Z. Phys. C 64, 117-142 (1994)

ZEITSCHRIFT
FUR PHYSIK C

© Springer-Verlag 1994

A canonical 8-dimensional formalism for classical spin-orbit motion

in storage rings
I. A new pair of canonical spin variables

D.P. Barber, K. Heinemann, G. Ripken

Deutsches Flektronen-Synchrotron DESY, D-22603 Hamburg, Germany

Received: 30 November 1993

Abstract. In this paper we present a classical symplectic
treatment of linear and nonlinear spin-orbit motion for
storage rings using a fully coupled eight-dimensional for-
malism which generalizes earlier investigations of coupled
synchro-betatron oscillations [1,2] by introducing two
new real canonical spin variables which behave, in
a small-angle limit, like those already used in linearised
spin theory. Thus in addition to the usual x—z—s coup-
lings, both the spin to orbit and orbit to spin coupling are
described canonically. Since the spin Hamiltonian can be
expanded in a Taylor series in canonical variables, the
formalism is convenient for use in 8-dimensional symplec-
tic tracking calculations with the help, for example, of Lie
algebra or differential algebra [3,4], for the study of
chaotic spin motion, for construction of spin normal forms
and for studying the effect of Stern-Gerlach forces [5].

1 Introduction

The most elegant route to the equations of classical spin-
orbit motion in accelerators and storage rings is by way of
the semiclassical spin-orbit Hamiltonian of Derbenev and
Kondratenko [6]. This not only leads to the Thomas-
Bargmann-Michel-Telegdi (T-BMT) [7, 8] equation for
the spin precession but also delivers the equations of
orbital motion including the correct relativistic generaliz-
ation of the Stern-Gerlach (SG) forces.

The standard tool for describing particle motion in
accelerators and storage rings is canonical perturbation
theory. However, a direct extension of these methods to
include classical spin motion is not straightforward since
the appropriate canonical spin variables, J (the spin pro-
jection onto some axis) and ¥ (the phase angle) are not
normally “small” and cannot be handled perturbatively.
On the other hand, it is standard practice to describe the
spin motion with respect to a special comoving coordinate

system [9, 10] which allows the spin coordinates to be
linearized. But these latter are not canonical.

In this paper we introduce two new real canonical spin
variables which allow the usual six dimensional canonical
perturbation methods for orbit motion to be extended
naturally into a canonical eight dimensional theory which
reduces to the SLIM [9, 10] formalism when the spin
variables are so small that the theory can be linearized.
The new variables uniquely parametrize the spin motion
over (almost) the whole “spin sphere”.

This formalism in fact represents a natural generaliz-
ation of the earlier work of [1, 2] where we presented an
analytical technique for investigating linear and nonlinear
coupled synchro - betatron oscillations which handles the
combined external magnetic and electric forces in a con-
sistent canonical manner and which includes consistently
and canonically the synchrotron oscillations in the electric
fields of the accelerating cavities. The motion was de-
scribed by using the canonical variables X, p,, Z, p., p, of
the fully six-dimensional formalism. The equations de-
rived in those papers provide the basis of a symplectic,
nonlinear, 6-dimensional tracking program.

With the two new spin variables (&, f§) the spin part of
the Hamiltonian takes a form which can be expanded into
a power series in an economic way, leading to various
orders of approximation of the canonical spin equations.
It is this property which distinguishes our canonical
coordinates & and f§ from others occuring in the literature
[11,12]. A

Armed with the complete set X, p,, Z, p., 6, p,, &, f we
are then in a position to develop, in the framework of this
8-dimensional formalism, a symplectic treatment of the
combined orbital and spin motion in storage rings.

The equations so derived can serve to develop a non-
linear, 8-dimensional (symplectic) tracking program and
modern methods such as Lie algebra, normal forms and
differential algebra which are commonly used for orbital
motion could also be used. Such a program could be used
to study (in addition to orbital problems) chaotic behaviour
of spin motion when spin-orbit resonances are wide and
overlap as, for example, for protons in the TeV range and to
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investigate the influence of Stern-Gerlac forces. Further-
more, our formalism automatically includes provision for
describing the effects of skew quadrupoles and solenoids.

The requirement that the theory be based on a Hamil-
tonian and includes the effects of skew quadrupoles and
solenoids is not just academic but could also have a prac-
tical use. For example, in recent years there have been
a number of proposals for obtaining spin polarized anti-
protons [13-16]. One of these [15, 17] involves using the
Stern-Gerlach forces experienced by particles in strong
quadrupoles in a storage ring to drive the orbital motion
in resonance and thereby spatially separate the opposite
spin component sub-ensembles of an initially unpolarized
ensemble in a storage ring into two separate ensembles
oscillating in antiphase. On the other hand, Derbenev [5]
has pointed out, essentially on the basis of conservation
laws applied to the coupled spin-orbit oscillator system,
that the betatron amplitude achievable in the original
proposal could be limited. But his treatment dealt with
just one mode of uncoupled betatron motion. Clearly,
since the SG forces are so small the safest way to untangle
the pros and cons is to begin with a fully symplectic
description in which the action of the spin motion on the
orbit and the action of the orbit motion of the spin are
considered simultaneously so that the exchange of energy
between all four oscillation modes (three for the orbit and
one for the spin) is handled automatically. This is could be
especially relevant when the spin and orbital motion are in
resonance. In this way it should be possible to separate
spurious orbit amplitude growth, which might occur
simply if the formalism were not symplectic, from growth
due to SG effects.

The formalism set up here is, in the spirit of the
semiclassical origin of the D-K Hamiltonian, correct at
semiclassical order i.e. following some notions of Yokoya
[117 it contains no terms higher than first order in & [117].

This paper is the first of a series in which we study the
interaction of the spin and orbit motion using methods
familiar from other parts of storage ring physics.

After basing the calculation of the spin motion on
a combined spin-orbit Hamiltonian it is natural to try to
find the action angle variables for the combined motion.
This topic has already been treated in [6, 11, 18] and is the
subject of paper II [19]. Finding the action angle variables
for spin involves finding the semiclassical spin quantiz-
ation axis along which the spin component is an integral
of motion. This axis, the so called n axis, is a single valued
function of the canonical orbit coordinates and the azi-
muth [19, 20]. Away from tunes where the spin and orbit
motion are in resonance, n is almost parallel to the peri-
odic spin axis ny defined on the closed orbit [9,10]. But
near resonance n can deviate strongly from n, and can
depend strongly on the position of the particle in the
orbital phase space. On resonance n is not even uniquely
defined. In any case it is clear [6, 11, 18, 20—22] that for
motion in the spatially and temporally varying fields of
a storage ring it is incorrect to assume that the spin
quantization axis along which the spin component is
constant is parallel to the local magnetic field. Clearly, this
is a key point if arguments based on conservation of laws
are used to discuss Spin - Splitter systems where there are
exotic field configurations.

In detail, our considerations are organized as follows :

Starting in Sect. 2 from the Hamiltonian of a charged
particle for spin-orbit motion in an electromagnetic field,
described in a fixed Cartesian coordinate system, in
Sect. 3 we use a canonical transformation to arrive at the
symplectic formalism for spin-orbit motion expressed in
machine coordinates, taking into account all kinds of
coupling induced by skew quadrupoles and solenoids
(coupling of betatron motion), by a non-vanishing disper-
sion in the cavities (synchro-betatron coupling) and by
Stern-Gerlach forces.

The vector potentials we need to describe the electro-
magnetic field are calculated in Appendix A.

In Sect. 4 the arc length of the design orbit as indepen-
dent variable (instead of the time ¢) is introduced and new
(small and oscillating) variables o, p, are defined which
describe the longitudinal oscillations.

Spin motion with respect to the dreibein (e, e,, ;) is
investigated in Sect. 5 and the corresponding Hamiltonian
is derived by applying a transformation similar to that
used by Yokoya.

Then in Sect. 6 and, with the help of Appendix B, we
define an 8-dimensional closed orbit which we introduce
as a new reference orbit for spin-orbit motion. The Hamil-
tonian with respect to the closed orbit is again obtained
by using canonical transformations, whereby the canoni-
cal variables & and f§ are introduced to describe the spin
motion.

A summary is finally presented in Sect. 7.

2 Spin-orbit motion in a fixed coordinate system

2.1 The starting Hamiltonian

The starting point of our description of classical spin-orbit
motion will be the classical Hamiltonian, #:

H (s P J 1) =H ot Py 1)+ Q0(r, P, 1) &, (2.1)
with
Hoo (0, P t)=c {n*+mic?} 2 + e, (2.2)
and
e 1 a(rn-AB)
Q =——|(= Y P
°7 moc [(? +a) P(y+mfc?
1 1
M- (a+—— )nx€:|, (2.3)
Moy 14y

where r and P are canonical orbital position and
momentum variables, § is a classical spin vector of length
h/2 and where = and y are given by:

n= P—S A (kinetic momentum vector), (2.4)
1 v
= /mdc?+n? (Lorentz factor). (2.5)
Mo



The following abbreviations have been used:

'

e=charge of the particle;

mg=rest mass of the particle;

c=velocity of light;

& =electric field;

~ 2B =magnetic field;

— r=radius vector of the particle;

— g=classical spin angular momentum vector in the rest
frame of the particle of length A/2;

— a=(g—2)/2 (0.00116 for electrons, 1.793 for protons)
and quantifies the anomalous spin g factor;

— 2mh="Planck’s constant.

|

The quantities A and ¢ appearing in (2.2) and (2.4) are the
vector and scalar potentials from which the electric field
& and the magnetic field £ are derived as:

&= —grad ¢ % %" (2.6a)

RB=curl A . (2.6b)

Our starting Hamiltonian (2.1) is that which is often used
for describing the spin-orbit dynamics in accelerators
[5, 6, 11, 23, 24] and is the classical reinterpretation of the
effective quantum mechanical Hamiltonian derived by
a unitary transformation of the Dirac Hamiltonian and by
working in the semiclassical limit. This latter is valid when
the external electromagnetic field is weak and it neglects
bremsstrahlung effects [25].

In terms of the three unit cartesian coordinate vectors
in the fixed laboratory frame, e, e,, €3 we can write r,
P and & as:

I'=X1-e1+X2-ez+X3-e3, (273)
P=P1‘e1+P2'ez+P3'e3, (27b)
E=C1-ert+&rer+ s e3. (2.7¢)

Furthermore, we write the components of & in the form:

&= /8T -cosy,

Ey=/Er =T siny, (2.8)

We will treat i and J as canonical spin variables [11, 23]
to be used on an equal basis with r and P. The spin vector
& is of constant length since it obeys a precession equation.
See below.

With (2.1) and (2.8) we have the Hamiltonian for the
canonical variables r, P, y, J.

One of the aims of this paper is to transform from the
canonical variables (r, P, ¥, J) to the new set of canonical
variables (X, Z, 6, &; Py, P, Ds» P) (sce (6.39)).

119
2.2 The equations of motion

2.2.1 Orbital motion. With this Hamiltonian (2.1) the
orbital equations of motion are:

4y e 090
" T ap, Tor, T
A, 0o 0D
e 8X,  0X,

The first terms on the rhs of (2.9) are the Lorentz terms
and the second terms describe the Stern-Gerlach force
[26]. Thus our Hamiltonian includes the SG force auto-
matically. Note that here we deal with the relativistic
generalization of the SG effect. It is clear (see (2.3)) that
our SG terms reduce to the usual non-relativistic forms in
the limit that y becomes unity and that for y > 1 the factor
g/2 in the expression for the SG force in field gradients in
[15] should be replaced by (g—2)/2+1/y. Thus if y is
increased from 1 up to a large value, the SG force is
reduced by the factor (g—2)/g. For protons (g/2=2.793)
this gives a 36% reduction. But for electrons (g/2=
1.00116) the reduction factor is large.

The discussion in this paper covers both relativistic
and non-relativistic motion.

(2.9a)

(2.9b)

2.2.2 Spin motion. Using (2.8) and treating J, ¥ as
canonical variables, we can easily show that [11]:

(&1 &)y r=Es, (2.10a)
{&2 &hyu=2¢1, (2.10b)
(&3 & jvr=6a. (2.10c¢)

These Poisson bracket relations for spin, which do not
contain /i on the rhs, are the classical analogues of the
commutation relation among Pauli spin operators. Using
these relations together with the canonical equations of
the spin motion:

%¢=+%%’spm, (2.11a)
%J= —ém,ﬁn, 2.11b)
where

Hspin=0 &, (2.12)
and

Qy=0Q;+e;+Qpr-e,+Qp3-€5, (2.13)

so that
Qo E=Q0; &1+ Q058+ Q05+ &3
=./ éZ_JZ.[QOI *«COS ll/+902'sin 11/]+Qo3°.], (214)

we find:

d
3 6=00x&. (2.15)

Thus this Hamiltonian formalism
Thomas-BMT equation [7, 8].

reproduces the
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The result (2.15) can also be obtained by using the equa-
tion of motion:

ag a‘”spm ag a”spin
oy aJ “aJ N

é {& Hpinju s =75 (2.16)

2.2.3 The combined form of the spin-orbit equations. The
combined equations of spin-orbit motion can be written
in the form:

d oA

vy Xe=+ 19?;" (2.17a)
d o

— P, = —— =1,2 .

dr k 5'Xk, (k la ) 35 4)5 (2 l7b)
with

X4_.=_l/1, (2183)
Ps=J. (2.18b)

3 Introduction of machine coordinates via a
canonical transformation

3.1 Reference trajectory and coordinate frame

The position vector r in (2.1) refers to a fixed coordinate
system with the coordinates X {, X, and X 3. However, in
accelerator physics, it is useful to introduce the natural
coordinates x,z, s in a suitable curvilinear coordinate
system. With this in mind we assume that an ideal closed
design orbit exists which describes the path of a particle of
constant energy E,, 1.e. we neglect energy variations due
to cavities and to radiation loss. In addition we assume
that there are no field errors or correction magnets. We
also require that the design orbit comprises piecewise flat
curves which lie either in the horizontal or vertical plane
so that it has (piccewise) no torsion. The design orbit
which will be used as the reference system will, in the
following, be described by the vector ry(s) where s is the
length along the design orbit. An arbitrary particle orbit
r(s) is then described by the deviation dr(s) of the particle
orbit r(s) from the design orbit ry(s):

r(s)=ro(s)+ or(s). (3.1

The vector or can as usual [27] be described using an
orthogonal coordinate system (“dreibein”) accompanying
the particle which travels along the design orbit and
comprises

the unit tangent vector (s)— ro(s) ro(s),

a unit vector e.(s),

which lies perpendicular to e, in the horizontal plane [10]
and the unit vector e,(s)=ey(s) X e,(s).

In this natural coordinate system we may represent or(s)
as:

or(s)=(or-e,)-e,+(or-e,)-e,

(since the “dreibein” accompanies the particle, the e;-com-
ponent of dr is always zero by definition).

Thus, the orbit-vector r(s) can be written in the form:
r(x, z, 5)=7ro(s) +Xx(5) - €x(s) +z(s) - €,(s), (3.2)

and the Serret-Frenet formulae for the dreibein (eg, ey, e.)
read as:

d .

& ex(s)= + Kx(s) * es(s)’ (333)
i =+K (3.3b
ds ez(s) =+ z(s) * CS(S), o )
£ (5= —Kul9)- e~ Kelo)- ) (3.3
where we assume that

Kx(s) * KZ(S)-_-O, (34)

(piecewise no torsion) and where K, (s), K,(s) designate the
curvatures in the x-direction and in the z-direction respec-
tively.

Note that the sign of K_(s) and K,(s) is fixed by (3.3).

3.2 Introduction of the natural coordinates x, z,

via a canonical transformation

Writing:

r=X;-e;+X,-e;+Xz-e3=ro(s)+x-e.(s)+z-e,(s),

P=P -e;+P,-e;+Pj3-e;,

we can obtain the canonical transformation:

X1, X3, X3, Py, Py, Py —X, 2,8, Pys Pas Pss

(, J unchanged)

by introducing the generating function [28]:

Fa(x,z,8; Py, Py, Pa; £)= —[ro{s)+ x-e,(s)+z-e,(s}]- P.
(3.5)

This leads to the transformation equations:

0F 4
Xy=— 2 =[1o(s) + X(5) - () + 2(5) - €,(s)] - &, =T - ey,

0P,
(3.62)
F5 v
2T 70p, [ro(s)+x(s) - ex(s)+z(s) -e.(s)] -e,=1-ey,
(3.6b)
0F 5
X3=—-a?—[l'o(5)+‘(g) e.(s)+z(s)-es)]-es=r-e3,
(3.6¢)
o=~ 9P, (3.6d)
dx
pz=_‘%Fé=e (5)-P. (3.6¢)
pe= —%-[HK x+K,z] e, P (3.6f)



Note, that (3.6a-c) reproduce the defining equation (2.1a)
for the variables X, X, and X3 and that (3.6d-f) deter-
mine the new momentum variables p,, p, and p,. The spin
variables ¢ and J remain unchanged.

Because

oF

20,

ot

the Hamiltonian is transformed to:

oF
Ho A+ 2= H = H oy + Qo & (3.7)

In order to obtain J# in terms of the new variables x, p,,
Zy Pz, S, Ps, WE Write:

M=T "€+, €,+ M e, (3.8)
with

M=T exE(P—gA) e, =p, gAx, (3.9a)
n2=noezE(P—§A)-ez=pz—gAZ, (3.9b)

T e’E(P_g A>'°‘=[1 +Kx~l;s+Kz-z] ¢ A
(3.9¢)
whereby
A=A -e,+ A, e, + A, ¢
=(Ae,) e, +(A-e,) e, +(A-e)-e,. (3.10)

Thus we obtain:

2 2
e
Jforb:e(p'*'c'{(px_g/{x) +<pz_ZAz)

p e 2 1/2
£ _£ 2.2
+([1+Kx‘x+K,-z] cAS> +myc } , (3.11)
and
Qo=0Q0s e+ Qo .+ Q.- €., (3.12)
with
1 a(my By+ 7y Bo+1,+ B,)
Q =_i _ . — S S X x z L2 :
” MoC l:(? +a) 7 P(y+1)-mdc? T
L(a+— ) -6 3.13a)
- mecy I+y Tx 02T 0 o (3.13a
Qo= ——2- l+a .)x_a(ns-£s+nx~%x2+2nz.@z). )
cL\y y(y+1)-méc
~(at— (n; 8—ms62) (3.13b)
mocCy 1+), T 05— N56z) |, .
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1
‘QOz= _i |i<~ +a
moc | \y

B _a(ns'ggs'i'nx'@x'*'“z"%z) -
’ Yy +1)-mge?

1 1
— <a+—)(nsé"x—nxéﬁs)], (3.13¢)
Mocy 1+
whereby
1 —
y=—o /mdc* +n? Koo 29 2e¢>
Moc mgC

and # and & have to be written as functions of s, x, z, 1.
With (3.7), (3.11), and (3.13) we have the Hamiltonian
for the canonical variables

X, Z, S, Y Py, Pas Pss .

Remark: Equation (3.5) is an example of a point trans-
formation

GG (3.14)
which may be written in the most general form as:
G =filq1, 1), (3.15)

This transformation can be obtained as a canonical trans-
formation
s pk_)q;n P;z (316)

by the generating function

F3(q;= P, f)= _Z Pn .j;l(q;5 [)' (317)

The corresponding transformation equations read as:
0F;

L P, 3.18
qk épk .ﬁi(qla t)a ( a)
OF, é
f_ — = @i 1), 3.18b
=G ;p aqkf (qn 1) (3.18b)
J
w =+ (3.18¢)

ot
Here (3.18a) coincides with (3.15) defining the new vari-
ables g; and (3.18b) determines the new momenta p;, cor-
responding to the variables q;, whereas the new Hamil-
tonian " is given by (3.18c) which has to be written in
terms of ¢, and pj.

3.3 The equations of motion

3.3.1 Orbital motion. In the new orbital coordinates the
equations of orbital motion are:
d OH oy 0L d

X = g _ a'}forb _él%
a ", Top, T ak*T

0x ox

g,

(3.19a)

d 0o 0 d
—Z b+ 0.§,

OH o, 0829
de” op. ap.

a7 e

g’
(3.19b)



d ey 09, d 0
TR M P LR N R

(3.19¢)
3.3.2 Spin motion. Although we have not yet written the

spin, &, in terms of e, e, e, the equations of spin motion
are as before : -

d

38R0 xE, (3.20)
or

d a 0
$w=+57[ﬂ°'§]=+5‘#’ (3.21a)
d 0 4

5J=_@[go-g]=—w H. (3:21b)

3.3.3 The combined form of the spin-orbit equations. The
combined equations of spin-orbit motion are:

d o d oH

G e (3.22a)
e (3.22b)
R (3220)
d%;p=+6a'if, %J:—aai;j. (3.22d)

4 The arc length of the design orbit as independent variable

In (3.22) the time ¢ appeared as independent variable. In
order, as usual in accelerator physics, to introduce the arc
length s of the design orbit as independent variable we
recall that (3.22) is equivalent to a version of Hamilton’s
principle [29]:

12 .
S fdt-{%epy+zep,+S-ps+i-J

51

—H(X, 2,8, YiPx P2y Pss J1 1)} =0, (4.1a)
with
0x(t1)=0z(ty)=0s(ty)=0y(t;)=0,
0px(ty)=0p,(ty)=0ps(ty)=0J (t1)=0,
5x([2)=62([2)=6S(t2)=6¢/([2)=0, (41b)

Opx(t2)=0p,(t2)=0p,(t;)=05J(t,)=0,
5[1 = 5{2 =0,

where the variables x, z, s, ¥, Py, p.. Ps, J, t are varied inde-
pendently of each other and are held constant at the end

points. (For the usual derivation of the Hamiltonian equa-
tions (3.22) from the variational principle (4.1) the vari-
ation of the time ¢ is actually not needed. However, in
order to be able to carry out the derivation of (4.1) it is
useful, nevertheless, to allow ¢ to vary.)

Equation (4.1) can now be rewritten using

dt
dt=—-ds,
ds .

as:

O [ dse{xX'-petz-p.+y -J+1(—H)

$1

+Ps(X, z, t, ‘//- Pxs Pz _-%9, J, S)} =0, (42&)
with
0x(s1)=0z(s1)=0t(s1)=0Y(s1)=0,
Opx(s1)=0p.(s1) =04 (s1)=03J (5,)=0,
0x(s5)=0z(s,) =0t (s5) =W (5,)=0, (4.2b)

Ops(52)=0p.(s2)=0# (53) = 0J (5,) =0,
551 = 552 = 0,

and

d
y’Ed—“:, (y=x,zt,¥)

(where we make independent variations of the variables
X, Z, L, W, Py Doy —#, J, 5 and where s is the independent
variable).

The required equations with s as independent variable
are then obtained from the Euler equations of the varia-
tional problem (4.2):

d o d oA

a;}‘z + apx: &px’: _a—x» (4'3a)
d o d o

Frka + . s P T (4.3b)
d oH d cH

=t S (=)= 4.
& T U (4-3¢)
d o d oA

. == —— _— ) = ——— 4-
V=t & T “43d)
with

A = —ps. (4.4)

So (3.7) must be solved for p,. To come to that, we recall
that in storage rings the total energy is very much greater
than the energy due to SG forces and that our
Hamiltonian (2.1) is based on semiclassical quantum
mechanics where terms in /i above first order are ignored.
Thus here we also only keep zeroth and first order terms
in A and make a perturbation calculation with respect to
h [11]. Starting with zeroth order in A, the term Q,-& in



(3.7) does not appear and # =, . Solving for p, and
using (3.11):

psO=[l+Kx'x+Kz'Z]'

e 2 e 2 1/2
- <px—z Ax> - (pz—z Az) _m(Z)CZ}

+[1+Kx-x+Kz-z:|-§As. 4.5)

{(,}’/ —e¢)?
P

Since we are interested only in terms up to order i [117],
we make the ansatz:

ps=p30+h' Rse (46)

where R, is a function of x,z, t, ¥, py, p,, —#,J to be
determined.

Because & - Q, is already ¢(h) , we can, in the argument
of Q,, make the approximation:

Ps=Pso- 4.7)

This simplifies the problem because p; now only appears
in the orbital part of # (in Q,-& the term pg can be
replaced by ps, ie. by the known function (4.5) of
X,z t, Py, Pz>» —H#, s). Hence (3.7) becomes an equation
quadratic in py and we obtain:

Pa(% 2 6 Do Do — T =[14 Ko XK, 2] 4

+[1+K - x+K, 7]
. {(»f—eqs—ao-a)z _<px_fo>2
C

CZ

e \2 1/2
—(p,—;Az) —m%cz} .

This can be simplified again by neglecting terms of ¢(h?):

(4.8)

1
Ps=Ps0~ 3 J14+K,x+K, 7]

(A —ed)

[Q0-8]. (4.9)

po—[1+K, - x+K,-7]-5 A,
C

The second term in (4.9) is just h-R; and p, is a well
defined function of x, z, t, Y, py, po, —H#, J, s.

For the new Hamiltonian " we obtain from (4.4), (4.5)
and (4.9):

HAX, 26 Py Do =K, T3 8)= Horp+ H i,
with

(4.10)
%/;)rbE —Pso= _[1 +Kx'x'+Kz'z]

— 2 2 2 1/2
'{%@—<px_g"4x) _(pz_g Az) _m(z)cz}

C[14+K-x+K,-2]-S 4, (4.11a)
C

123

1
‘){spin=[90'€]'C_2[1+KX'X+KZ°Z]

H—ed

Pso €
([1+K,,-x+Kz-z]_EAS>
=[Q,-E]
[1+K - x+K, 2] (# —ed)

’ Pty 2 2 172
cz'{(—{{:%@—<px—ze,4x> —(pz—gAz) —m%cz}

(4.11b)

Note, that the factor after the quantity [,-&] in (4.11b)
is, apart from terms which only contribute to ¢'(h?), just
(1/s), since we obtain from (3.11):

. oA _ Oy, c? 1

=0 an, T o) TIT K, 4K, 2]

¢ A,>+@(h). (4.12)

Y R - B
[1+K;x+K,-z] ¢
This result could also have been obtained by much
simpler means as follows:
d d 1
—E=0Q —E=-Q, xE, 4.13
th’ Oxg:dsg F 0%x§ (4.13)
but we wanted to obtain it within a Hamiltonian

formalism.
Thus, setting

we have with (4.10-11) the Hamiltonian for the canonical
variables

X, Z, t, W5 Pxs Pzs Pos I,

and the arc length, s, of the design orbit acts as the
independent variable.

We repeat that in a semiclassical treatment it is
sufficient to evaluate €2, using the substitution (4.7).

In the remaining part of this chapter we perform some
further canonical transformations of the variables
X, Z, t, Y Px» Pz. Pr» J In order to prepare for the next
chapters.

In the following we choose a gauge in which

¢=0.

Then from (2.4) and (3.11) we obtain:

myc?

‘yf:e%orb-}-@(h): +0(h)=E+0(h):

C
(E=#,,, =the orbital energy of the particle)
and thus
pi+E=0(h).

(Note that v>=v-v and v=dr/dt)
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In order to describe the energy oscillations we use the
design energy, Ey, to introduce the (small) quantity

pe=pi+Eo=—(E—Eo)+0(h)= — AE+ O(h) (4.14)
as a new (canonical) variable:
t, Pt e 4.15)

This transformation can be obtained using the
generating function

Fa(t, )=t (e~ Eo). (4.16)
The transformation equations read as:
oF
,—Ei=ﬁ,—Eo, (4.17a)
. 0F,
f=—2=t, 4.17b)
op; (
0F
X-}f+~.;;—;—=f, (4.17(:)

whereby (4.17a) reproduces the defining equation (4.14)
for p,.

Finally, since the variable ¢ increases without limit, it is
more useful to introduce the variable
o=S5—Ug*L, (4.18)

with

) myc?\?
vo=design speed=cfy; Po= [1— ,
Eo
which describes the delay in arrival time at position s of
a particle:

t, b0, p, (4.19)

(¢ describes the longitudinal separation of the particle
from the centre of the bunch.)

This point transformation can also be made by a ca-
nonical transformation (see Sect. 3.2). The generating
function is

N L
F3(py, 0: 5)= - pi(s—o). (4.20)
0
From this follows:
L T d.21a)
0Py Uo
oF 1 E—E AE
o= — 3= = C 4Oy ==""+0(h), (421b)
do Vg Ug Uo
and
_ oF
'%/‘_"%f(xa z,0, d/s an st po'; J’ S)=x+8—53
=‘%/+pa=lzorb+ﬂ0'§) (422)

with

forh=pa_[1+Kx'x+Kz’Z]

Eo\? e \

2 0

. . _ - — A

{ﬂo (pa+ UO) (px ¢ x)
2 1/2

—(p,—gAz) —m%cz}

—[1+Kx-x+K,-z]-§AS, (4.23a)
Q():Qo
E,
[1+K,-x+K,-z] 'ﬂo(po'*'?)
0

: E\2 e e\ 12
C’{/’%‘(E,-}-L—‘Q) —<Px—z Ax) "(Pz—z Az) _m(Z)CZ}
o

(4.23b)

With (4.22-23) we have the Hamiltonian for the canonical
variables

X, 2,0,y Pxs Pzs Da» J.-

In order to utilize the new Hamiltonian (4.22), the
magnetic field % and the corresponding vector potential,
A=A(x, y, 0;5), (4.24)
for commonly occurring types of accelerator magnet and
for cavities must be given. Once A is known, the fields

& and £ can be found using (2.8a, b). In the variables
X, z, s, o these become (with ¢=0):

E=Po A (4.25)
do
and
5 — 1
14Ky x+K,-2)
AL [0+ Ko x4+ K0 A2 4 (4.26a)
aZ x z < s, as z (> *
1
%2=(1+KX'X+KZ.Z)
é 0
dA——[(1+ K x+K,-2)- 4,] 7, (4.26Db)
ds ox
¢ i .
B=—A,—— A,. .
B, A s A (4.26¢)

In Appendix A the vector potential A is calculated for
various types of lenses.

In the following we assume that the ring consists of
bending magnets, quadrupoles, skew quadrupoles,



solenoids, cavities and dipole correction coils. Then the
vector potential A can be written as (see Appendix A):

e

1
S A =——8..(1 . .
By 2,80 (I1+K,-x+K,-2)

1
+59‘ﬁo'(2’2—X2)+N‘ﬁo'xz

_i L eV(s) os| 2n o4
Bo 2n-h E, L ’Te
+ (4B 2— AR, x], 4.27)
Ey
(h=harmonic number) with
AB =Y ABY - 5(s—s,), (4.282)
7
AB, =Y ABD - 5(s—s,), (4.28b)
u
(dipole correction field in x- and z-direction), and
A=-—ﬁ0'H’z,—e—Az=+ﬁ0'H'X (429)

Ey % E,

whereby the following abbreviations have been used:

e 0%

- . z 4,

g Do-c (ax >m=o’ (4.30a)
I e oA, OB

N=—. . X7z R 4.30b

N 2 po-c (Bx 0z )x=,=o ( )
|

H=—--——-%,0,0,s), (4.30c)
2 po-

Ky=+——2,0,0,5), K.= ———-%,(0,0,5), (4.30d)

PoC Po-C

(po= momentum corresponding to energy E,).
In detail, one has:

a) g#0, N=K,=K,=H=V=0: quadrupole,
b) N#0, g=K,=K,=H=V=0: skew quadrupole,
¢) K2+K2?#0, g=N=H=V=0: bending magnet,
d) H#0, g=N=K,=K,=V=0: solenoid,
e) V#£0, g=K,=K,=N=H=0: cavity.
Furthermore, for the magnetic field 2 we get (see Appen-
dix A):
. _ -
’Qx=ﬁ0 (N H) x+g Z |,
Ey L N
(4.31a)
f_'@z::ﬁo +Kx+ ’/z—(N+H,)’Z+g'X ’
Eq L 0 i
(4.31b)
e
— %Bs=Po-2H, (4.31c)
Eq
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and for the electric field & we have:
2
&= V(s)sin[h-fn '(7+(p:|

27
=V(s)sin @ +a(s)-h-—

2 < V(s)cos ¢+

(4.32a)

&.=8,=0. (4.32b)

Although (x, z, 6, /; px, P, ps» J ) are canonical variables,
it is still useful to introduce the new quantities

Up AE
=P =—r h), 4.33
g, Pe=p_ 00 (4.33)
and
1 mocz 2
=g (1+n)2—( > ~1
Bo \/ Eg
1
L2 rom=E—1vom="Lr0m. @34
ﬂo Eo Po Po
where
1
= /E* —mdc*
=momentum corresponding to energy E,
po=— /Ei—mic*
c
= momentum corresponding to energy Eo,
Ap=p—po.
Then for the term
Ey\? e\
2 4]
={p2. =) —(p.—-4
{ﬂo (po'+ vo) (px c x)
e 2 1/2
_(Pz_g Az) —m%cz} ; (4.35a)

appearing in (4.23) we have:

2 Eg 2 2.2
W= [Bo+|ps+— | —mpse
Vo
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_Eo g am )i (Eo
== Bo-(1+7) (1 (v

Ug 2 z Vg 2 2 1/2
. E;px'l'BO'Hz + E(;P.—ﬁo'Hx
= 5
[To‘ﬁo'(l‘*"?)]

1+1)

s|&
S
(%)

E
=2
Vo

Yo +ﬁ2 Hz 2+ Yo
| Eopx 0 Eo

2 )
pz_ﬁ%'Hx) o
B3 (1+7)* '

(4.35b)

Thus, putting (4.27), (4.29), and (4.35b) into (4.23a), we
obtain for the orbital part K, of the Hamiltonian:

- Eo Ug
orb™ " Vo
Eg

Vo 2 g 2 1/2
_T"px+ﬂ(2)'Hz + —pz_ﬁtz)'Hx

B - (1+0)?

E
~20.B2. 0+ [1+ K x+K, 2]

E
[+ Ky x+K,-z]-—2
C

|
'{—550'(1+Kx‘x+Kz'Z)

1
+§g.50.(22_x2) + N« fo-xz.

1 L eVs) osl i 2_7: ot
“Bo 2n-h Eo L'’T?
€ DPor
AR z—AB,-X] ¢,
Porc Eg [ ]}

'*'jorb=’7_ﬂ5'(l+ﬁ)'[1+Kx°x+Kz'Z]

o) )

BG-(1+7)

—[1+K, x+K,-z]- 83
1
-{—E-(1+Kx-x+Kz‘z)

1
+§g-(22—x2)+N-x.z

cos| h 2 +
-—--6
I @

-[M,-z—m,-x]}.

—_—— — § —

(4.36)

Po-C
The vector Q, in (4.23b):
QO=QOS'es+QOx'ex+QOZ ‘e

(see (3.12) and (3.13)) as a function of the variables (x, z, o,
Px» Pz» Do» 5) NOW takes the form:

1 E, [/1 e aE}
1O = 2
¢ BT mge? [( +a> E, B2 y(p+1)-miet- B3

Vo e Vg e
|y — Bt — B
(Eo " Eq Ey " Eg

Vo
+Eo7tz EO.@)EO ]

1 e ays 1
— - +ale— @S.——._
o [(v ) Eo 90+ 1) B

Vo e
— B, + — %,
(Eo Ey Eo 'E,

%’;n, ¢ g);‘; :I (4.37a)
-(Z—ZnsoE—0$+ Eeoggx
_3’70 Z*%(aﬂ%w)g; : bf’ogs} (4.37b)



1 /1 e ayy 1
-0 2= —) -+a>._._gaz_ . —
¢ ’°[(y Ey " y0+1) B

Uy e Uo e
N\ = s'_'%s = x'#gzx
(Eo” BV E, ™ B

Vo e o
4N — B, |7
Eo z Eo Z>EO z

Yo 1 1 Vo e
+0% e+ — ) L6 |
¥ ﬁo( 1+?>EOXE0 s]

whereby the fields 4, 8., %, and &, are taken from (4.31)
and (4.32) and the term y, is defined by

Eo
moc?’

(4.37¢)

4.38)

To=

For the Lorentz factor y appearing in (4.37) one has:

=" (1 +r,)+0(h), (4.39)

and for the quantity n; we have ((3.9¢c), (4.5) and (4.6)):

Eo \? e 2
2 0
=<po* — ] = px——Ax
g {/30 (p.,+vo) (p p )
e \2 12
—(pz——Az) —m%cz} =W
I

E )
=—2- B3+ (1+4)
Uo
) 2 2N\ 12
(';ﬂpx'i'ﬂ(z)'Hz) +(Il;_opz_ﬁ(2)'Hx)
1_ 0 0
B&-(1+7)?
E .
== B3 (1+7)
Uo
y 2 2y\12
(=) +(2x)
0 0
SR T ’ 440
(see (4.35b)) with
{,Enx = pe-t B3+ Hz, (4.41a)
0
-}‘-2%,:?;;,-53-1{; (4.41b)
0 0

With (4.23b), (4.36-37), (4.39-41) we have rewritten the
Hamiltonian for the canonical variables

X, Z, 0, Y Pxs Pz> Pa» J

in a more convenient form by replacing the terms in p, by
the equivalent quantities #, 1.
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Remark: Equation (4.36) is valid only for protons. For
electrons one needs the extra-term in the Hamiltonian

Hraa =2 CoKE+KE] 0, @42)
0

2 Lk
(where C =3 ezg—(;)

(for vy~ ¢) in order to describe the energy loss by radiation
in the bending magnets [10, 307]. In this case, the cavity
phase ¢ in (4.32) is determined by the need to replace the
energy radiated in the bending magnets. Thus:
so+L

[ ds-eV(s)-sing

So
L J

——
average energy uptake in the cavities;

so+L
= [ ds-Eo-Cy-[K2+K2].

S0
—

(4.43)

J

v .
average energy loss due to radiation.

Note, that the # .4 term only accounts for the average
energy loss. Deviations from this average due to stochastic
radiation effects and damping introduce non-symplectic
terms into the equation of motion.

For proton storage rings, where radiation effects can

be neglected, one has:
sinp=0=¢=0,7 (4.44)

(no average energy gain in the cavities) and the choice for
@ is determined by the stability condition for synchrotron
motion [2]

@=0 above “transition”;
@=mn below “transition”.

5 Spin motion in terms of the orthonormal dreibein
(e,, e,, €,); canonical spin transformation

In this chapter we show how to describe the motion of the
spin with respect to the (e,,e,, e,)-basis. The variables
X, Z, G; Px P2» Po N€€d no further transformation.

5.1 A new spin Hamiltonian

The transformation of the spin from the (e,, e,, e3)-basis
to the (e, e,, e,)- basis

Cvls <2a €3=ésa fx, éza (51)

is merely a rotation and is defined by:
§=él 'e1+‘:2'e2+63 'e3=és'es+6x'ex+£z'ez- (52)
If, by analogy to (2.2), we introduce canonical variables

l//” J’ ror 555 éx’ éz:

E=/E—J%cos ¥,
Ee=/E =% siny/, (5.3)

éz = J”
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then (5.2) becomes a canonical transformation:
X, 2,0, '//’ Px> Pz Pos J=x'=x,2'=z20d =0, l//: plx
=Dx P’z=Pz’ P;=Pa, J. (54)

Following Yokoya, who uses a Lie transform, the new
Hamiltonian 2" is [11]:

H (X, 2, G, W' P> Pas Pas I3 8)= H oe(X, 2, T3 Py P Do S)

3
+ Y [Q0(x, 2, 03 Py, Pis Pos 5)

v=1

—U(X, Zy, G, Pxs Pzs Do S)] 'uv(s) éy\u (55)
where
u; =e;, é’l = és: (563.)
n=e, H=(,, (5.6b)
ll3 Eeza 5,3 = &:zs (560)
and

13 du,

U=§ vgluv X (5.7)
From (3.3) we have:
d
i uy(s) = — Ky(s) - uz(s)— K.(s) - u3(s), (5.8a)
d
—uy(s)= + K.(s)-uy(s), (5.8b)
ds
d
——u(s) =+ K.(s) - uy(s). (5.8¢)
ds

Putting (5.8) into (5.7) we obtain:
U=3 fe <[~ Ku(9) €)= K.(9)-€.(5)

+e, x (K e)+e. x(K.e)}
=—K.-e.+K, e,
and it follows that:
H (X, 2, 0,'; Prs Pas Pos I3 )= Koo (X, 2, 05 Py, Pzs Do 8)
+QUX, 2, 05 Px, P2y Po 8)* (Es- e+ Ecrex+E0€),  (5.9)
with
vy -

E_o°xorb

=;—°-9?o,b=n—ﬂ%-(l+m-[l+Kx-x+Kz-z]
o

Vo 2 2 Up 2 2 12
—px+B0'HZ + —Pz“‘ﬂo'HX
,_\Eo Eq

Bs - (1+7)?

' i
—[14+K,-x+K,-z]-p} {—E'(1+Kx-x+Kz-z)

cosh2n+ ¢
Lo(p+

TAB. 2— AR+
= [AB,z—AB, ‘c]}

(5.10)

and

QX, 2, 0; Pus Doy Pos )=+ K, e,— K -e,

E
[1+Kx'x+Kz'Z]'ﬁo(Po+u—o>
0

= E-\2 2 2 12
C’{Bé'({’a*“v—()) _<px_§Ax) _(pz_g Az) _m%CZ}
0 "

'QO+Kx'ez—Kz'ex

(I+n)
=[1+K,x+K,-z]- -
Poll+7)
Up 2 2 Vg 2 z -1/2
_px+B0'HZ + —Pz‘ﬂo'H-’C
|_\Eo Eo
Bo-(1+7)

1

~EQO+Kx-e,—Kz-e,. (5.11)

With (5.9-11) we have the Hamiltonian for the canonical
variables

X, 2,0, '} Pxs Pzs P I

Remark: The equation for spin motion corresponding to
the Hamiltonian (4.22) reads as:

d

$§=Qox§. (5.12)
Representing the spin vector & in the form
€=£s'es+éx°ex+éz'eza (5.13)

and using (3.3) we have:

d. . . , d d d

a;§=és'es+£x'ex+fz'ez+§x'a§ex+€s’& es+§z'&ez

=é;'es+€;¢'ex+€,z'ez_fs'(Kx'ex'*'Kx'ez)
+éx‘Kxes+€z'Kzes

=6;'es+é;'ex+é;'ez—§

X (K, e, —K,-e,). (5.14)
Thus (5.12) can be rewritten as:
d d d
—— . — — & = 1
€ s Gstes dséﬁez dséz QxE, (5.15)



with Q given by (5. 11) which confirms the validity of
the spin part Q-§ in the Hamiltonian % (x, z, g, §";
Pxs Pzs Pos J'5 5):

If the new spin basis had been an explicit function of
the canonical orbital variables, then even at first order in
h the orbital variables and the orbital Hamiltonian would
have been modified by the canonical transformation (see
(3.16), (3.17), (3.24) in [11]). However, at this stage in our
treatment, the azimuthal variable, s, is the independent
parameter, not a canonical variable. Therefore the vari-
ables x, z, , py, p., p, remain unmodified by the trans-
formation and 4", and 4., are identical. Furthermore,
since " and 4 differ only by the term (K e,—K,-e)-&
which is independent of the variables x, z, o, py, p., p,, the
Hamiltonians /" and £ lead to the same equations of
orbital motion.

5.2 Series expansion of the Hamiltonian

Since
2 2
Vo 2 Yo 2
— “Hz —p,— P H
<Eopx+ﬁo ) +(E0pz Bo X)

~ <1,
B - (1+7)?

the square root

Ug 2 2 Ug 2 2 1/2
— PxtB5-Hz | +| - p.—B5-Hx
{ E, Eo

B&-(1+#)

n (5.10) and (5.11) may be expanded in a series:

2 s
_v_o. 2‘. 7 Eg
| (Eopx'i'ﬁo H—-) +<E0

Bs - (1+0)?

Up 2 2 Ug 2 2
— Pxtf5-Hz — P.—Po-Hx
pe-(1+m)* ’

2
pz—ﬁg'Hx) .

2 B-(+R? 2

(5.16)
and the same can be done with the term
L eV(s) 2n
2n-h  E, cos |:h L G+(p]’
resulting from the cavity field:
L eV(S) 2n L eV(s)
= . heoo
-k E, [' "“”} mh By S
eV(s) . I, 2= eV(s)
—G- ——g%h-— e (517
] By sin ¢ —> ¢ -h- L K, cos @+ (5.17)
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Furthermore, for the term
1
1+9°
appearing in (4.37) we may write:
1 1
- —
L+y  (I+y0)+7y0°n

O(h)

1 Yo .
= 1= . -+ O(h), 5.18
1”0[ 1+y0n]+ +0(h) (5.18a)
and for the quantity
i=f(n)
one obtains from (4.34):
n=f(n)
1
=fO+f©O)-n+f"0)5n*+
! ! -1;12+---, (5.18b)

:—-’1——-—
i3 576 2

so that in practice the spin-orbit motion can be conve-
niently calculated to various orders of approximation in
the orbit variables.

If we wish to obtain a symplectic linearised treatment
of synchro-betatron motion (including SG effects) we ex-
pand the Hamiltonian up to second order in the orbit
variables. Then from (5.10) and (5.11) we obtain:

a) For the orbital part H o of the Hamiltonian:
Howo=H o+ Ay, (5.19)
where ', and ", are given by:

UO _1 l 2
E, 072 y3—1 g

e R e e

1 .
+§/35 {(Ki+9)-X*+(K2—g)- 2> —2N - xz}

—'[Kx'x+Kz'Z]"1

L, eVis) m
50 Ey h I Cos @, (5.20a)
Yo | - _V . (K2 2
E, cH=—0- |:Eosm(p C, (KX+K,):|
— ﬂo [AS?? cz— AR, x] (5.20b)

(constant terms, (L/2nh)-(eV/E0)-cosq; and (—B%/2), in
the Hamiltonian, which have no influence on the motion
have been dropped).

b) For the spin part A «pin Of the Hamiltonian:

ispixl=g'§5 (521)
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with

1
Q,=—2H-(1+a)+2H-(1+a) 51
0

(5.22a)

ﬂx=Kz'a}’0—(1+ay0)'_e_ Agax
Po*¢

—(I+ayo) [(N=H')-x—(K7 ~g)-z]

a?o
+1+')’ 2H - |: px+ﬁ0 :|

)2, .

ayo+ SIn @+ —
ﬁo [)’o I+7y0 E, ¢ Eopz

1
[1+ +a7°]-(1<2—imx>-n,
31 po'c
¢ 43,
C

Po-

+(I+ayo) [(N+H') z—(K+g)-x]
v,
'I:E_(:)pz_ﬁ%'Hx:|
1 Yo | e (S)
B3 [avo+l+?0] Eo ne Eon
[1+1+“V°]-<KX+LM,).”,
75—1 Po*c

(no solenoid field in the bending magnets and in the
cavitiess=K,- H=K,-H=0; V- H=0).

(5.22b)

Q.=—K,-ayo—(1+ayo)-

1+')’0.

(5.22¢)

6 Introduction of an eight-dimensional closed orbit
and a new pair of canonical variables for spin

As can be seen from (5.19-5.22), the series expansion for
A orp CONtains terms linear in the orbital coordinates and
€ contains terms independent of the orbital coordinates.
These and the linear terms can be eliminated by introduc-
ing a new 8-dimensional reference orbit. This orbit can
then be used to construct a new reference frame for the
spin motion and, as we show below, it is then possible to
introduce new variables to describe the spin which are
canonical and are related to the spin variables used by
Chao [9].

6.1 Definition of the eight-dimensional closed orbit

We begin by defining the 8-dimensional closed orbit:
(Yo(s), Jo(s), Yo(s)),

containing a periodic orbital part

yg:(xOs Px0: 205 Pzos Tos paO);

with

Yo(s+ L)=yo(s) (6.1a)

and a spin part Jo(s), Yo(s) which defines (see (5.3)) a
periodic spin vector

éO(S)=§Os - es+ éOx'ex+éOZ te;,
with

Eols+ L)=8&o(s), (6.1b)
whereby the equations of motion read as:
d a
dS Yo= _S __‘%r(yOs Wo» JOsS) (62&)
d d d
— .— e E =00
€ dS éOs'*'ex ds §0x+ez ds Coz Q) x ‘:09 (62b)
with
Q(O) = Q(Y()v S)a (6'3)
and '
S; 0 0
- -~ 0 —1
S=[{0 S, 0 |; Sz=< ) 6.4)
B - +1 0
0 0 5
1e. (yols), Jo(s), Yo(s)) is a periodic solution of the

combmed equations of motion.
Using &, we can now construct a periodic spin frame
(ng, m, 1) along the closed orbit (see Appendix B):

[“0(5 =+ L)v m(S + L)s l(S + L):] = [llo(S), m(S), l(S)],
with

no =80/ (Eol. (6.5a)

no(s).Lm(s)L1(s), (6.5b)

no(s) =m(s) x 1(s), (6.5¢)
Ino(s)l =|m(s)| =[1(s)| =1, (6.5d)

and

d =00

i Ny (5)=Q x ny(s), (6.6a)
d ©) d

- m(s)=Q® xm(s) +1(s) - & Wepin(S), (6.6b)

4 1(s)=Q@ x1(s) —m(s) - 4 Vepin(S), (6.6¢)

ds ds "%

Wspinls + L) = Yspin(s) =27 * Qgpin- (6.7)

6.2 Canonical transformations

The 8-dimensional closed orbit together with 1(s), m(s) will
now be used to construct new canonical spin-orbit
variables. The canonical transformation for orbit and spin
will be carried out separately.



6.2.1 Canonical transformation for the spin variables. To
derive the new spin-Hamiltonian, we proceed in two steps:

1) Canonical spin-transformation:
Firstly we follow the method of Sect. (5.1) to transform
from the e, e,, e, basis to the ny, m, 1 basis:

isa éx’ ézaém éma fh (68)
with
‘E,n:is'es'*'5x'ex+€z'ez=£n'n0+ém'm+él'l- (69)

Introducing for &,, &, & canonical variables ", J”:

En=1/E*—(J")-cos y",
= E—(J")? sin ",

6" = J”)

(6.10)

(6.9) becomes a canonical transformation:
W=y, T (6.11)
and the new Hamiltonian # reads as:

H (X, 2, 0,; P Pz Do I3 5)

- orb(xa 2,0, Pxs Pz> Pos S)+

H spins (6.12)
with
jspin(xa Za 6: 'ﬁNQ px: pza pa'a J”; S)

={Q(x, 2, 0} Py, Pz, Pos )= U'(X, 2, 03 py, Pz, Ps3 8)}

.(gn'n0+§m'm+§l']>’ (613)
and

A dng dm  dl

U 2[n0xd +m X d_+lXa§:|

1
. [no % (Q©® x ny)+m x (9“” X m+l-ad; l//spin(S))

+1x (Q‘O’ xl—m-* l//spm(s)>:|
=%[39‘0’—110-(Q‘O’-no)—m~(ﬂ‘°’-m)—l-(Q(°’°l)
+(n0+n0) ll’spm( ):I
! 3O -Q© 4 2 g Yepin(s)
2 <o dS spin

d
=Q(0) +ng - & l//sl:vin(s)' (614)
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Thus we find:

H pin (X, 2, G, 0" D Pas Pan I3 5)
(0) d P
=1Q-Q _n0°d_slpspin(s) '(6»'“0+Cm'm+€l'l
=X, 2, G; Px, Pz; Do 5)

XL Mo o1 Gy g

: d
=[§n~(no'm)+'fm'(m'w)+€z~(l~m)]—in'd—s Vspin(s)

nos(s) nOx(S) noz(s) Wy
ms(s) mx(s) mz(s) *| @

I(s)  Lls) L)) \w,

= (Cm {ma 61) *

d
& P Wepin(5), (6.15)

where we have introduced for abbreviation the vector

0=0-0Q0, (6.16)

This is equivalent to the form for the spin Hamiltonian

given by Derbenev [5].
Writing:

M= e+ W, ex+w, €, (6.17a)

and using (5.22) to expand @ as a Taylor series in

y=Y—Yo (6.17b)

the first order terms for the components w,, w,, @, of the
vector o are:

2H (1 —
=+2H-(l +a)- ﬁo

2
Vg . ayo e
=7 Px* Kz_ 'A'@x:l
E, 1+Y0[ Po-¢
IV} PR
Eopz 1+'}’0 x Po-c z s

wy=—(1+ayo)-[(N—H')-I—(KZ—g)-7]

(6.18a)

£ oy +p3-H3
1+]’ EO px 011z

1 Yo eV(s) . Ug .
+—- + SN Q- -—p,
[ o 1‘*"J’o:| E, ' qo Eop

1
—[1+ f”‘)]-(Kz——-e m,)-ﬁ,
7o—1 Po*¢

(6.18b)
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+(1+ayy) - [(N+H') 2~ (K3 +g)- %]

2

ayg
2H - -H
+1+'}70 [Eopz'l'ﬁo X:I
1 Yo ev(s) . Vo .
—_—— + . P x
B3 [ayo 1+}’o:| E, e Eop
1
+[1+ J{‘%] (K + Aga) (6.18¢)
yo—1 Po*C
with (see (4.33))
. Uo
=—- 6.19
=g, P (6.19)

In this paper only this linearised version of @ will be used.
This is sufficient for many purposes [9,22]. The full
® could be used if required.

With (5.10), (6.12), (6.15) we have the Hamiltonian (up
to second order in the orbital varibles) for the canonical
varibles

X, 2, 0, Y"; Pxs Pz> Do I -
2) Introduction of a new pair of canonical spin variables:

We now introduce the spin variables (o, ) defined by:

=./2(E—J")-cos ", (6.20a)
f=/2(E—=J") siny". (6.20b)
From this definition we have:
§=tan v, (6.21a)
J'=¢—4?+p?), (6.21b)
and
L=C—3(+5%) (6.22a)
=7 2t 52 +5%), (6:22b)
f 2§—~(cx +B2). (6.22¢)
The latter can be inverted to give:
o=+ 2 - (6.23a)
E+& T '
f=+ 2 ¢ (6.23b)
€+ l- .
The transformation
'pu, JII=>a’ ﬁ
can be obtained from the generating function:
Filo,p")=40?tan " —E- ", (6.24)

aFl " _
E—a tand’ _ﬂ> (6253)
aFl_ 1 2 2.0,y — ! 2 ﬁz
Y ks (I+tan® ") = ok 1+ocz
1
= _i(a2+ﬁ2)+§=,]", (6.25b)
~ ~ O0F, -~ =

f—)f+g=f=f°,b+9{spm (6.25¢)

Thus o, f are canonical variables.
From (6.15) and (6.22) we obtain:

| / 1
spm (5__( +ﬂ2 ﬁ'a' 2§_§(a2+ﬁ2)’
1 1
— B [2E—"(a? 2
NG B- |28 @ +B ))

Nos (S) Nox (S)

my(s)  my(s)

() Lls) L)) \@.

noz(s) | [ @

m(s) | | ox

1 d
*[f—i(az"'ﬂz)}'a;'//spin(s)' (626)

With (5.10), (6.25¢), (6.26) we have the Hamiltonian for the
canonical variables

X, Z, G, &} Pys Pzs Pas P-

Remarks:

1) The values of « and f are restricted by the condition:
o+ <Al=E28> L

2) For

a*+ p? < 4E,

the correspondence between o, ff and &,, ,,, & is one-one.

3) For

<<1,

we have:

émza'\/Es

élzﬁ.\/za

and in this case our canonical » and f behave like the
spin-coordinates introduced by Chao in the SLIM-
program [97].



4) For the Poisson-bracket*:

do o do Op

Bl =gy 3 e a7

we obtain from (6.20):

{0 BYyrsr=[—/2-((=J")-siny"]

..—:_2—.51[] ltb"
2. /2:(&E=T")
-2
———cos "
2-/2:(—J")

[4/2-(E=T")cos Y ]=1.

This relation demonstrates again that o and f§ are canoni-
cal variables.

5) The variables « and f could already have been intro-
duced at the beginning in the starting Hamiltonian (2.1).
They completely repalce y and J. See Paper II in this
series [19].

6.2.2 Transformation of the oribital variables. The orbit

vector y(s) can be separated into two components (see
{6.17b)):

y(s)=Yo(s)+¥(s), (6.27)

where the vector ¥(s) describes the synchro-betatron oscil-

lations about the new closed equilibrium trajectory yo(s).
The transformation

Vs % B=¥; d=a, =5, (6.28)
can be obtained from the generating function:
Fa(x, Bxi 2,23 0, o 0 B 9)=(x—Xo0) - (Bt Do) +(2— 7o)
(P2t pe0)+(0—00)
“(BotPoo) +a f+1(5)
(6.29)

* It would be more correct to write:

a
@ Bhn =, oD, ap, ax 0z op, op, oz

oo f  Oo &[i 6 Of  On op
Pp, 60‘ oy YL 6|//

oo Ep,,

with y denoting (x, z, 0, ") and p,,..=J". Using the fact that o and
f are independent of (x, p,, z, p., 7, p,), we obtain the result:

@a cfﬁ 8& op
('°l,ll aJ J" (3l//”‘

1
1%5},. Py

This notation was already used in (2.10). Equation (2.17) could also
be written in terms of Poisson brackets
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with an arbitrary function f(s). The transformation equa-
tions read as:

dF, . OF

Px=a—x2=px+me x=6ﬁj=x X0, (6303)
oF _ dF

Pz= aL:—px+sz» z=${=2_20’ (630b)
oF oF

p0=_2=ﬁd+p0‘07 &=_~2=U—00’ (6300)
do apo‘

which reproduce the defining equation (6.27) for ¥.
d
Furthermore we have (with P S(8)=xo(s) dis Pxols)+

d d
Zo(s)* ds Pzo(s)+0o(s) - &(S)):

8F2_ dx, dpyo dzg dp.o
ds  ds Pt ds X ds Pt ds 2
dO’o dpso
Pot ds

<8ﬁ7> (dif)
et —x. =
6”!)’04—130 X Jy=yp a=p=0
() (%)
0Pz Jymys; x=p=0 Z Jy=ysa=p=0
-+ (5) (%)
_o'o —_—
0P Jy=ys; amp=0 06 )y=yy;a=p=0
-
6YX Y=Yq: a=§=0

and therefore

(6.31)

T =T g+ Hog ﬂjf=j_y.(5_9{)
ay y=yo: a=8=0

y- (6jorb)
ay Y=Yo: a=f=0

7 a'i; in
+9{spin—)"<—p>
¥=Yo; a=p=0

=x;)rb_

oy

= Hoetic+ Hpins (6.32)
with
V% = 'aj;xrb
A it = & orb Y| ) .

orbit b—Y ( ay )y-yo o (6333)

N - Qg
H spin=Hspin—Y * ﬁ ) (6.33b)

0¥ Jy=yo: ampm0
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For the linearised form of ® (see (6.18)), (6.26) and (6.32)  and at second order the orbital Hamiltonian Jf’o,b takes
lead to: the form, using (5.19) and (5.20):

s (X Z’aapx pz’pw Yo 7 A 1 S-S
piz ’ E'" 'x/orb(xs Z, 0, Pxs pz, pas S)

0
(é—-( 2+ﬁ2),\% o | é———(a +p), 1

rr N .
331" —[Ky-X+K;-2]-7
1 2 2
S NCETE) el oo piinez [ 4] ep-pin-s [}
N + H-x
\/:2— 2ﬂ0 p ﬁo EO ﬁo
Nos(S)  Mox(s)  mo2(s)\ [ += ﬂo {((K24¢)- %24+ (K2—g)- 32— 2N - %7}
| mg(s) m(x) my(s) ||
L) L) L)\ _152 ) 27 s, (6.34b)
E, L
1, ., d
+$(.1 + B2 Yepin(9) (the constant terms
d -
nos(s) nOx(S) no'(s) Wy ('_ ’f * a_S- ()[’spin(s)) and '}{.orb(xo, 20, 091 Px0> Pz0: Ps0s S)
—(é, O) 0) ms(s) (S) mz(s Wy
L) L) L) in the Hamiltonian (6.34), which have no influence on the
$ * motion, have been neglected).

{ 1 With (6.32), (6.34) we have the Hamiltonian for the
=<-—(a2+ﬂ2), — 25___(“ +B2), canonical variables
NN

f, f’ &a a; px> ﬁz, ﬁa: ﬂ)

%. B |2 5__@5 +5?) ) and the canonical equations for spin-orbit motion are:

2 N
A

ii: a‘?[; iﬁx=_f}—_:1$ (6353')
nas(s) nOx(S) noz(s) ds apx ds .

|l Lo X 507 (6.350)
Is(s) lx(s) z(s) ds apz ds aZ
d oA d oA

— =4, —Po=——, 6.35¢

+ ﬁ @+ ﬁz).d%%m(s) ds b, dst°T a6 (6.359)

d oA d oA

SR i e

As in (5.16) for the orbital motion, we can expand the

A

FWAHE e
o AT

) :D appearing in the spin-Hamiltonian (6.34a) in a series:
nos(s) Hox(s) noz(ﬁ)) ws)

UEIN)

s(s) L L) \o =1_1[(i>2 (i)z] 6.36
s\ 7z + NG + (6.36)

g Vspin(9), (6.34a)  so that the spin motion can be conveniently calculated to
ds various orders of approximation.

A+



If & is sufficiently parallel to n, (i.e. oz/\/g and /)’/'\/_ are
small)* an expression to linear order suffices and the
Hamiltonian (6.34a) becomes:

J{spiu()a E, 6'9 %, ﬁm ﬁza ﬁaa ﬁa S)

ws
_ /r. [(m(s)  myls)  m.(s)
= \/E (CZ, B) < ls (S) lx (S) lz(S)> Wy

z

+§[(JLE)+<%)]%¢(S]

and the corresponding canonical equations for z and
p read:

(6.37)

Wy

d ( o ) . ( B ) d
TN =T +(Is(s)’ lx(s)’ lz(s)) Oy |+ —= |+ 'pspin(s),
d £ d
s \/E o \/E s
(6.382)
Wy
di(%)——(ms(s), mo(s). m,(s)) Z —(\%)
d
& 'j’spin(SJ- (638b)

In this form (6.38) are the basic equations for spin motion
used in the computer program SLIM [9, 10]. We have
thus derived the SLIM-formalism from canonical equa-
tions based on a polynomial expansion of a spin Hamil-
tonian.

6.2.3 Scale transformation. In order to eliminate the fac-
tors (vo/Eq) and B3 appearing in the Hamiltonian (6.34),
we define new relative variables:

=z ﬁxié”_f;.ﬁx_%, (6.39)
2=3, p;%%-ﬁ,:% (6.39b)
6=6, ﬁ,sl%%v—(:)-ﬁ,z%ﬁ, (6.39¢)
&Eﬂi Yo ggé ;_‘;.g (6.39d)

(X, Z, & unchanged).
Note that (6.39) is a combination of a scale trans-

formation <usmg the scale factor — ) and a canonical

BOO

(point-) transformation (involving «, § only).

* This is the case that occurs for example in calculations of electron
polarization far from spin orbit resonances [9, 22, 31]
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Furthermore, the linearised vector (6.18)
Wy
Wy
@,

in the spin-Hamiltonian (6.34a) can be written as:

X
Px
Wy A
2 ,
wx ‘—E(3x6) " > (640)
o, :
Ps
with
e
F12= —a(yo—l)' [Kz_—'Ang]a
Po-C
e
Fro= +a(yo—1).[1<x+—-mz],
Po-C
Fi¢=+2H-(1+a),
Fyy=—(1+ay)-(N—=H'),
Fyy=+alyo—1)-2H,
2 ays 2. 172
F23=+(1+a}’0)'(Kz—g)+1 -2B5-H?,
+%o0
70 € .
Fyu= —V
24 |:a)’o+ 1 +}’o] Eq (s)sin @,
Fye= —[Hi]-(Kz—iA@,),
Yo Po-C
; 2 ay} 2 72
F31=—(1+070)’(Kx+9)—1 2p5-H?,
+%o
Fy=—|ayo+—— Yo = V(S) sin ¢,
L+7y0 ] Eo
Fy3=+(1+ay)-(N+H'),
F3ys=+alyo—1)-2H,
Fie= +[1+£]-(Kx+~e—zl.@,),
Yo Po-C
Fy =0 otherwise. (6.41)
Introducing now
- 1 Uy - - -
‘;f:_z 'X':‘#orb'i'%pm: (6'42)
B§ Eo
with
- 1 Vo -
mrb=—2 T orbs (6433.)
B Eo
- 1 ~
jfspin 2 U_o * 'xrspina (643b)



136

we can rewrite the canonical equations (6.35) in the form:

dis PO ‘Zf , :S b= ‘;_"’f (6.44a)
%z: +%, %pﬁ _aa_f (6.44b)
S6- +%€’, < b, —‘%?, (6.44¢)
% 4= +%~"§, di f=— 6"? (6.44d)

so that # is the Hamiltonian for the canonical variables

AAAAA

By expanding the Hamiltonian J# in a power series in
these variables, we can calculate spin-orbit motion in the
required order of approximation and be sure that the
equations of motion are symplectic.

To obtain linearised equations of motion we use
(6.34b) and (6.37):

Hop(%y 2, 65 Prs Do Do S)

ps—[Kx%+K.2]-p,

Do =
?Nl'_
.

+
|

Lo R R N

5 ([Pt H-21+[p.—H-2]%)
1

+§'{Gl'.)22+62'22—2N’3%2}

(6.452)

'%h)spin(-’ea 2, 6; pxa pz’ ﬁo; S)

(o8

_ 10 ms(s) mx(s) mz(s)
G B\ E @ ( L) LL(s) lz(s)) @

L, o d
+§' [O( +ﬂ ] ’a; wspin(s)
mgy(s) k()|
o &
_\/_ (ws’ wxs wz) * 'nx(s) l (S) ( “)
Bo B
m.(s) L(s)
+1[&2+ﬁ2]-5¢ (s) (6.45b)
2 dS spin\»/)s .
where we have written for abbreviation:
G,=K2+g, (6.46a)
G,=K2—g. (6.46b)

The corresponding canonical equations take the form:

d
R=p+H-%

ds
; mg(s)  1y(s) ;
+f 5 — =+ (Fia, Faa, Faa) | ma(s) - 1(6) ()
0 B
mg(s)  L(s)
(6.47a)
d A, . . R
d_spszx‘pa+[pz_H'x]'H—Gl'x+N'Z
{0 my(s) L)\
o4
_\/E'_ '—9"(F11,F21,F31) mx(s) Ix(s) (")s
ﬁO EO ;B
m,(s)  [(s)
(6.47b)
d, H.2
ds TP
L my(s)  I(s) g
+ f'ﬂ—' E—o-(F14,F24,F34) my(s) 1(s) (ﬁ)’
e mas)  1(s)
(6.47¢)
d

&ﬁz=KZ'ﬁa_[px+H'2]'H“G2‘2+N’ﬁ

L my(s)  1s(s) 5
_\/E.B;. E—Z-(F13,F23, F33) mx(s) Ix(s) (ﬁ)’

my(s) 1)
(6.47d)
d, 1 \ .
&a=y—%-p,—[Kx-x+K,-z]
| m(s) L)\
v
+ é-ﬁ—- E—"-(Fle,Fzs,Fs.s) mg(s)  1e(s) ()
o VEo B
my(s)  1s)
(6.47¢)
1 eVis) , 2n
ap"—/}% Ey h L ~COS -G
; ms(s)  Ls(s)
—J ° >+ (Fis, Fas, Fas) | ma(s) () ()
Bo B
my(s)  L(s)
(6.47f)
d s 1 lO ( ) "1x(s) 'nz(s) s
Bi= Vg f ', ”( L) L) z,(s)) E-§
) (6:47g)
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d - 1 " my(s)  my(s)  mu(s) grow or shrink indefinitely — at least in this linearised
£ﬂ= —\/Eﬂ_ /E—o'(l,O)( L Le)  LE) E-¥y  description.
0 0 s * z Another observation is that the matrices B and C serve
e g Voo (5) (647h) to couple orbit and spin in a way analogous to the way that
% gs VoS ) the off diagonal 2 x 2 blocks in solenoid and skew quadru-
. ix form: pole matrices couple x and z motion. In the presence of
Or In matrix-form: orbital coupling and near resonance that x and z modes
¥ ¥ exchange energy and, depending on whether the system is
_{ el g (648) at a sum or a difference resonance, the beam blows up or is
ds °f = ff ’ ) stable as energy is exchanged between the modes indefi-
] p nitely [32]. It will be interesting to see if analogous phe-
with nomena occur in the spin and orbit coordinates at spin
orbit resonances. We will treat this case is another paper.
Aorb E
A-(S)=< C Qo)’ (6.49) Remarks.
1) Neglecting the Stern-Gerlach terms coming from the
and
0 1 H 0 0 0
—(G,+H?*» 0 N H 0 K,
A6 —H 0 0 1 0 0 (6.502)
orblS) = . ola
=orb N ~H —(Gy+H?» 0 0 K,
— K, 0 - K, 0 Ve 1 02 " 1/73
eV(s 27
0 0 0 0 TO . ”ﬂ—g . T COs @ 0 i
|
my(s)  1(s) component ., the orbital part (6.44a, b, ¢) of the ca-
B(s)= — ﬁ L Yo . SeFT. | my(s) L(s) (6.50b) nonical equations (6.44) can be approximated as:
2 S ﬁo Eo s x x >
"IZ(S) IZ(S) d A a';{pctrb d A a'”‘Zorb
&=, T T (6.522)
Lo Jog (0 1) (ms) mds) my(s) > P *
Cl)=y/E o |2 : E,
ﬁO EO -1 0 [s(s) lx(s) l:z(s) " 7
d A +a*y[)orb d ~ a*#orb (6 52b)
—_— = —_— —_— = ————— .
6.50¢) g5 ép, = ds Ps ¢’
Dy(s)= 01 iw (s) 6.50d
Dol)={ _y ¢ ) g5Vl A DU T D
— = — N B — p‘,: - " . (6520)
Here the matrix B(s) describes the influence of Stern- ds 0ps  ds dé

Gerlach forces on the orbital motion and the matrix C(s)
the influence of orbital motion on the spin motion. The
matrices A(s) and Dy(s) correspond to the “unperturbed”
spin-orbit motion.

We emphasize again that the approximation in (6.45b)
can only be used if the spin is almost parallel to ng.

Because the equations of motion (6.48) are linear and
homogeneous, the solution can be written in the form:

$(s) $(50)
a(s) |=M(s, so)-| 8(so) |. (6.51)
Bls) Biso),

This defines the symplectic 8-dimensional transfer matrix
M(s, sq) of linearised spin-orbit motion.

If the matrix B in (6.49) is retained but the matrix C is
put to zero, ie. if SG forces are included but the effect of
orbital motion on spin is neglected, then M will be non-
symplectic and the phase space volume can, in principle,

This canonical system is then separate (and independent)
from the spin motion and corresponds to the fully coupled
6-dimensional formalism [1, 2].

If the orbit vector

¥(s)=

is known, we can calculate the spin motion from the
equations:

d 09{”5},;,, d A a‘}ﬁpin
Y &P T (6:33)
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or

d a‘%}spin d aJ{/spin

—o=F—, —pf=—— 54
PR ap ’ ds b do (6.54)

where Jt}sp,-,, is given by (6.34a). These spin-equations are
again in canonical form and the “forced solution” of (6.53)
or (6.54) [20, 217 provides a method alternative to that in
[22] for calculating the mn-axis. By separating the equa-
tions of motion for the orbit and spin, we automatically
ignore the second and higher orders in /& when calculating
the forced solution.
2) The perturbation of the orbit motion by SG forces is of
O(h)-(ay+1) but the effect of the orbit on spin of order
(ay+1). The fact that B and C are of similar order of
magnitude is an artefact of the choice of canonical vari-
ables [33]. R

Note also that the (%, p,), (2, p.), (6, p,) and (¢, ) phase
space areas all have the dimension of length.
3) The formalism presented here describes the effect of SG
forces in all three (x, z, s) planes. In particular it automati-
cally describes the effect of longitudinal field gradients on
the transverse motion [33].

7 Summary

Following earlier works of Yokoya and Derbenev, we
have used a classical Hamiltonian in a fixed Cartesian
coordinate system for a spin 1/2 charged particle to inves-
tigate a canonical formalism of spin-orbit motion ex-
pressed in machine coordinates, taking into account all
kinds of coupling induced by skew quadrupoles and sol-
enoids (coupling of betatron motion), by non-vanishing
dispersion in the cavities (synchro-betatron coupling) and
by Stern-Gerlach forces (spin-orbit coupling).

In addition to the well-known orbital variables
£, Ps» 2, P2 6. Py Of the fully coupled 6-dimensional formal-
ism we introduce the canonical variables & and f to
describe the spin motion.

By expanding the Hamiltonian into a power series in
these variables, one may obtain various orders of approxi-
mation for the canonical equations and the canonical
structure of the formalism allows modern techniques such
as Lie-algebra and differential algebra to be included in
a natural way [34-40, 18]. For example, the ¢ and f vari-
ables might simplify discussion of the m-axis constructed
by using normal forms.

The equations presented in this paper can serve to
develop a nonlinear, 8-dimensional (symplectic) tracking
program for the combined spin-orbit system.

Such a program may be used to study (in addition to
orbital problems) chaotic behaviour of spin motion and to
investigate the influence of Stern-Gerlach forces.

In this paper we have treated motion in a storage ring,
i.e. the average energy E, of the particles is constant. But it
is easy to encompass acceleration by cavity ficlds in this
formalism. For more details see [41, 42].

Finally we remark that, starting from the variables
%, Pxs £, Pz» 0, Pgr &, B and using analytical techniques as
described in [2, 43-45] one can also develop an 8-dimen-
sional dispersion formalism.

Acknowledgements. We wish to thank Prof. Dr. G.-A. Voss and
Prof. Dr. B. Wiik for continued encouragement. We thank Dr. S.R.
Mane for useful comments.

Appendix A: Vector potentials for various lenses
Using the freedom to select a gauge, we can choose any
vector potential which leads to the correct form of the

fields. Suitable vector potentials are as follows and have
been chosen for their simplicity [1].

A.l Bending magnet

Since the design orbit

x(s)=2z(s)=0 (A.1)
is a solution of the equations of motion for
&=0, E=E, (A.2)

by definition, the magentic bending ficld 2 (s) and
B (s) is fixed by the curvatures K, and K, of the design
orbit:

‘. 39-_K., (A.3a)
PoC
. BO= 4K, (A.3b)
Po-C

The corresponding vector potential can be written as:

A= 11 +K,-x+K.-2), (A.4a)
Po-c¢
A,=A,=0. (A.4b)
A.2 Quadrupole
The quadrupole fields are
0R
.@x=z-< z) . (A.5a)
6x x=z=0
.@z=x.<5?z) , (A.5b)
O0X [x=z=0
so that we may use the vector potential
0B, 1,

[ 27z (2 —x A.
Ag ( A >x=z=0 2(z x%), (A.6a)
A,=A4,=0. (A.6b)
We rewrite this as:

1
¢ A=:g-(2—xD), (A.7a)
Po*C 2
with
g=—" (agg) : (A.7b)
Po-€C 0X Jx=z=0



A.3 Skew quadrupole

The fields are

) 1 (0B, 0%,
1(0B, R
=+4= e .z A.8b
2 +2( 0z  0Ox )F,:o ( )
Thus we may use
1 /0B, 0%
=—_ .= . A.
A 5 (82 o )x=z=0 Xz, (A.9a)
A,=A,=0, (A.90)
and we write:
£ Ag=N-xz, (A.10a)
Po-¢
1 e (0%, oA
= == . A.10b
N 2 po'c( 0x 0z )x=z=0 ( )

A.4 Solenoid fields

The field components in the current free region are given
by [1, 46]:

'@x('x’ 2, S}=X‘ Z b2v+1'(x2+zz)vs (Alla)
v=0

B(x,2,5)=2+ Y byyiy-(x*+2%), (A.11b)
v=0

Bs(x, 2, 5)=x+ ), by, (x*+2%), (A.1lc)

v=0

where for consistency with Maxwell’s equations the coeffi-
cients b, obey the recursion equations:

1
bavi1()= —5—=--b2.(9),

) (A.12a)
1
by +a(s)= +(2v_+2). 2v+1(8)s (A.12b)
(v=0,1,2,...),
and where
bo(s)=%4(0, 0, s). (A.13)

The vector potential Jeading to the solenoid field of (A.11)
is then:

Aglx, z,8)=—2z- —————boy(s) - %, .14
=(x, 2, ) z v;o 2v+2) @w(s)-r (A.14a)
A = . T —_— . 2v
Az(x, Z, S) +X V;O (2v+2) b(z\,)(s) e, (A14b)
As(xa Z, S) =0’ (A.14C)
with
it=x>+z%
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Thus we can write:

1
‘e—Ax=—ﬁo’H(s)-Z-i-—ﬂo-H"(s) c(x24z%)ez 4,
Ey 8

(A.15a)
1
A=+ o Hs) x—g B H'(9)- (3 +29) x4
0
{A.15b}
with
1 e 1 e
—_————— e § i & ,0’ . ]_
H(s) 2 po-c bo(s) 2 pyec 20,0, 5) (A.16)

Note that the cyclotron radius for the longitudinal field
(A.13) is given by:
1

R=
H

9]

A.5 Dipole correction coils

As=ARB,z2— AR, X,
with

AB, =Y ABW-5(s—s,), (A.17a)
n
AB, =Y ABW - 5(s—s,), (A.17b)
1
so that
e

e - -
— A=) O(s—5,) [ABW  z—ABP - x]. (A.18)
Po*C Po-C %’ WL

A.6 Cavity field

For a longitudinal electric field
é,=0,

6,=0,

Es=46(s, g),

we write:

Ax=0,

A,=0,

A,=L- } dé-&(s, 6),

0 oo

(A.19)

(A.20)

which by (4.25) immediately gives &;.
Now the cavity field may be represented by

&(s, 0)=V(s)sin I:h-%-a+(p], (A.21)

and we obtain using (A.20):

1 L 2n
A= _E.h—-h' V (s)+cos [h-f-6+qa],
in which the phase ¢ is defined so that the average energy
radiated away in the bending magnets is replaced by the
cavities and A is the harmonic number.

(A.22)
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Appendix B: The periodic spin frame (n, m, 1) along the
closed orbit

In order to define the periodic spin frame, we first intro-
duce a compact matrix notation. Rewriting an arbitrary
vector

A=Ag-e+ A e+ A€,

as a column vector with components Ay, 4, 4.:

As
As'es+Ax'ex+Az'ez= Ax)»
A

z

and defining the derivative of a column vector with re-
spect to the arc length s as the derivative of the corres-
ponding components A4; but not of the unit vectors:

4 js =e dA+e dA+e dA
dS Ax_sds s xds x zds z1

we get from (5.15) and (6.2b):

d
—EO(5)=2©-§s), (B.1)
ds
where we have set
éOs
EO= | & |, (B.2a)
E.Oz
and
0 —QO QO
Q9s)=| QY 0 Q| (B.2b)
—Q° QO 0

The transfer matrix M (in(s, so) for the spin motion
defined by

g(O)(S) = M(spin)(ss SO) y é(O)(SO)a

satisfies the relationships:

Mgpin)(s’ S0)* M (spiny(s, So) =1, (B.3a)

det [M(spin)(sy SO)] = 1’
since (with (B.1))

d
a;M(spin)(sa So) =Q(0)(5) * M (in) (s So)s

(B.3b)

M(spin)(s09 SO) = l’

and therefore (with [Q@]T= —0Q©)
d T
d—S[M(spm)(Sa S0)* M (spinm)(S; So) ]

= [Q(O)(S) * M(spin)(s’ SO)]T * M(spin)(s’ SO)

+ M {iny (5, 50) * [2(5) * M (piny (5, S0) ]
= — M (pin) (5. S0)" + QP (5) * M (piny (5. S0)
+ M Loiny (8, 50)* R1D(8) * M ipimy (5, 50)
=0,
det M(s, sg)=det M(sq, so)=1,

i.e. M piny(s, So) is an orthogonal matrix with determinant 1.

Let us now consider the eigenvalue problem for the
revolution matrix M(so+ L, so) with the eigenvalues «,
and eigenvectors r,(so):

M(so+ Ly 50)F,(50) =%, Tuls0). (n=1,2,3). (B4)
Because of (B.3a,b) we can write [28, 47]:

ay=1,

oy =g 2 Qe

gy=e " e (O =real number) (B.5)
and

r1(so)=no(so0), (B.6a)
r2(s0)=mg(so) +1+lo(s0), (B.6b)

r3(so)=mg(sg)—1+lp(so), (Ny, My, o =real vectors). (B.6c)

If we require that

riori=1, (B.7a)
ry-r,=rj -ry=2, (normalizing conditions) (B.7b)
we find, using also (B.3a) [47]:

[no(so)| =[mo(so)|=lo(s0)| =1, (B.8a)
Ny (so)Lmg(sp)Llo(So). (B.8b)

Thus the vectors ng(sg), my(se) and 1y(se) form an ortho-
gonal system of unit vectors. Choosing the direction of
no(se) such that

no(so)=mg(so) X Io(So) (B.8c)

these vectors form a right-handed coordinate system.

In this way we have found a coordinate frame for the
position s=s5g.

An orthogonal system of unit vectors at an arbitrary
position s can be defined by applying the transfer matrix

M (pin)(S: 50) to the vectors ng(so), Mo (so) and ly(so):

ng (S)= M_(spin)(sa SO) nO(SO)a (Bga)
mg(s) =M (5piny (5, So) mg (sp), (B.9b)
lo(s) =M (piny (5 o) lo(so)- (B.9¢)

Because of (B.3a, b) the orthogonality relations remain
unchanged:

no(s)=mo(s) X lo(s), (B.10a)
m(s) L1o(s), (B.10b)
[mo(s)|=[mo(s)|=|lo(s)|=1. (B.10c)



The coordinate frame defined by ng(s), my(s) and lp(s) is

not yet appropriate for a description of the spin motion,

because it does not transform into itself after one revol-

ution of the particles:

mg(so+ L) +ilo(so+ L) =M (pin)(S0 + L, 50) [mg(so) +ily(s0)]
=e!" 2@ [mo(so) +ilo(s0) ]
#mo(s9) +ilo(so)

(if Qypin #Integer).

But by introducing a phase function Yy;,(s) and using
another orthogonal matrix D(s, So):

Q(S, SO)

— ( cos [wspin (S) - ‘l’spin(so)]

sin [wspin (S) - Il/spin (SO )] )
810 [Wapin(5)— Ypin(50)] ’

COS [lpspin(S) - lI/spin (SO)]

(B.11)
with
D"(s,50)-D(s, s50)=1, (B.12a)
det[D(s, s0)]=1, (B.12b)

we can copstruct a periodic orthogonal system of unit
vectors from ny(s), my(s) and 1o(s). Namely, if we put [47]:

m(s)\ m(so)
(Kﬂ)‘gﬁ”“Gwa)

=m(s)+il(s)=e =" Wonl)Vanlsoll. [mg(s) +ily(s) ]

#mo(so)+1lp(so), (B.13)
we find, using (B.12a, b):

no(s)=m(s) x I(s), (B.14a)
m(s)L1(s), (B.14b)
Ino(s)|=|m(s)|=[1(s)|=1. (B.14c)
Since,

m(so+ L)+ il(sg+ L) =" Walot D=vuinlall. 'm(s0) +il(s0) ],
it follows that the condition of periodicity for ny, m and I:
(nO’ m, l)s=80+L=(n09 m, l)s=so’ (BlS)

can indeed be fulfilled if the phase function ¥, (s) satisfies
the relationship:

d’spin(so + L) - d/spin (S) b 275 * Qspin 5 (B 163.)
(Qspin =spin tune).
For instance we can choose:
S
lpsl’in(s)zzﬂ: : Qspin 'Z' (B.16b)

Taking the derivatives of m(s) and I(s) with respect to s,
and taking into account (B.13), (B.9), and (B.1) we get:

< m(9) =26 ms) +/(9)-16) (B.17a)

L 16)=26)10) Y () ms), (B.17b)

14

and ny(s) satisfies (see (B.9a)):

)= 2O mofs) (B.17¢)
Finally the vectors

£1(5)=1(5) = M g5 o)1 (50, (B.182)
r2(8)=mg(s) +ilo(s) = M (piny (5, So) 12 (S0), (B.18b)
£3(9)=0(5)— h(5)= M gyin5, S0)1(50) (B.189

are eigenvectors of the revolution matrix M, with the
same eigenvalues as in (B.5):

M(s+L, s)r,(s)=o, - 1,(s). (B.19)
Thus, the eigenvalues o, and the quantity Q,;, defined by
(B.5) are independent of the chosen initial position sg.

Remark: In order to solve (B.1), the 6-dimensional orbit
vector yo must be known (see (6.3)). This vector can be
approximated by neglecting the Stern-Gerlach term

Jd =
& H spin(Yo; Vo, Joi 8)

in (6.2a), giving:

d

8 -
—yo=—§-5% H orv(Yoi 9)-

is (B.20)

The error in calculating &,(s) is of order i* which we can
neglect at our semiclassical level of approximation.
A solution of (B.1) may then be obtained by using the
method of thin-lens approximation as described in [9, 48].
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