) = ( ° ) —7(s) = A (s) - Wry(s) + compl.cony. {10.53)
B &
which describes the spin motion around the 7-axis we obtain from (6.73b) and (8.1b):
- 1 7 . & :
&6 = —/Jv-e IV 4 compl.conj.
V2V i
= V2 \/-fnf ccos Dry ;
~ L /7= 1 .8,y .
3 = —\7—5 v I - H € + comnpl.conj.
= —V'E ‘\/JIV - sin q)nf
8Equation (10.51) describes the 7 axis in terms of its components in the ( _‘) plane perpendicular to 7p.

For the complete expression for 7 including the g component see egn. (5. 11)
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and therefore
I=3 [a +4] . (10.54)

Thus spins at the same point in the orbital phase space (Z, pe, Z, P., 7, §r) and s, can
be considered to precess around a common axis # with a tilt angle w.r.t. 7 proportional to
J. The quantity J describes the spin component perpendicular to the 77 axis ° .

We now consider the case where at each point in phase space the spins are initially all
parallel to the respective 7-axes and that orbital equilibrium has already been established.
As in Remark 4 in chapter 9 we can assume that the subsequent distribution of $nv will be
uniform at all points in the orbital phase space. Thus for the polarization vector P Ji, Bi; 8)
(k =I,II,IIT) defined as the vector average of the spins at the point

(Jks‘t'k;‘s); k= I,II,III,

we have (see Fig. 5 and eqn. (5.11))
s
.<V1—(a2—|-[32])

3

P(Ty, &r58) =

I
3

L1 %(a%&% >
(1- < J >) (10.55)

I
3,

in our approximation that (&* + ,52) < 1. Therefore P remains parallel to 7 1°
Furthermore for the expectation value of J 11 :
— /Ode-J W, s)
eqn. {10.49) gives:

Liry = f 4y J- fW(Je)

W W
= ﬂfﬂf'/ dJ{Jz +J—}
0

aJ* aJ

and using the relations

x oW
a7 = 7w ] W= -1
/0 - 47 -1-
o 52 oW oW
2 _ 72, L
[arr oo =g 8}] - [Tdar2r G- 2
we may write
d
a - M 10.56
ds( J) My ( )

which is in agreement with eqn. (9.19).

®Recall that the working point is far from spin orbit resonances (see Remark 1 in chapter 9 where we discuss
averaging). Therefore the spin components of the 8-dimensional eigenvectors gz (k= 7, 17, II7) are small [1]
and 7 is approximately parallel to 7. For the same reason (G2 + ,3%) <7 1 in eqn. (10.55).

10The proposition that P and @ are parallel is an ingredient in the formalisms of references 4} and [3]. At
the level of linearized spin orbit motion eqn.(10.55) provides an example of this notion.

UTn this treatment we assume that J is small. Thus the distribution of W peaks at small J and the
contribution to the integral from large J can be neglected.
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i-2-<J>
1=-<)>

i

Figure 5: Degree of Polarization

Starting with

(all spins parallel to @) we therefore have from (10.55) and (10.56) {1]:

d d
WP o= =T} =My =-My-P
. 9p_ My - P 10.57
" di = —C-iMdfy . ( . )

Then using eqn. (9.13f) we can calculate the characteristic spin depolarization time 7p for
the diffusion of spins resulting from stochastic orbit motion:

e so+ L 2 :
'6‘:2-3/ déwﬂﬂ-iﬁ&hn > waﬁywwﬂ (10.58)
o p=1 k=IIIIII

This result has already been derived in a different manner by A. Chao [11]), and serves as
the basis of various schemes for maximizing the polarization [34,35,36,37,38,39]. The same
picture emerges by analysing the physical content of eqn (9.33) in Ref. [1].

As can be seen from eqn. (10.58), the depolarization time 7p is independent of Ji, &,
(k = I,II,III) and thus has (in linear order) the same value at every point of the orbital

phase space.
Note that if we look at a fixed point in phase space and s, the depolarization takes place
with respect to 7. But taking an average over the phase space we find in our linearized spin

treatment that the depolarization takes place along the 7 axis.
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Even after the spins have reached large tilt angles, we can apply these concepts to the spin
components parallel to 7 by noting that the component perpendicular to 7, due to spins in
a small region of the equilibrium orbital phase space, will average to zero. Then by applying
the above considerations to the spin components parallel to 77 we obtain

d
— = —¢c- My -P. 10.59
it © o (1059)
where 0 < |P| < 1.
The solution of (10.59) reads as :
P(t) = P(0). " (t/TD) (10.60)

and leads to an exponential decrease of the polarization. The value of P will be the same at

all points in the orbital phase space.

11 Summary

We have investigated the influence of radiation damping and quantum fluctuations on
the motion of charged particles in storage rings using the Fokker-Planck equation and have
included classical spin motion in linear approximation.

The motion was described in terms of the fully six-dimensional formalism with the canon-
ical variables =, 9., z, p., o =s—c-t, p, = AE/E,.

With this set of variables we were then able to treat the betatron and synchrotron oscil-
lations simultaneously and canonically. i.e. to provide an analytical technique which includes
consistently and canonically the synchrotron oscillations in the electric fields of the acceler-
ating cavities.

In order to derive the Fokker-Planck equation, action-angle variables were introduced
via a canomnical transformation taking into account all kinds of coupling (synchro-betatron
coupling and coupling of the betatron oscillations by skew quadrupoles and solenoids).

The Fokker-Planck equation was solved for the stationary case and expressions for the
average dimensions of the bunch in six dimensions were found.

By investigating the surfaces of constant density in the (z. p,, =, p., o. p,) phase space
we were able to describe the shape of the bunch in terms of a 6-dimensional ellipsoid. This
ellipsoid was represented by the "bunch-shape matrix”, B{s), which contains as columns six
independent orbit vectors.

For the spin motion we presented an alternative way to caleulate the linear depolarization
time and obtained the usual result.

In this paper we have only considered the case of ultrarelativistic particles. To study the
case of arbitrary velocity the variable & = s — vy - ¥ (v¢ —average speed of the particles) as
described in Ref. [40,22] would be used.

Finally, we remark that starting from the variables #, p.., %, p., &, p, and using analytical
techniques as described in Refs. [17,41] one can also develop an 8-dimensional dispersion

formalism.
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Appendix A: Derivation of the Equations of Linearized
Orbital Motion

A.1 The Hamiltonian

Starting from the Lagrangian {3.5) and introducing the longitudinal coordinate s as the
independent variable (instead of the time ¢), one can construct the Hamiltonian of the orbit
motion by a succession of canonical transformations. Choosing a gauge with ¢ = 0, one then
obtains in the ultrarelativistic case with v =~ ¢ [42] :

H(I,pm,z,p:,a,pg;s) - (1+P0)_(1_pcr)'(l'i'hbr'm‘l"h;'z)x
(P — £ 42)°  (p: — =AY

(1 + po)? L+p. )
1+ K, - Ko-2)—4,. (A.1)
E,
The corresponding canonical equations read as

d _ +8j o d _ OH
ds © 7 Tap.’ ds T Tar
d +3H d - OH
ds = Op. ' ds 7<= z ]
d _ OH d _ OH

ds © +3pg Cods T Tas

Here the variables ¢ and p, describing the longitudinal motion are defined by

o = s—c-1;

-, - AE
PrET = g

Since H also contains the transverse coordinates r, p,, z, p. we are thus able to handle
synchrotron oscillations (longitudinal motion) and betatron oscillations (transverse motion)

simultaneously.
In order to utilize this Hamiltonian. the magnetic field B and the corresponding vector

potential,

—

'-“I: (GL‘,y,S), (A..Z)
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(eqn. (2.14)) for commonly occurring types of accelerator magnet must be given. Once Ais
known, the fields € and B can be found using eqns. (3.6, 7). In the variables z, z, s, o these
become (with ¢ = 0): '

£= % A (A.3)
and
B, - (1+Km_i+K;_z)-{58;[[1+Ix'm-w+ﬁ’:-z)-A,]—;—SAZ} . (Ada)
B, = (1+Km'i+ﬁ_;.z)-{%Am—a%[(l+ﬁ'¢-:c+ﬁ'z-z)-Asj} . (A.4b)
B, = %Az-%Am. (A.4c)

A.2 Description of the Electromagnetic Field

Using the freedom to select a gauge, we can choose any vector potential which leads to
the correct form of the fields. Suitable vector potentials are as follows and have been chosen

for their simplicity [42].

A.2.1 Bending Magnet

If the curvatures A, and A of the design orbit are given. the magnetic bending field on
the design orbit, B{%)(s) and B")(s):

B")s) = B,(0,0.s); {A.5a)
BW(s) = B.(0.0,s) (A.5b)
can be easily calculated from eqn. (3.9) if we notice that the design orbit
z(s) =z(s) =0 (A.6)
15, by definition, a solution of the equations of motion for
€=0; E=mopyc®=E,. (A.7)
Thus we get (with § =¢) :
e
—_ B(Ol = —I\-_ M .
EO T z (A 8&)
€
— B = 41K, . A.8b
5, B + (A.8b)
The corresponding vector potential can be written as
€ 1 . -
E_‘O.As = —:—)(1+RI'J‘—'—IX;'4) . (Aga)
A, = 4.=0. (A.9Db)



A.2.2 Quadrupole

The quadrupole fields are

B,

B,

= z-
= T-

so that we may use the vector potential

0B, 1
()3

A, =0.

A,

Ay

D o

(%) .
r=z=0 ’
):c:z:ﬂ ’

iy
B
r

In the following we rewrite the term (e/Ep)- A, in (A.1) as

£ 4,

Eo

A.2.3 Skew Quadrupole
The fields are

B,

B.
Thus we may use

A4,

A,
and we write

iy

By

N

A.2.4 Solenoid Fields

The field components in the current free region are given by [42,43]:

1 (8B, 0B,
—— - -rz ]
2\ 0z Oz | _. o
A. =0,
N-x:;
1 e (8B, OB.
2 Ep\ Oz 8z J__. o ]

B.(r,z,8) =

.8) =

E . r
1 6B, B OB, i
2 az or ) _. o T

1
59‘( 2—1'2)3

€ 0B,
EO 31‘ r2=z=0 -

8z dr

x- Zb2u+1 : (1‘2 +
v=0

z- Zb2u+1 2’ +
v=0

z bzy , (1.2 4 22)1/

=0
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1 ( 8B, 0B, )
=z=0

2)u

2)1/

’

(A.10a)

(A.10b)

(A.11a)

(A.11b)

(A.12a)

(A.12b)

(A.13a)

(A.13Db)

(A.l4a)

(A.14b)

(A.15a}

(A.15b)

(A.16a)
(A.16b)

(A.16¢c)



where for consistency with Maxwell’s equations the coeflicients b, obey the recursion equa-

tions:
1 1
b2y+1(5) —m . sz(s) ; (Al?a)
1 ,
bata(s) = tori2) by va($) 3 © {A.17b)
(v =0,1,2,...
and where
bo(s) = B,(0,0,s) . (A.18)

The vector potential leading to the solenoid field of equn. (A.16) is then:

- 1 v
Am(x,z,s) = ——ZVZ:E:)(z—V‘I-—z) 'b(zy)(.ﬁ) T N (Alga)
= 1 y
AZ(JI', Z,S) = +4x- Vg% m 'b(z,,)(.S) . T2 H (Algb)
Adz,z,8) = 0 (A.19c¢)
with
rl = r? + 2*
Thus we can write :
1
—A, = —H(s)-z+ _H's)- (> +2%) -z + (A.20a)
Eq 8
A = +H(s) z— H"s) (s¥+2) x4 (A.20b)
Eq 8
with
1 ¢
H(s) = o~ E ~bo(s) (A.21)
1 €
= 5 - E; ' BS(O,O,S) .
Note that the cyclotron radius for the longitudinal field (A.18) is givenr by
1
R = 5 H
A.2.5 Dipole
B, = AB,-8(s— s0) ;
(A.22)
B. = AB. &(s — so)
so that
€ € . .
BT g o) [AB. -z — AB. -z (4.23)



A.2.6 Cavity Field

For a longitudinal electric field

e. = 03 -
£ = 0; (A.24)
g, = ¢€(s,0)
we write:
A, = 0;
4, = 0; (A.25)
4, = f & - ¢(s,7)
o
which by (A.3) immediately gives ;.
Now the cavity field may be represented by
) 2
e(s,0) = V(s)sin [h- —E-J+p:| (A.26)
and we obtain using (A.25):
L 2 :
A,:—zw.h-V(s)-cos h-%-cr—l»tp] , (A.27)

in which the phase ¢ is defined so that the average energy radiated away in the bending
magnets is replaced by the cavities and & is the harmonic number.

A.3 Series Expansion of the Hamiltonian

The eqns. (A.9), (A.12), {A.15), (A.23) and (A.27) can now be combined as

€ 1 ) - 1
EA, = —5(1+R¢-m+hz-:]+§g-(z2—1:2)-|~N-m:
L eV(s) 27
+= IAB,-z— AB. -2 (A.28)
Eq
with
AB,= = ZABL’“' cB(s — 8,) ; (A.29a)
7
AB.= = S_AB™.§(s—s,) . (A.29b)
o

Together with eqns. (A.20a, b) all the components of the vector potential A appearing in
the Hamiltonian (A.1) are now known.
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Furthermore, since

€
:r__Az- 15
p Eo | <«
e
. — — 4. 1
|lp E o«

the square root

in (A.1) may be expanded in a series :

[1— (pm_E‘%Am)z_ (pz__ELOA:)Q]I/Z:

(1+po)? (1+p,)?

2

_1 (Pa‘E_OAa:) _ (P:‘EE;_O :)2

1
2 (1+p,)? 2 (I+p)? (4.80)

so that in practice the particle motion can be conveniently calculated to various orders of
approximation.

In the following we shall use (within the framework of a linear symplectic treatment of
the synchro-betatron oscillations) a series expansion of the Hamiltonian up to second order
in the variables «, p,, z, p;,0, p,. Then we obtain, using eqns. (A4.20) and (A.28):

H="H, +H, (A.31)
where Hg and H, are given by:

1
Ho = 5'{[pm+H-zF+[pz—H-w12+G1-$2+Gz-12*21""'~"«°~"}
1 ., €V 27

—5° -E—D-h-fcosp—[ﬁ'm-strK:-z]-p,; (A.32a)

eV’ € €
H, = —¢-—sinp— —AB,-z+ —AB, - A.32b
1 e Ee S1n @ Z +E0 PR ( )

with
Gy = Kl+g: G, = K? 4
(a constant term, (L/27h) - (eV/EQ)’ -cos, in the Hamiltonian, which has no influence on
the motion has been dropped) and for the corresponding canonical equations we get:
¥ = p,+H-z;

p:r = If;r'po_@'[pz*H"T:'H_Gl"'r_i_N.:—_ELABZ;
0

= p.—H-r;
p. = I{z-pa—[pr-x—H-:]-H—Gz-:—N-m—EiABm;
1}

0" = —{I{T.T '1‘[\'; ‘Z] N
V 2 1
p, = EE(:)-h-%-cosw-a—‘-%o—-sinp. (A.33)
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Remark:

By taking into account the denominator (1 + p,)* in eqn. (A.30) we may write the
Hamiltonian of a cavity field (see eqns. (A.1) and (A.27)) to third order as:

(A.34)

HC(:U =

1 p: N 1 p? N L €V [h 2T ‘ ]
—_ —_ . . —_— cos s — g
2 14+p. 2 1—p, 2wm-h Ky L e

This leads to the canonical equations [42]:

How = —3 ()74 (7] :

o 2
PN RV SO ELS

7 (A.35)

By eliminating the quantities p), and p) from (A.35) we get:

2['" — Pa _ Pz _pf
1+p, (14p P °°
7
= —:r'-—{%— since p, =0 and P o
(1+p,) 1+ p.

, eV |
- —sing ; (A.36a)

Eq
eV

Eo

I
l
&

14 r

sing . _ (A.36b)

Thus by deeper inspection we find in eqn. (A.36) the linear terms

T , eV o
—r' —sing and — . —sin
E, ¥ By 7
additional to those appearing at second order on the r.hs. of eqn. (A.33) and whick would
otherwise have been lost by a naive linearization. These terms are not symplectic and produce
a damping of the orbital oscillations by the cavity fields 42].
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Appendix B: The BMT-Equation in Natural Coordi-
nates

According to eqns. (4.15), (4.16) and (2.15b) the precession vector €l in the BMT-equation
(4.16a) may be written in the form:

— l' —
QO = —- Qg K. 6.+ HK,-¢,
¢
I e avy? 1 -
- 14 B2 (FBY.F
¢ mo_‘,c { ( T‘Ya) 1+,Y (,2 (T )r
tlovs 2 |7x €\ K .2k (B.1
a’y 1+"}’ r c z "€ z '€ )

with (see eqn.(4.12))

U= @y +(@F+(+ Kz + K, o2)

= 14+AK, 2+RK,-2+---. (B.2)
In order to express ! as a function of Ty Pzy %, P:y O, 11 = P, we Temark that one can
write:
1 o 1 - - d | — '
—.F = F-[es-(l-l—KT-erIxz-z)Jrez-a:%ez-z] (B.3)
c
and
moye? = E=Fy-(1+7); (B.4a)
v = 7w -(1+7); (B.4b)
1 _ 1
L+ (1+7)+% -7
1 70
- 1= ’ . . B.4
1+ [ 1+ g 77]"‘ ( <)

Furthermore, for the magnetic field B we have (see Appendix A):

EiOBT - —Kz+£gABr+(J\'—H')-:r—|—g-z; (B.5a)
EiDBz - K.+ ELOAB; (N H) z4g-z; (B.5b)
ELUB, — 2.H (B.3¢)
and for the electric field € we have:
€=¢€,-V(s) singa—}—a(s)-h-%cos,o} : (B.6)

Then, putting (B.2 - 6) into (B.1), we obtain in linear order the eqns. (4.19).
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Appendix C: Derivation of the Linearized Equations of
Spin Motion
C.1 Perturbation Theory

In order to derive the equations of spin motion the component & in (5.8) will be considered
as a small perturbation. Making the ansatz

f=g©_ ¢ (C.1)

with
FO g g + ¢, @ ., 169 ¢ (C.1a)

and
FM oW g e g +£M.¢e (C.1b)

(where £ () denotes the spin vector on the closed orbit) and using eqn. (4.162) on the closed
orbit:

d d d " _,
S AP 1) SN (- B Ry O e (OB A ) C.2
€5 dS gs + €z dS §:r + 2 dS é.z Q X 5 ( )

we obtain the following expression for E (1) in linear order of perturbation theory:
d d d - = ~
&, - és(l) 1 — 53[1) +é - — E-(l) — (HO) o £ M. 3 x £ (o) (C.3)
ds ds ds °°
As A. Chao has shown [11] equ. (C.2) now can be used to define a new system of

orthogonal unit vectors which considerably simplify the spin motion determined by (C.3).

C.2 The Periodic Spin Frame (-ﬁ’g,vﬁ,l_j along the Closed Orbit

In the following we shall introduce a compact matrix notation. Rewriting an arbitrary

vector
A=A, 6,4 Ay -6 + A - E.

as a column vector with components A4,, Az, A.:

A,
Ay G+ A8+ A -€.= | A
A,

and defining the derivative of a column vector with respect to the arc length s as the derivative
of the corresponding components A; but not of the unit vectors:

A
d ¢ d d d
— — —'s . A.’ —‘r . A;- '.‘z . =
ds j:: ¢ ds te ds T ds 4



we get from (C.2):

s & Ts) = 01%s) - £Os) (C.4)
where we have set
¢
€@ = & (C.5a)
£lo
and
0 0 o©
%)= o o —o© (C.5b)
-0 0
The transfer matrix M (,pin)l 5, S0) for the spin motion defined by
(0)( ) “]W(spm) $ '50) 6"(0)(30)
satisfies the relationships:
M(I;pin)(‘5750) * Mgpiny(8:80) = 1; (C.6a)
det [M (pin)(8,90)] =1 (C.6b)

since (using equ. (C.4))

d
C_ig M(spzn)(‘svsﬂ) = Q(O)(S) : M(spin)(sa 50) :
M_(apin)('so,sc) =1
and therefore (with [Q(O)]T = —Q(O))
d 0y T
E; ['ﬂ/f stn](SBSU) ! ﬂ{spin)(sa S0 )] = [Q (‘5) - M(xm’n)(s? S0 )] ' M(spin)(s: SU)

+szm)(5a o) [Q(O)(S) * M piny (5, 50)}

= _M[.?pin)(‘s? SD)T ) Q(O)(S) ' M(spin)(snsﬂ)
+M(I.|gpin}(s7 SU) - Q(O)(S) ) -Ai(apin)(‘s'- ‘50)

det .Z'I/f(_,pin)(S,S()) = det Jn’I(spin)('sO}sO) =1,

1.€. M, (s,50) is an orthogonal matrix with determinant 1.
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Let us now consider the eigenvalue problem for the revolution matrix M{sy + L, sq) with
the eigenvalues «,, and eigenvectors 7,(sg):

M(50+L:50) Fu(SO) :G,,,'T_'H(So) ; (C.7)

Because of (C.6a,b) we can write [13]:

a; = 1;
a; = e" 27 Qsp:n : : (C.S)
0y = e~ 2T Qupin :

(Qspin= real number)

and
71(se) = 7o(so) ; (C.9a)
72(s0) = nio{s0)+ ¢ - la{s0) ; (C.9b)
7_“3(30) = Tﬁo(So) -1 IQ(SQ) ) (CQC)

(7lg, Mg, lg =real vectors)

If we require that

- = 1; (C.10a)

2

(normalizing conditions)
we find, using eqn. (C.6a) [13]:

lTio(s0)} = Imo(se)] = lla(se)] = 1; (C.11a)

Fo(s0) L ols0) L lo(so) - (C.11b)

Thus the vectors 17p(sg), ol so) and E)(so) form an orthogonal system of unit vectors. Choos-

ing the direction of ng(se) such that
ﬁg(SQ) = Tﬂ.o(é‘o) x %(30) (Cll(‘)

these vectors form a right-handed coordinate system.

In this way we have found a coordinate frame for the position s = sq.

An orthogonal system of unit vectors at an arbitrary position s can be defined by applying
the transfer matrix M,,:)(5,50) to the vectors fig(s0), mo(s0) and Z—E)(sg):

7_1:0(5) - M(spin](saso) ﬁO(SO) 3 : (0128)
mol{s) = M5, 50) mto( S0 3 (C.12b)
1_0(5) = M spin)(5, 50) EJ(SD) . (C.12b)
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Because of eqn. (C.6a,b) the orthogonality relations remain unchanged:

fio(s) = 1ho(s) X Ip(s) (C.13a}
ria(s) L Io(s) ; (C.13b)
fo(s)] = |ro(s)] = |bo(s)] = 1. (C.13¢)

The coordinate frame defined by 7ip(s), rig(s) and f;( $) 1s not yet appropriate for a
description of the spin motion, because it does not transform into itself after one revolution
of the particles:

?;ﬁo(so n L) + 'l:[_;(sﬂ + L) = M{_gpin)(so + La 50) I:T?’LO(SO) + '31_[;(50)]
ei « Q- Qspz‘n . {Tﬁo(so) + ?I_(’J(SU)]
# diio(so) + ilofs0)

(if Qspin # integer).

i.e. although 7iy(s) is periodic by eqns. (C.8), (C.9a), niy(s) and A’_;)(.s) are not periodic.
But by introducing a phase function ¢'(s) and using another orthogonal matrix D(s. s¢):

L cosfpls) —wh(so)] sinfé(s) - w(so)]
D(s: ) (—sinw(s)—wson coshb(s)—w(sm) (C.14)

with

_-QT(SaSU) 'Q(S:SO) = l ) (0156.3

det [D(s,s0}] = 1 (C.15bj

we can construct a periodic orthogonal system of unit vectors from 77p(s), io(s) and Io(s).
Namely, if we put [44]:

— ms)+ills) = o TP sl T () 4 ils)] (C.16)

ng(s) = ni(s) x Is) ; (C.17a)
m(s) L i(s); (C.17b)
fols) = |m(s) = |{s) = 1 (C.17¢)

Since

—

Ao+ L) +i-Hsg+ L) = et W= D)= 9(soll [0y 14 fisy)]
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it follows, that the condition of periodicity for 7o, m and I
. (7or 7, 1) _,_,, = (7, 7, .. (C.18)
can indeed be fulfilled if the phase function ¢(s) satisfies the following relationship:
111"('5"0 + L) - 1:‘”)(30) = 27 - Qsp‘m 3 (C‘lga')

(Q.pin = spin tune).
For instance we can choose:

B(s) = 27+ Qupin % . (C.19b)
In this frame, spins on the closed orbit precess uniformly with respect to 7 and I.

Taking the derivatives of ri(s) and i{s) with respect to s, and taking into account eqns.
(C.16), {C.12), and {C.4) we get

;;'n“(s) = 0O(s) m(s) + ¢ '(s) - 1{s) 5 (C.20a)
L) = s )~ (s) - ls) (C.20b)
and 7ig(s) satisfies (see (C.12a))

4 Ao(s) = QOs) io(s) . (C.20¢)

ds

Finally, the vectors
ri(s) = flo(s) = M(sp{n)(‘syso) 71(s0) ; (C.21a)
7a(s) = riols) +i-la(s) = Mupim(s:50) 72(s0) ; (C.21b)
F3(S) = T?Io(S) —1- l_(;(S) = M(,pin)(S,SD) 'F3(So) (021(:)
8

M(s + L,s) 7u(8) = a0 - 7ul8) - : (C.22)

Thus, the eigenvalues «, and the quantity Q. defined by eqn. (C.8) are independent of the
chosen initial position sg.

—

C.3 The Linearized Equations of Spin Motion in the (7, 72, 1) Spin
Frame

Following A. Chao [11] we make the following ansatz:

£@(s) = g(s); ) (C.23a)

£ MWis) = afs)-ni(s)+ Bls) - Us); (C.28b)

(Je]?| + 18I*] < 1)
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to solve the equations of motion (C.2) and (C.3). Because of (C.20¢) the expression (C.23a)
1s a solution of (C.2) and putting (C.23a,b) into eqn. (C.3) we get:

Wy
o' = (l, L, L)- ( we | +3-¢ (C.24a)
Wy
ws
ﬂ’ = —(m_” Mgy 'n?‘z) - Wy — & 'T,Z" (C24b)
[N

where we have taken into account (C.20a, b).
Using the relations
' = p,+H-Z
¥ = jp.—H-7
which result from (5.3) and (4.6 - 8) and taking into account (4.19} and (5.10), eqn. (5.9b)

catl be rewritten in the form:

W
Wy = E(?»xﬁ} Y. (0'25)
Wa

The matrix elements of
Flaxey = F = ((Fir))
are given by (see (4.19), (5.9) and (5.10)):

Yo -
Fi. = —av,- A
12 Yo 1+,
Yo -
Fiy = +avy- - R,
14 Yo 1+
ve
Fig = 2H-|14+a—2 ;
a [ (1 +70)2]
Fypyn = —(1+ay) - (N-H');
: Yo
Fy = +ay- - 2H
22 aTo 1+
Fos = +(1+ay) -G, +ay 20 op?,
by == . + . .9
3 0 2 0 T+
o € .
Fo = . —I’; Lo B
24 [a’)fo+ 1+7J E (8)sin o ;
F26 = —Kz 3
Fao = —(1+a%) -Gy - avp- : 2H
1+
F ayg + i < Vis)sin
= — - — mp g
- T +1 ]| Eo v
Fys = +(1+ay)-(N+H'Y;
Fiuy = +ay-—2— .2H;
34 Yo 1+
Fi = +K, ;
Fyr = 0 otherwise . (C.26)
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Finally, taking into account (C.25) the spin equation (C.24) can be rewritten in a form

given by eqn. (5.12).

Appendix D: Perturbation Theory and Robinson-Theorem

D.1 Introductory Remark: Two Methods for Calculating the Damp-
ing Constants

In chapter 9 we have derived an analytic expression for the damping constants e, of
the {coupled) synchro-betatron oscillations (see eqn. (9.18)). This expression allows the
calculation of aj if one knows the cigenvectors v;(s) of the unperturbed problem (6.2) and

the matrix elements § A;; of eqn. (4.8).
On the other hand, A. Chao |11} calculates the damping constants by using the eigenvalue

spectrum of the revolution matrix
M(so+ L, sa) = EM{sc+ L, s0)

of the perturbed problem

d - =)

Ey:(é-l-éé)'y- (D.1)
This matrix with the perturbation part §M(so + L, sg) is not symplectic in contrast to

Misy + L,s0) -

Therefore, writing the perturbed eigenvalues (Ax + &§Az) in the form (see eqn. (6.16)):

M + 60, = ) 27 Qi + 0Qk)
one will generally obtain complex values for the Q-shift §Q; caused by the perturbation $A.
According to A. Chao [11] we put
ar = -2m-Sm{Qr+ 6Q;} _
= =27n-Sm{éQ.} . (D.2)

The purpose of this appendix is to show the equivalence of (9.18) and (D.2). As a by-
product of this calculation the well-known Robinson theorem will be rederived.

D.2 Equivalence of the two Methods
D.2.1 Calculation for the Perturbed Part of the Revelution Matrix

In order to prove the equivalence of the two methods mentioned above we determine the
perturbation part §M({sy + L,s0) of the revolution matrix (of the perturbed problem).
According to eqn. {D.1) the transfer matrix

M(Sa 30) bl ‘qﬂ(sasﬂ)

Mt



obeys the equation:
Ed;{'ﬂ’—f(‘sa‘s(l) + 6M_(37 S0 )} = [A(‘S) -+ 64(5)] ) [M(S, 30) + 5&{(5,30)] 3 (D3a)
M{(so0,90) + 6M(s0,%0) = 1. (D.3b)

Taking into account the corresponding equations for the unperturbed transfer matrix

M(sa 50)
d
L M(s,50) = Als)-M(s,s0) ;
ds
AI(SO,SU) =1
we obtain from (D.3), to first order, the differential equation for éA{(s,s¢) :
d
d—ﬁﬂ(S,So)] = A(s)-6M(s,50)+ 84A(s) - M(s, 50)
s
with the initial condition:
6M(s0,80) = 0.
The solution of this equation (and thus the first order solution of eqn. (D.3)) reads as:
dM(s,350) = / ds-M(s.8) - 6A(35) - M(35,s0)
= M(s, s) [ d5 - M3, 50) - 6A(5) - M(5, 50) -

For the perturbative part éM (s + L, so) of the revolution matrix one therefore gets, to
first order, the expression:

30+L
§M(so + L,sq) = / di- M(sq + L,5) - 6A(3)- M(5, so)
’ so+L
— M(so+ L,s0) / i M7NE, s0) - 6A(5) - M(3,50) (D.4da)
sp
and for é M (s + L, s) one thus may write:

s+ L
M(s+ L,s) = M(5+L,s)-f+ ds - M~Y3,s) - 8A(5) - M(5,s) . (D.4b)

D.2.2 Perturbation Theory

Eqn. (D.4b) deternunes the perturbed part A (s + L.s) of the revolution matrix if
the (unperturbed) transfer matrix M(3, s) and the perturbation §A4(3) are known. Using the
eigenvalue equation

(M + 6M) - (v + 60,) = (Au + 6A,) - (B — 87,) ;
(0= +I, +1I, =1II)

or (since M7, = A,v,)
M-bv, +6M v, = A, - T, +6X,-T, (D.5)
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we can calculate the Q-shift

i
6Qc = 55 (D.8)

caused by 6 M [24 30].
For that purpose we expand é%,, in terms of the eigenvectors v, of the unperturbed prob-
lem:

6T, = D G - T, (D.7)
and By inserting (D.7) into (D.5) we get:
3 AT+ EM Ty = Ay D 0T, 6 Ty (D.8)
Multiplying this equation from the left hand side with
S.ars

1

and taking into account eqn. (6.28) we obtain

1 1 1
a.,m-)\,c-—?v Sv,. lv‘jﬁ-éM-ﬁ'ﬂ = )\F-am-fﬁ':ﬁﬁ'ﬁ—l—é)« -0 8P -6, (D.9)
i i i
with
1 .. ] +1 fore=1, 11, III,;
AR ‘{ 1 forw=—I,-II,—IIL (D-10)
For k # pu the expansion coefficients are given by (see eqn. (D.4))
(% arsz.) ! 7S M - T,(s)
. = — L I — v (s
G i )N T z" i
1, q) 1 1,
= (=787, - S M L,
s+ L
xf ds - M7Y(3,s) - 6A(3) - M(5,8) - Tuls) -
Using the symplectic condition of the transfer matrix M(s1, s2):
MT(SM‘SZ) '5_' M(‘Slas?) = §
and the equation
T
(s)- S M(s+Ls) = ©(s) [Ms+L,s) S
= [M s+ Ls)Tu(s)] S
= Pae) s
= A -T0(s)-MT(5,8)-S-M(3,)
(since (A;')'=A, and S=M"-5 M)
= - [M(5,8)-Tu(s)]T - S - M(3,5)
= A E(5) S M(5,5) (D.11)



@, can be rewritten as

N —
s+L
Ve / d5-TH(35) - S 6A(3) - T.u(3) (D.12)

1

so that the perturbation §%, of ¥, is given by (see eqns. (D.7) and (D.12)):

1 A
§7,(s) = (—. ﬁj&ﬁﬁ) .
1 s+ L
x—_-[/ 45 5H(5) S - SA(3)- 73] - duls)
1 8
@ Tuls) - (D.13)

Here the coefficient a,,, remains undetermined but can be determined to first order by using
the normalization condition {6.28)} applied to the perturbed eigenvector ¢, + 67, :

Tu(5) + 65u(s)]) T - S - [Buls) + 8T,(s)] = TF(s)-S-Tuls)
with &7, given by (D.13) which leads to:
0 = 655 (s) S Tuls)+Ti(s) S 6iL(s)
= (@t al,) [FH(s) - S Tuls)]

RN

— O = 1Py

where ¢, is an arbitrary real number. This is consistent with the fact that one can multiply
an eigenvector 7, with an arbitrary phase factor ¢'*» without disturbing the normalization,

Without loss of generality we may set:
po,=0 = a, =0.

For ¢ = & the first terms on both sides of equ. (D.9) cancel and one obtains with (D.4),
(D.6) and (D.11) the following approximate expression for the Q-shift éQ, in linear order:

1
5. = (;rarsa)- TS 6M (s + L) ()

I

R FLES

— (1.13*55). ! 2T S Mis—L,s)

X/HL d5 - M7Y(5,s) - 6A(3) - M(3, 8)i(s)

1 o 1 s+l - oy e g~
= (T-v,;itm)'./ d5 -5, (5) - 8 - SA(S) - Ux(F)
271' 3



{in the last step we have used the fact that the integrand is a periodic function of period L;
see eqn. (6.22))
orfork = kand k = -k (k=4I,4II,+111):

1 ot L
Qu = 5 / d5 -5 (5)- 5 - 6A(5) - 5u(3) ; (D.14a)
1 so+L
Q= —o / di -, (5)- S - 6A(5) - Tu(5) . (D.14b)
it 30
Using the facts that:
1 1 g+l +
S e R RS . [6H(5)- 5. 6A(3) - 7.(5
6; = ([rwrsa) o [7 ds-[Er5) -5 640) 5.l5)]

as well as
v = (Te)"

the following relations can be derived from (D.14a,b):

Re{6Q:} = 4% j“ d5 - 7 (5) - [S - 8A(5) — 64T (3) - 8] - 5(5)

= —Re{60_} (D.15a)
Smis@ut = o [ d5 a1 (3) - [5 6451+ 547(5) - 8] -5(3)

— $3m{6Q 4} . (D.15b)

This means that in addition to a real Q-shift, there is also a complex Q-shift, and com-
paring (9.18) with (D.15) we find the desired result that the two methods mentioned at
the beginning of the appendix are equivalent. Equation (9.18) allows the calculation of the
damping constants simply by a numerical integration if one knows the eigenvectors of the un-
perturbed problem instead of calculating the eigenvalue spectrum of the perturbed revolution
matrix necessary for evaluating (D.2).

Finally it is worth mentioning that the applied perturbation theory is only valid if 62,
and 87, are small compared with the unperturbed quantities A, and v, :
62, < Al
fotu] < ol
Therefore. in order to apply this kind of perturbation theory the following condition must
hold (see eqn. (D.13)):

s+l |
f... di - [5(3)- S-64(3)- ap(s")]f & Py — A -

~ ~ ==
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This condition is well satisfied if the values for different A,, A, are far apart. However the
calculation breaks down if two eigenvalues coincide:

or
Ak = e 1 2T @ A =eTt 2mQw = Qr + Qi =n

(n=integer).
Since these Q-resonances can lead to instabilities of the particle motion we do not inves-
tigate these effects in this report.

D.3 Robinson’s Theorem

As a by-product of the calculations of the last sections one can demonstrate the well-
known Robinson theorem [45]. For that purpose we use the mathematical theorem that the

determinant of the perturbed matrix can be represented as the product of the corresponding

eigenvalues
Ak + 6/\1‘. — e—i <2 - [Qk + %6{6@&} =+ 1- Em{éQ;‘}]
= o0k =127 [Qe + Re{8Qu}
)\—k +‘5)\—k — E‘_i <27 . [Q-k + %6’{5Q_k} + I. . %m{ﬁQ,h}}
e O +17:27. [Qk + Re{an}i
to give

det {M(so+ L,s0) +éM(so+ L,s0)} = (A1 —8A1)-(Ap 4+ éA_f) x
(Arz + 8Ap) - (A + A1) >
(Arrs =+ Ay - (A lpr + 6A_ppr)
— 2-lertamnr+anr (D.16)

On the other hand we obtain from eqns. (D.3a, b) [46] :

det {M(sp+ L,so) + éM(s¢+ L,s0)}

_‘IQ,-I-L
— exp {/ ds - Sp [A(§)+JA(.§)]} . (D.17)
20
Comparing eqns. {(D.16) and (D.17) we obtain :
1 so+L . _
oy +anp+am=— - f ds - Sp [6A(F)] (D.18)
- 30

(see also Ref. [28]) where we have used:
Sp [A(3)] = ©
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(see eqn. (4.7)). Furthermore, taking into account (4.8) we find:

T

1 . eV
~5 50 84(3) = &

sing + Cy - (K2 + K?). (D.19)

Inserting (D.19) into (D.18) and using the fact that

.10+L 1;’?
Eo-lo dé-; sing = Uy

0

(= average energy gained by a particle in one turn)
and

s0+L 2
ED-/ ds- ¢y [K:+ K] = Uy
0
(= average energy radiated by a particle in one turn)

{see eqn. (4.10}) we get Robinson’ theorem
Uy
ar+agtag =2-—. (D.20)
Eo
If we know for example two damping constants the third constant is then automatically fixed
by this relation.
Note that our derivation is valid for an arbitrarily coupled system. J.M. Jowett has given

a local version of the Robinson-Theorem [2].

Appendix E: The Essential Uniqueness of the Fokker-
Planck Solutions for Large Times

The following considerations are based mainly on a method outlined in Ref. [8]. The
difference between our treatment and that of Ref. [8] lies in the use of different boundary

conditions.
In order to investigate the asymptotic time behaviour of the Fokker-Planck solutions we

first introduce the abbreviations
(Il,ﬂ'-z,:f'3,-'1'4,.'[35,-TG,.T',‘,-TB) = (JI':JIIa JI]I,'IIVa q’Ia@II-; (I’III-‘I’H') (El)

so that the Fokker-Planck equation (9.15) can be written in the form:

W S0 2 :
o _ {_ —D;+ ) 9 Dij}m-f (E.2)

Os = O, o1 Oz, 0x;
where

(D11 DZ’ -D37 D41 DS, DG, -DT-; DS)
= (—2a;dy + My, —2a11J03; + Mg, —2ar51drpr + Mypp,
—2apvJrv + Myv, by, by, brr, biv) (E.3)
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and where

Dij = (52'_, . Di (E.4a)
with
(ﬁli DZ? f)3a D47 1-)59 Dﬁ',i -DT-) -DS)

My A M M
=(Jr- My, Jip- Myg, Jur- Mg, Jrv - My, —= = 2 A4

4Jy 4Jp 4l A

). (E.4b)

From equs. (4.3b), (7.7), and (9.13¢c,f) it is clear that the diffusion matrix ((Di;)) is
positive definite which is connected with the positivity of the radiative energy loss of the
electron. We will need this property later.

We now introduce the Lyapunov functional of W with respect to another special physical
solution W, !? .

- W
H(s) = /Ilrdaa’-ﬂr-ln(uf)

0
- f &Er W [Ila W — 1o W, (E.5)
¥
(V denotes the action-angle phase space).
Defining the quantity
W
= — E.6
R~ o (E.6)
and using the relation (R > 0)
R
RlnR—R+1:/ dz-lnz >0 (E.7)
Q
as well as the normalization condition for W and W:
j EBr W = 1; (E.8a)
Vv
/ Fe W = 1 (E.8b)
v

we obtain the inequality:
H(s) = f &z - W .InR
v
= d'z- W In R — W 4 W,
‘f

= fds:c-Wo-[R-InRﬁRﬁ—ljzjo. (E.9)
‘J’

i.e. H(s) cannot have negative values.

124 solution W of the Fokker-Planck equation {9.15) is called physical if it is normalized and nonnegative
and if the moments of Jy, Jyy, Jrry, Jry with respect to W are finite.
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FYor the derivative

of the Lyapunov functional we get:

d - " i 1 9 1 &
Bl = A= w. v.lo .S w_ —. " w
Os His) ,/Vd v {(33 W) mE+W {W 0s W, Os u]}

8 8 o
—_ & . —_ T . —_ . —_— 7 —_— 8 .
- fvm {(asw) WR - R (35 WO)}+35 &= W
8 8
= [ Zw) mr-r (S w, )| .
L z {(3514) InR - R (Bs Wo)} (E.10)

Using eqn. (E.2), the first term on the r.h.s. of eqn. (E.10) can be written as:

d* 9 Wil-lnR &z -In R 25: 9 D+ i > D+ W
i -_— " . = . . —_ —1) — D,
Vv Js . v o —1 81‘1' ; .T!'al‘j d

WJ=1

S 18R 10R
— | &% W D, —— =— . (E.11
fv * MZZI ) Row Roz; M
To carry out the partial integration we have used the fact that W and Wy are periodic
functions in &, (k = I, II, III, IV} with period 27 and that the probability currents (see
eqn. (10.3b)) of W, i.e.

8

d
I, =D,W - > 5 [D;;W]: (i =1,2,3.4) (E.12)

=1 'TJ

and of W, associated with the action variables J, (k = I, Il, III, IV") vamsh for J, = 0
and J;, — cc.



Equations (E.10) and (E.11) lead to

8 . ] L8
5;H(5) = /le‘WZDHB_Il

Li=1

)] . (E13)

= ()] 5 [ (5
" WO 61‘_}‘ 1 VVQ

Now, since the diffusion matrix ((D;;)) is positive definite we have

5z ) <0 (E.14a)
Js
if
8 9 W 2
2 { 3z, [m]} #0. (E.14b)

Hence from eqns. (E.9) and (E.14) we have:

) o (W
sllz:glc [3.21- (m)] =0 (E.15}

(otherwise H(s) would decrease below 0.)
From (E.15) and using (E.9) we can finally see that the two solutions W and W, must

coincide for long times.

Choosing for the orbital part of Wy, the stationary solution {10.7). and for the spin part
of Wy, a solution of eqn. (10.49) which is independent of the phase &, we obtain the result
that for the orbital motion the stationary distribution (10.7) is unique and that for the spin
motion, an arbitrary phase distribution will converge to a uniform distribution in &;y-.
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