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Abstract. The two real canonical spin variables o and
p introduced in an earlier paper to describe spin motion in
storage rings [1] are combined with the six canonical
variables of coupled synchro-betatron motion to form
a system of eight canonical spin-orbit variables in which
spin and orbital motion are treated on the same level. In
these variables one turn maps are origin preserving and
the usual techniques of canonical perturbation theory can
be applied. By writing the Hamiltonian in normal form
the spin detuning terms as well as the so called n-axis, the
semiclassical spin axis which is needed in the theory of
radiative polarization, can be constructed. The equations
derived are valid for arbitrary particle velocity (below and
above transition energy).

1 Introduction

In paper I of this series [1] we introduced a pair of real
canonical spin variables % and f which uniquely par-
ametrize the classical spin over (almost) the whole ‘spin
sphere’ and which behave in the small spin tilt limit like
those used by Chao in the SLIM formalism [2]. By
treating these variables on the same level as the canonical
set, (X, py, 2, P, 0, p,) describing the coupled synchro-
betatron motion in storage rings the Hamiltonian of com-
bined spin-orbit motion can be expanded as a power
series in small quantities. In this way the usual techniques
of canonical perturbation theory may be applied simul-
taneously and consistently to the whole spin-orbit equa-
tion system. For example, at the linear level the motion is
described using 8 x 8 symplectic transfer matrices. Fur-
thermore, normal forms can be introduced and the mutual
detuning of the orbital and spin motion may be investig-
ated. The introduction of normal forms leads to the con-
struction of the so called n-axis [3, 5] needed in the
analytical calculation of spin polarization in electron stor-
age rings.

In detail, the work is organized as follows:

The starting point is the semiclassical spin-orbit
Hamiltonian of Derbenev and Kondratenko [4, 5]
described in a fixed Cartesian coordinate system but re-
written in terms of o and f [1, 6]. This description is
summarized in Sect. 2.

In Sect. 3 the spin-orbit Hamiltonian is expressed in
machine coordinates within the framework of the 6-di-
mensional description of particle motion by using the arc
length s of the design orbit as independent variable (in-
stead of the time t), taking into account all kinds of
coupling induced by skew quadrupoles and solenoids, by
non-vanishing dispersion in the cavities and by Stern-
Gerlach forces. The equations so derived are valid for
arbitrary velocity of the particles (below and above
transition energy).

In Sect. 4 we introduce the 8-dimensional closed orbit
for the combined spin-orbit system as a new reference
orbit for spin-orbit motion, defining the periodic 6-dimen-
sional closed orbit for particle motion and the periodic
(ng, m,1) -dreibein for spin motion. The oscillations
around this closed orbit are investigated.

In Sect. 5 normal forms and the n-axis are defined.

In order to study the perturbative behaviour of spin-
orbit motion we need the Hamiltonian of the linearised
spin-orbit system in terms of action-angle variables. This
can be obtained by variation of constants and is derived in
Sect. 6.

After this preparation we then diagonalise the Hamil-
tonian using canonical perturbation theory which finally
leads to the normal forms of spin-orbit motion (Sect. 7)
and to a method of calculating the n-axis in storage rings.

A summary of the results is presented in Sect. 8.

This formalism contains as special cases the normal
form analyses of coupled synchro-betatron oscillations or
coupled betatron oscillations by restricting the complete
variable set (X, p,, z, P., 6, Pg, %, ) 10 (X, Px, Z, P G, Ps) OF
(X, Px, z, pz). Thus, in particular the impact of linear coup-
ling on nonlinear dynamics can be investigated [7].

In contrast to paper I we write the spin-orbit Hamil-
tonian in terms of the new spin variables right from the
beginning. This results in a small amount of repetition of
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some parts of paper I. But this procedure simplifies the
derivation of the Hamiltonian and leads to a new insight
into the behaviour of the canonical spin transformation.
In particular a suitable scale transformation for the length
of the spin vector can easily be found.

Finally we remark that other methods for calculating
the m-axis and the corresponding computer algorithms
have already been described in several papers [8-14].
Those based on normal forms could in principle be refor-
mulated in terms of % and f.

2 Spin-orbit motion in a fixed coordinate system

2.1 The starting Hamiltonian

As in paper I we begin with the classical spin-orbit Hamil-
tonian:

HE o P, fit)=H o (0, P ) +Hpin (o P, 1), (2.1)
with

Hy (0, P, )=+ {m* + mjc?} 12 + e, (2.2a)
Hpin (1, 0 P, B;1)=Q0(r, P, 1) - E (2, B), (2.2b)
and
e 1 a(n-B)
Po= e [(5 +a) 2o+ mic
1
- ~—(a+—1—)1rx¢8’:|, (2.3)
mo ¢y 1+7y

where we use the same notation and where
n=P— g A (kinetic momentum vector), 2.4)
and
y= m_ \/m2c2+1t (Lorentz factor). (2.5)

of

In terms of the three unit cartesian coordinate vectors in
the fixed laboratory frame, e,, e,, €3 we may writer, P and

g as:

r=X;-e;+X; e+ X3 e3, (2.6a)
P=P;-e;+P,-e,+P;-e;3 (2.6b)
E=C e +Ey-e+ 8565 (2.6¢)

The spin components &;,&,,¢5 as defined by (2.6¢) are
written in terms of the new canonical spin variables o and

p:

él(as ﬁ)=06'\/ C—'% (a2+ﬂ2)5 (273)
Cl(ay ﬁ)___ﬂ'\/ é_i(az'f'ﬁz)s (27b)
éB(ay /3)=f‘5 (a2+ﬂ2)s (270)
with

2

h
F=a+8+=.

The canonical spin variables « and f are to be used on an
equal basis with r and P. The spin vector & is of constant
length since it obeys a precession equation.

Remarks: 1) Equations (2.7a, b, ¢) can be inverted to give:

2
a=t [rr (2.8a)
= —{,. 2.8b
B +\/§+§3 & (2.8b)

2) The values of z and f are restricted by the condition :
<=2 L

3) For

a2 <dg,

the correspondence between a, f and &, £5, 5 is one-one.
4) For

‘f I%:“

we have:
élzx'\/:,
fzzﬂ'\/é,

and in this case our canonical % and f behave like
the spin-coordinates introduced by Chao in the SLIM-
program [2].

2.2 Orbital motion

In terms of the Hamiltonian (2.1) the orbital equations of
motion are:

d Lo 0D

—X.= —2. 9
=+, tap, S (2.92)
d 0y 0

9p . 2.
ar X, oX, & (2.95)
(k=1,2,3).

The first terms on the rhs of (2.9) are the Lorentz terms
and the second terms describe the (very small) Stern-Ger-
lach force (SG) [15]. Thus our Hamiltonian includes the
SG force automatically. Note that here we .deal with the
relativistic generalization of the SG effect.

2.3 Spin motion

Using (2.7a,b,c) and the relationship
Qo=901'el+902'e2+903‘e3, (2.10)
the spin-Hamiltonian #,

'#spin =QO * g



may also be written as:
Hopin=/E =1+ ) - [Qo - 20+ Qo2+ f]
+[E=3 2+ )] Q3. (2.11)

Then we obtain the canonical equations of spin motion in
the form:

d O i
Gom (2.12a)
d Efspin
T h=—- e, (2.12b)
leading to:
—1=+——ﬂ‘r901'“+902'm
e 4 fe-t@+p) "

+/ =50+ %) Qo — - Qos, (2.13a)
d —o
&ﬂz—m'[901.z+goz.m

—SE=L @+ Qoy + 2+ Q. (2.13b)

In terms of the components &; we have:

d d d

a€3=—a'a-t°f‘-ﬂ°a;/3
=—o/E=5 (P + ) Qor +/E—4 (0 + %) Qo1
=Q;-&3—0Q03-&;. (2.14a)

Similarly we can show that:

d

$§1=Qoz'53—903'fz (2.14b)

and

d

d‘;fz=903‘51—901'53- (2.14¢)

Thus:

p &y Qo <

ar &= Qoa | x| &2 s (2.15a)
&3 Qo3 €3

or

ié—ﬂ x & (2.15b)

e 00 i

So as in [1] our Hamiltonian leads to the BMT-equation
[16, 17].

Using (2.7), we can construct the Poisson brackets [3]
lfor the spin components:

' 08 08, 0%, ¥,

iél’@}"ﬂza.ﬁ_ﬁhﬂ_és’ (2.16a)
&2 &tap=<1s (2.16b)
{&a Eitap=6a. (2.16c)
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These are the classical analogues of the commutation
relations among Pauli spin operators.

The result (2.15) can also be obtained by using the
equation of motion in the form:

d
d—t§={é’ xspin}a.ﬂ (2.17)

together with the Poisson bracket relations (2.16) and the
spin-Hamiltonian

Hopin=01&1+ Q02+ £+ Q03+ &5.

Remarks: 1) Instead of using the canonical spin variables

(o, f) the spin Hamiltonian can be expressed in terms of
the canonical variables (J, ) via the relations [1, 3]:

a=./2(E~J)-cosy, (2.18a)
B=/2(—J) -siny. (2.18b)
Since
b —tany, (2.19)
J=¢—3 2+, (2.19b)
we obtain the usual results:
ér=0 /-4 (*+p?)
=/2(¢=T)cosy-\/E=5(E~T)
=/ —=J*-cosy, (2.20a)
G=p-E=E @+ )=/~ TP siny, (2.20b)
=¢34+ )= (2.20c)
The transformation
a’ B = '»l/’ J
can be obtained from the generating function
Fylo,p)=7 o* -tany —& -y
The transformation formulae are then:
é
B=+ _F‘ =g-tany, (2.21a)
oo
_ JoF, _ 1, 2
J= W = Za (I+tan®y)+¢
1 2
— —z (12 '(1 +%>+é
1
=—5@+p)+¢, (2.21b)
oF
'#)apin_’-x/‘spin(‘//s J) =3‘pspin +"a_sl_ = ‘#spin
=Q01- &1+ Q0278+ Q03¢5
= E =T [Qpy - cosY+Qpy-siny] + Qos-J,  (2.21¢)

and one sees that (2.21a, b) lead back to (2.19a, b) consis-
tent with the fact that (y, J) are canonical [18].
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2) Tt is easily checked that the pair

J=¢—J,

i=—v ‘

is also canonical. In terms of (J, ) we have*

a=+ \/2.? cos nﬁ, (2.22a)
B= —\/2_f- sin . (2.22b)

2.4 The combined form of the spin-orbit equations

The combined equations of spin-orbit motion can be
written in the form:

d 69?’

e X,= 6 Pk, (2.23a)
d oH

@ Pp=— &—Xk (2.23b)

(k=1,2,3,4),

with

X, =0, (2.24a)
P,=p, (2.24b)

and

‘”z‘#(xleZaX37X4;P13P29P31P4;l)' (225)

Remark. Neglecting the Stern-Gerlach (SG) terms

coming from the component #,;, the orbital part (2.9a, b)
of the canonical equations (2.9,12) can be approximated
as:

d oA,y d Y
dy dp _ ¢ 226
aX =t T T, (2263)
d 6.#’0,., d ar}forb

@XM X, (2.26b)
d &%”m, d _ a';fnrb

e R e (2.26¢)

This canonical system is then separate (and independent)
from the spin motion and corresponds to the fully coupled
6-dimensional formalism [19, 20].

* The variables J, i/ can be obtained directly from (2, §) using the
generating function:

Fylo, )= —1 o2 tanyj.
In general one can write:

J=¢-J, a=\/-27-cos(c—|ﬂ),
{ll;=c—|//- - =/2J -sin(c—¥),

with an arbitrary constant ¢ (see (2.18a,b) ). For ¢ ==/2 one then has
to take the generating function:

Fylx, 'j;)=
leading to x=\/2‘JA-sin n ﬂ=\/ﬁ-cos:j7

L a?ecotif,

If the orbit vector

Xy

Py

X

P,

X3

Py
is known, we can calculate the spin motion from the
equations:

Y4 .
21_+a spin’ _d_B=_a”spm.

dt ap dt oo

Methods for a numerical solution of the spin equation
(2.27) are described in [6].

(2.27)

2.5 Transition to a new orthonormal dreibein uy, u,, 03
for spin motion

We now consider the transformation [3] :

€4, €3, €3—Uy, Uy, Uy,

with

d 12
WO =U(0) xu ()= =§Z (2.28)

and
§=§1'91+§z’ez+53'e3=51'“1+€72'“2+€3'“3- (2.29)
From (2 15b), (2 28) and (2.29) we obtain:

53 Z ekx fk—ﬂoxé
k=

f d“k'*'zuk _Ek

Il
IIMu

k
~ d ~
= z & [U xu ]+ z “k'd*[fk,
k=1 k=1
and thus

Z Uy - — k—ﬂuX§ Zék [U xu]

=ﬂo Xé—UX Z Eku,‘
k=1
= Qo xE—UxE=[Qy— U] xE. (2.30a)

Therefore in the new dreibein the equation of spin motion
is:

d -
= 4 = ([ —UTx &} (2.30b)
Writing:

G=a-/E—F@+pY), (231a)
E=F-e—1@+pY, (2.31b)
Ey=¢—1 @+, (2.31¢)



and
Qo=601 '“1+Q02'“2 +§03'“3, (2323)
U=(71'UI+L72'|I2+[73'U3, (232b)

we find the new spin-Hamiltonian by replacing the pre-
cession vector Qg in (2.11) by (o —U) (compare (2.30b)
with (2.15b)) as in [6]:

*i;spinz[éol_&l]'gl +[§oz—62]'gz+[§oa-ﬁ3]’53

=/¢-1@ +ﬂ2){[901—U1] 3+[Qo2— U5 f}

+[Boy— U5 [1 -3 @+ /?2)] 233
It follows that:
d_ 0y,
=t
dt op
-f
=t [Qm—U] “+[902—U2] ﬂ}

4/ 3@+

+y/ E—3 @+ B+ [Qor— Ua1— B+ [Qos— Us].
(2.34a)

- Qo —U +Q -U
N +ﬂ {[B01—U11-3+[Go,~U,]- B}
1@ [901—U1]+°‘ [903—03]

(2.34b)

Introducing (as in (2.19) or (2.21)) the spin variables (J, )
via the relations:

G=/2(&=J)-cos i, (2.35a)
f=/2(E=TJ)-sini, (2.35b)
or
Ei=\/E—TJ? cos i, (2.36a)
Fy=/E = T2 sin ), (2.36b)
=7, (2.36¢)
we get in analogy to (2.11c¢):
Hpinld, )=/ E =% -{[Qoy — U] cos §
+[Bos— Ualsin i} +[ Qo3 —Us]-J, (237)
and
=+ )
J U -
= _ﬁ' {[201—Uy]cosy
+[Qo,— Uy]sin '} +[Bos— Us], (2.38a)
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d ~ 0 ~ o~ -

a'l:_ﬁfspin(‘]v V’)
=\/Cz—jz'{—fﬁox—Ul]sml/".'*‘[éoz—(jz]ws‘/;}-
(2.38b)

Remarks. 1) If the rotation vector U defined by (2.28) is
independent of the variables (X,, P;), then the orbital
equations of motion can also be written as:

d a”ﬂ!h

d a‘#orb d T 2
aPh———az—E ax, [Q,-U], (2.39b)
(k=1,2,3).

With respect to the variables X, Py, 4, 5 we thus obtain
(see (2.33) and (2.34)) the new Hamiltonian for the com-
bined spin-orbit system in the form:

i=3forb+[90_U]'§’ (240)

whereby in addition (2.29), (2.30) and (2.32) have to be
used.

2) In the following chapters we introduce new sets of
variables. But the modification of the Hamiltonian needed
to affect a transformation of the dreibein has a form
similar to that in (2.40) since the new BMT-equation will
have a structure similar to that in (2.15b) [1].

3 Introduction of machine coordinates
3.1 Reference trajectory and coordinate frame

So far (2.1) we have been using a fixed coordinate system
with the coordinates X,, X, and X;. We now wish to
describe the motion in terms of the natural coordinates
X, z, 5 in a suitable curvilinear coordinate system [21], i.e.
in accelerator coordinates.

In this natural coordinate system an arbitrary orbit-
vector r(s) can be written in the form:
£(X, 2, 8)=To(s)+ X(s) - ex(s) + z(s) - e(s), (3.1a)

where :

d
a ex(s) =K,(s)- e(s),
d
& ez(s) = K,(S) * es(s)’

d d
a e.(s)= —K.(s)- ex(s) — K. (s) - e.(s), es(s}) = a ro(s)
(3.1b)

(for more details see [1, 19]).
The transformation of the spin components from the
(e, €3, e3)-basis to the (e, e,, e.)-basis

él) 625 53 = fs, éx’ éz (32)
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is merely a rotation and is defined by:
§=£l “ey +62'e2+£3 'e3=és'es+§x'ex+éz'e=- (33)

If, by analogy to (2.7), we introduce canonical variables
o, prfor &, &, Co

E=ol - JE—Ha 2+ D,
E—il 2+ B2, (34
E=C—3(?+ B,
then (3.2) is equivalent to a canonical transformation:
o, =0, p (3.5)
(see (2.40)).

3.2 The spin-orbit hamiltonian in terms of
machine coordinates

The variables x and z in (3.1) describe the amplitudes of
transverse motion.

To describe the longitudinal motion (synchrotron os-
cillations) we introduce two additional small oscillating
variables o and p, [1] with

g=s5—vg"t, (3.6)
and

1
pﬂ=%'ﬂa (37)

where vy and 5 are given by

[ (mg
ve =design speed =cfy; ﬂ0=\/1—( E ),
0

and

AE
n £y (3.8)
The variable ¢ measures the delay in arrival time at
position s of a particle and is the longitudinal separation
of the particle from the centre of the bunch. The quantity
n is the relative energy deviation of the particle.

Using this complete set of orbital variables defined in
the machine coordinate system we are in a position to
provide an analytical description for the orbital motion by
a simultaneous treatment of longitudinal and transverse
oscillations.

Starting then from the Hamiltonian (2.1) for the spin-
orbit motion of a charged particle in an electromagnetic
field, we can construct the Hamiltonian of the spin-orbit
system with respect to the new variables

X, 2z, 0,0

[1, 19, 20] by a succession of canonical transformations
combined with an s-t exchange (introducing the length
s along the design orbit as the independent variable in-
stead of the time t) and a scale transformation leading to

the modified spin variables

% i ﬁ’_.a' E:,l_
BoNEo " Bo

and the modified spin vector

Vo o,
b

§=retboatiie=p et (39)
f=a-/E-4@>+B?),

Ee=f-VE-4@+p), (3.10)
E=E—3@+ ).

of length*:

5_:%;_‘;.5_ (3.11)

Choosing a gauge with ¢=0 (e.g. Coulomb gauge) we
then obtain (to first order in A)** [1]

9%=‘#.orb+'-#spin
with

(3.12)

Jfm’bzpo'_(l'*';1)'[1'+'K)4:’-7C‘+'Kz'z}

, 2 e 2y\1/2
(px_—(’"Ax) +(pz+_Az>
1o PotC J N\ PotC

R
—[1+K,-x+K,-z]-PLcAS, (3.13)
»
and***
‘x}spin=ﬂ'g

=(é:'es+éx 'ex+$z'e:)°ﬂ(x, Z,0;Pxs Pzs pa;s)

(- fé-g0+80.8

-1 -1
: /é—z(az+ﬁz), é—i(azﬂfz)) Q. 1, (3.14)
Q,
where the precession vector
Q=0Q.-e.+Q.-e.+Q,-e.,
. . h 27th
* Using the relations &=, Eg=yomgc?, Ac=— (Compton-
2 mg e

- o€
wavelength), the quantity £ can be written in the form

s (B2 1 1
= (k/2) =—-+4 with A=——"+4c denoting the de Broglie

Yomolo 4m o%o .
wavelength of a particle with energy E,. Note, that ¢ as well as x, z,
g, @2, f? has the dimension of a length
** Since as in [1] the Hamiltonian (2.1) is based on a classical
interpretation of a semiclassical Hamiltonian we work only to first
order in A

*** To simplify the notation we now write the spin coordinates as
o, B instead of @, f§




is given by:
Q(x, 2, 0 P, Pzs Pa S)
(I+mn)
=[1+K, x+K, -z
- : ]ﬁo(l'*"?
e 2 e 2\ -1/2
( x_*Ax) +<pz+*Az)
Ay Po-c Po-c RPN
(1+7)? ¢’

+K.-e,—K,-e,, (3.15)

and where the quantity 7 appearing in (3.13) and (3.15) is
defined by:

. t moc? | pec p
Lri)=— 1+ )2—<—) 2P (316a)
(-+) Bo g Eo /] Bo Eo po (
=l PP AP (3.16b)
Po Po Po

(p=mgyv).

In the following we assume that the ring consists of
bending magnets, quadrupoles, skew quadrupoles, sol-
enoids, cavities and dipole correction coils. Then the vec-
tor potential A can be written as [22]:

e 1 1
A = —— . .7 e 2_’2 .
poc 2[1-+-K,, x+K, ]+2y (z2—x*)+N+xz
L eV(s) cos| h 2—7[ o+
B 2mh E, L’Te
+— (AB.-z—AB.-X),
Porc¢
e
——A,=—H-z, A,=+H-Xx,
Po-¢€ Po¢C

(h=harmonic number) with ¢, N, H and K defined in [1].

Expressing also the precession vector £ in (3.15) (see
(2.3)) in machine coordinates, we obtain the Hamiltonian
for the canonical variables

X, Z, 0, 0 Dy, Pz Pos B

and the canonical equations of motion read as:

%x_ Zi (%,,x: _%_Jf, (3.17a)
%g=+%, dispﬁ_a;f, (3.17¢)
;;“*%’ - hag. (3.17d)
This can be written in matrix form

§;9=—:‘%’ (3.18)
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with
Y'=(x, Py, 2. P2, G, Pas 0, ), (3.19)
where the matrix 5 is given by:

S 00 0

0 S, 0 0 0 -1
S=~ - = - Sz=< ) (3.20)
“lo o os0 T ko

0 0 0 S

Remark. Equation (3.13) is valid only for ‘protons’, or
more precisely, for all situations where radiation is negli-
gible. For electrons we need the extra-term in the Hamil-
tonian [1]

”rad‘_“cl.[Kz—*_Kz]'a,
2 270
(where C,= 3e Eq

(for vy~ ¢) in order to describe the energy loss by radiation
in the bending magnets [23, 24].

(3.21)

4 Introduction of an eight-dimensional closed orbit

As can be seen by a series expansion of the Hamiltonian,
H contains terms linear in the coordinates [1]. As in
I these linear terms can be eliminated by introducing
a new 8-dimensional reference orbit. This orbit can then
also be used to construct a new reference frame for the
spin motion. In the new variables spin-orbit maps are
origin preserving*

4.1 Definition of the eight-dimensional closed orbit

The 8-dimensional closed orbit:
Yo=(¥o(s), 2 (s), Bo(s))
contains a periodic orbital part
Yg =(X0, Px0} Z0s Pz05 G0 Pso)s
with
Yo(s+ L)=Yo(s),
and a periodic spin part o, fio:
%o(s+ L) =0/ (s),
Bols+L)=Po(s),
which defines (see (3.10)) a periodic spin vector
EO(S)E 50; . es'*‘éo:z e +Eo.ne, =éo($ +L),
via
éo.v= o\ 5-—%(0((2, + B3),
Eo;::ﬁo Y é—i(ag +B3).

gOz= E_%(a(2)+ﬂ(2))

(4.1a)

(4.1b)

42)

* To introduce normal forms we need origin preserving transforma-
tions
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The equations of motion read as:

d . N

a' 0=_.S_.a§]0‘#(y0?s)s

or

d d -

a)’0=§’6y_~#(ym“o,ﬂo;s), (4.3a)

0
d - d - d - R

es'afo.«'*'ex'a;fox+ez'aCo:=Q(°’X§o, (4.3b)

with

QO=0(y,, s) (4.4)
S; 0 0

S=—|0 S 0 |, 4.5)
0 0 S

22

and S, given by (3.20). So [yo(s), %o(s), Bo(s)] is a periodic
solution of the combined equations of motion.
Using &, we can now construct a periodic spin frame

(no, m, 1):
[no(s+ L), m(s+ L), I(s + L)] = [no(s), m(s), 1(s) ],
along the closed orbit [1] with

no=E0/1&l, (4.6a)
ny(s) L m(s) L1(s), (4.6b)
no(s) =m(s) x I(s), (4.6¢)
[no(s)|=|m(s)|=[k(s)|=1. (4.6d)
and
e — Nos+e -—d—n +e -En =0 xny(s) (4.7a)
s dS Os X dS 0x z dS 0z 0\3)s .
e,r— my+e g my+e 4 m, =0 x m(s)+1(s)
s ds s X ds X z dS z
d
. ;:ls Wspin(s), (4.70)
9 e Y i —Qo -
€, is ls+e, s I,+e, ds L,=Q x1(s)—m(s)
d
‘ a ‘/’spin (S), (47C)
l1l/spin(s + L) - 'l’syin(s) =2n- Qspim (48)

whereby we have used:
Ny =Hog* €+ Moy €x+ Moz * €,
m=m-e,+m,-e.,+m.-e,,

I=-e+/.-e.+1,-e,.

4.2 The oscillations around the closed orbit

We now use the 8-dimensional closed orbit together with
1(s), m(s) to construct new canonical spin-orbit variables.

The canonical transformation for orbit and spin will be
carried out separately.

4.2.1 Canonical transformation for the spin variables.
Following the method of Section 2.5 we transform from
the e,, e, ¢, basis to the ny, m, 1 basis:

. és! Ex: éz = ém Em: C:la (49)
with
%=és'es+£x'cx+éz’ez=gn'n0+5m'm+£l'ls 4.10)

and introduce for E,,, «f,,,, E, the canonical variables 7, 73:

=i JE-1E2+ ), @.11a)
E=f-VE-4@E+pY), (4.11b)
E=E-432+p). (4.11¢)
Then (4.9) is a canonical transformation:

%, f=d,f, (4.12)
and the new Hamiltonian . reads as:

H (X, 2,0, % P o> Pirs B3 )= Hogy+ Hapins (4.13)
with

H oc(X, 2, G Py Pas Do )= Hors; (4.14a)

{ spinX, 2,0, & P Dz» Pas B 9)
={Q(x, 2, 6; Px, Pzs Dos ) — U(X, 2,05 P, P2 P S) }
G+ &m0,
(see (2.28) and (2.40)) and

(4.14b)

U—l ng x| e gn +e gn +e Sn
_2 0 s ds Os X dS 0x z dS 0z

d d d
+mx es-ams+ex-£mx+e,-$mz

+1x il+e iI+e il
st TS gy T s

d
==|ny x(Q®+ng)+m x (Q‘o’ xm+l-a§ |,(/,P,,,(s)>

0 A s
lx(ﬂ( 'x1—m ds wspin(b))jl

-+

39(0)—ﬂ0‘(9(0)‘ no)—‘m '(Q(O) 'm)

B | -

-1 (Q(U) 'l)+(“0 +llo) .di '/’spin(s)]

S
1 d
=§ [39(0) —ﬂ(o)+ 2ng a; lllsplﬂ(s)]

=Q© +hg* % Ipspin(s)}~ (4.15)



Thus we find:
‘ipin(xs z, 0', &v sz pz’ pa! B.’ S)
d " - -
={n_g(0)_n0'EWSpin(s)}'(é'n0+§m'm+él’l)
=m(x,z,6;px,p,,p,;-v)~[5n~no+5m-m+51~l]

’>n d 'l/spm(s

"‘[-fn nO 0))+Cm (m w)+§l (l (1)] {n wspm(s)

nos(3) nOx(s) "oz(s\
- my(s)

I(s)  Ls) L)

my(s)  my(s)

d
& d’spin (S)

o7

=(5—§(&2+52),a~\/é—§(a2+52),ﬁ-\/é—i(&%ﬁﬁ)

nos(s) nOx(s) noz(s) D
m(s)  mx(s)

s) Ll Lls) ) \o;
1, ] d
- ‘té—i (“2 + ﬁz)—J * a 'l’spin(s)s

m(s) || Ox

4.16)

where we have introduced for abbreviation the vector

O=0; e+, e+, e, =Q—Q 0, 4.17)

This is equivalent to the form for the spin Hamiltonian
given by Derbenev [4].
Using (3.15) and (4.17) and writing:

y=Y—VYo, (4.18)

the vector @ can be linearised with respect to the orbital
variables as in paper I so that in the spin-Hamiltonian
(4.15) we can put:

a’!:«

Wy

by

Oy |=Fae- b (4.19)

z

Ps
with the F;; as in [1]*.

* The full @ could be used if needed, but the linearized form is often
sufficient [2, 41, 25]
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With (3.13), (4.13), (4.14a), (4.16) and (4.19) we have the
Hamiltonian for the canonical variables

~

X,2,0,8; Pxy Pz Do B.

4.2.2 Transformation of the orbital variables. The orbit
vector y(s) can be written as a sum of two components (see
(4.18)):

¥(8)=Yo(5)+¥(5), (4.20)
where the vector ¥(s) describes the synchro-betatron oscil-

lations about the new closed equilibrium trajectory yo(s).
The transformation

vid,f=yia =2 f=f (4.21)
can be obtained from the generating function [1]:
Fa(x, Ps; 2, P2 6,503 4,55 )
=(x—xo)*(Px+Pxo) +(z—20) * (B +Pz0)
+(0—=00) (ot Poo)+3+ B +1(5) (422)

with an arbitrary function f'(s). The transformation equa-
tions read as:

0F oF
px=0_xl=ﬁx+px09 i=0ﬁ2=x—xo, (4233)

x

oF JoF
pe=— =it P, I= aﬁz=z—20, (4.230)

aF, . OF
Pe=—"7—" oa _pa+p003 a=aﬁ2=6—o—0: (4230)

a

which reproduce the defining equation (4.20) for y.
Choosing the function f(s) such that (% f(s) becomes:

d d d d
d—sf(S) = XO(S) N a pr(S) + Zo(s) * & PzO(S) + 00(3) * a} Pao (s),

we furthermore have:

0F, dxo dpxo dzg
—_—— —— o X ————
0Os ds P*7gs as P-
dpzl) dGO dPao
T e Pty C

=—px. A_ —x; [—
OPx Jy=yo:a=f=0 X Jy=ya;a=§=0

(ai) (aif)

—pz. _z. —
0P: Jy=ypiz==0 0z Jy=yoz=f=0

) (ai) (ax)

=z | 2
’ 0P, y=yo:i#=f=0 do y=yo;a=f=0

-y (@i)
oy -yo;a-ﬁ-o’

(4.24)
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and therefore:

. o o
A x;rb+x;pin_’”=f_y‘< A )
Y Jy=vo.3=f=0

= Hoes - ( oy )y =yo:a=f=0

‘,? v spm
K pin y( ay )y-yu:d~5~0

= "mrbll + '#;pin > (425)

with

7 v h'j-nr
r)taorb = xorb -y u s (4263)

5y y=yo:a=f=0

~ ~ oA,

Hogin=Hspin—¥ | — : (4.26b)
0y Jy=yoa=f=0

For the linearised form of @ (see (4.19)), (4.16) and (4.26)
lead to:

=(&——(&’+ﬁz)a\/é——(dz-i-ﬂz)ﬁ\/{— (o?’+ﬂz))

nas(s) nOx(S) "oz(s) Wy
my(s)  my(s)  ms) | | o«

I(s) L(s) Lis) ) \w.

1
+ 5 [ + ﬂl] lPspm ('5)
nos(s) Nox (3) Rz (S) @y
—(é, 0’ 0) ms(s) mx(s) m; (S) Wy

i) L(s)  L(s) /] \o
L P D N PV
=<_§(a +I;2),O(° 6_2(a2+ﬁ2)’ﬁ'\/§_4(‘x2+32))

nos(s) nOx(s) naz(s) Ws
| my(s)  my(s)  m(s) Wy

I(s) Lds)  L(s) | \o:

1 ~_d
+§ [&2+B2] * a'; 'llspin(s)

<G

nos(s] n()x(s) noz(s) Oy
* m,(s)

(s)  Lls)  Lis) [ \o.
5 & \? B‘ 27 d
+2|:(\/£) +<\/2> ] ds ‘l’spin(s)a
and at second order the orbital Hamiltonian ,,, takes
the form [1]*:
‘fmb(x’ Z> &- pxa p'.z’ ﬁa'; S}

my(s)  m.(s) || ox

(4.27a)

11,
=—e—=e P K K P

2 '}’(2) pa [ X+ ] p"

1

5-{[ﬁx+H-Z]Z+[ﬁz—H'f]2}

1
+5{(Ki+9)- X2 +(K2—g)- 22N - 3%}

1, 1 eV(s) 2n

20 ﬂo E, che 7 +COS ©. (4.27b)

With (4.27) we have the Hamiltonian for the canonical
variables

and the canonical equations for spin-orbit motion are:

:_sz=+%, disﬁﬁ_ac;if, (4.28b)
%5=+%{? %5“=_iz’ (4.28¢)
;S&_Jr%, Ly a# (4.28d)

Remark. Using (4.11a, b, ¢) which determine the spin com-
ponents é,,, Em- & of the spin vector & (see (4.10)) in terms
of the spin variables @ and f, the spin Hamiltonian /.,
in (4.26a) may also be written as:

'ﬁspin=(jn' En+§§m' £m+$§l' g:l—é' [nﬂ'm_Ws’pin(s)]a

(4.29)
with
Q=10 —5i(s), (4.30a)
Q,=m-o, (4.30b)
=10, (4.30¢)

and @ given by (4.19).

* For simplicity we treat the orbital motion only in the linear form.
But the construction of normal forms developed in Sects. 5 and
6 works also for a nonlinear orbital Hamiltonian up to an arbitrary
order



Since the spin components E,, E. & obey the Poisson
bracket relations:

_0& & & & -

(£ En oz 0om Oom T61 062 31
(émém}a,ﬁ EY aﬂ 6,3 EY: Cla (431d)
{&ms E)ai=En 4.31b)
{Eh En}iﬂ= Em: (4310)
the equation of spin motion
d -
&g 1§ ‘%pm}z[!
takes the form:
L I I (4.32a)
dS " - -m ’m 3 .

3 Ql i
or

& /&
e =6 & | 4.32b)
ds{ ~ -\

él él /
with the notation:

0 -0, 8,
0=10Q, 0 -0, 1, (4.33)

-0, 9, 0

representing the BMT equation in machine coordinates
with respect to the dreibein

(ng, m, 1).

Neglecting the SG-forces, the equations of orbital motion
read as™:

d 0 - d J -~

— X=4— N —~x=_'—\_~ orbs 4.34
ds™ * ap. ™ ds P oxT " (4.342)
d J -~ d d -~

—i= — fe= . d.

dS z + aﬁz orbs dS Pz -..‘*’orb ( 34b)
d 0 - d 0 -~

Rl S il S 4,

dS g + ai’g ‘#orb’ ds Pa 36_ %orb ( 34C)

This canonical system is then separate (and independent)
from the spin motion and corresponds to the fully coupled
6-dimensional formalism [ 19, 20] in the orbital variables

(X, Px> Z, P2, G, Po)-
These must be known in order to solve the equation of

spin-motion (4.32)**.
Equations (4.32) and (4.34) were already derived in [6].

* The term —¢- J[mg @ =y (5)] in (4.29), comammg only orbital
variables in linear form, has no influence on the spm motion. It may
be subsumed under the orbital Hamlltonmn .;fo,b in (4.27b) (instead
of the spin Hamiltonian Jf ) producing via the SG force a very
small closed orbit shift Whlcl’l can be neglected

** The neglect of SG effects when calculating spin motion is consis-
tent with the philosophy of working only to first order in A [1, 3]
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4.2.3 Series expansion of the Hamiltonian and the lin-
earised equations of motion. For many purposes in spin
physics e.g. when calculating electron spin polarization far
from spin-orbit resonances, it is sufficient to consider spin
vectors which are almost parallel to ng [2, 25]. In that case
(1/\/5) ( ﬂ/\/- &) are small and the combined Hamiltonian
can be written as a series in the form:

%=i2+i3+"'.

where 2, (n=2,3,...
coordinates

(4.35)

) contains terms of n order in the

~~~..-.

To obtain linearised equations of spin and orbit motion
we only need the component #, containing the quadratic
terms of the variables. This is given by:

H(X, 2, G; Pys o> Dos 8)=HL™ + ATV,

Jf(orb)— Po—[KyiX+K,- 2]+ Py

NI -
cmr -

N | — N'—‘\d

~A[px+H-21+[p.—H-3]?}

. 1 .e*V(s).h.zl coSs
B E, L

o,
ﬁ;spin)=ﬁ - (4, 5)(7}? ’Z:‘(S) ';':(S)) o

@,
'//spm( 5‘)

myls)  L(s)
~VE (O gy ;)| Mls) 1(5)

e[+

TN
—= R
N——

m.(s) L(s)
1
+5 [+ 7] - '//spm(s) (4.36)
where we have written for abbreviation:
G,=K2+g. (4.37a)
G,=K2—g (4.37b)

(g, N, H, K are defined in [1]).
The corresponding canonical equations take the form

[1]:

g y y

& i |=A4- f s (4.38)
p p

with

(4.39)

A(S) (»oxb B )
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and
0 1 H 0 0 0
—(Gy+H?*» 0 N H 0 K,
Aon(s) —-H 0 0 1 0 0 440
orb(8)= , 40a
= N —~H —(G,+HY) 0 0 K. (@40
-K, 0 ~K, 0 Vo 1 o 1/92
cVis T
0 i
0 0 0 Fo B L cosp 0
my(s)  s(s)
B(s)=—/E-S-FT| my(s) IL.(s) |, 4.40b The linearization of the spin motion is valid if the
B) \/E - = mas) (9 ( ) spin-vector & defined by (4.9) is sufficiently parallel to ng.
m.(s) 1.(s) The solution of (4.42b) can be written as:

Cls)=/- 0 +1Y (myls) my(s) myls) F_S.BTS £(8) =&+ G(s. 50) §(s0) + D(s5, 50) &(50)s 4.45)
= A1 0/ L) K LT T ith

@400 W
o= o) g ore @40y G5 50)=D(s 50)- | 45+ D5, )+ Gofl)- M5, 50
L _ 5 s
Here the matrix B(s) describes the influence of T N .
Stern-Gerlach forces on the orbital motion and the = ! ds-D(s, $)- Go(3) - M(5, s0), (4.46)
matrix C(s) the influence of orbital motion on the spin °
motion. The matrices A(s) and Dy(s) correspond to the and
“unperturbed” spin-orbit motion. D, so)

DAS, So)=

Because the equations of motion (4.38) are linear and
homogeneous, the solution can be written as:

¥(s) ¥(50)
a(s) | =M(s, so)- | &(so) (441)
Bis) Blso)

This defines the symplectic 8-dimensional transfer matrix
M(s, so) of linearised spin-orbit motion.

Remark. Neglecting the SG forces by putting the matrix
B to zero, the linearised equations of spin-orbit motion
(4.38) take the form:

d

& ¥y(s) =A orb(8) ¥(5), (4.42a)
d =

3 86=/2-Go(5)¥(5)+ Do) (s, (4.420)
whereby we have written:

Els)= (Zi), (4.43)
and

C)=/E Gol). (4.44)

In this form (4.42b) and (4.43) are the basic equations for
spin motion used in the computer program SLIM [2, 23].
We have thus derived the SLIM-formalism from canoni-
cal equations based on a polynomial expansion of a spin
Hamiltonian.

( Cos [lpspin (S) - ‘l’spin (S())] sin [!//spin(s) - wspin(so)] )
- Sin [‘/’spin(s) - '//spin(so)] Cos [Il/ (S)spin - ll’spin(so)] ’
(4.47)

where M(s, so) denotes the 6-dimensional orbital transfer
matrix with respect to (4.42a) which is determined by the
differential equation:

%M(Ss 50) = A oru(8) M(s, So), (4.48a)

M(s, so)=1. (4.48b)

In this approximation, the 8-dimensional transfer matrix
M(s, so) defined by (4.41) takes the form:

- M(s, so) 0
M(s, so)={ — 1= - .
_(S, 50) (\/E . g(s, 50) Q(S, Sg))

In particular, one finds the following expressions for the
revolution matrix M(sq+ L, so):

- M(so+ L, so) 0
M(s +L.s)=<—-, =
TR B Glso+ L, s0) D(so+ L so)

(4.49)

> . (450)

with
Cos [ansyin] Sil’\ LGQspin] (4 51)
- Sin [Zanpin ] cos [27[Qspin ] ’ '

where the quantity Q,p;, defines the (linear) spin tune on
the closed orbit (see (4.7)).

D(so+L, so)=(



5 The definition of normal forms and the n-axis

The nonlinear equations of spin-orbit motion represent
a periodic canonical system described by a Hamiltonian

H(X, Pxs 2, Di3 O, P % B 5) = A O 4+ D), (5.1)

with an unperturbed part

HO=A = Curpz-us(5)
uyFpuztetug=2
« xH1phaZIIpHaGHS Pk Bhs (5.2a)
and a perturbative part
A= Z Hn= Z Z Cumz--~us(s)
v=3 pytpztotpug=v
. xl‘1pgzzmplzmo#spgoall7ﬂlls’ (Szb)

where the ¢(s) cocfficients are periodic functions*.
For aring of length L the periodicity condition reads as:
H (X, Px3 2, P23 05 Do 0 Bi s+ L) = H (X, Py 2, 23 0, P 0. B 5).
(5.3)

As in Sect. 3 the coordinates x,z, ¢, 2 and momenta
Px» P=» Pas B can be combined into the vector

X Y1
Px Y2
z V3
o= "= (54)
o Vs
Do Ve
@ V7
B Vs

and the canonical equations of motion may be written in
the form

d s
T S (5.5)

Our aim now is to find a canonical transformation

X, Pxs 2Pz 0, Py O PP J 1, Prpy T 1, @y I aps Prva Iy
which brings the Hamiltonian into normal form:
.)f—n}{”=9?(-]n‘]un/m,-IIV),

where J; and @, are acfion-angle variables so that the
spin-orbit vector y can be written as:

Y=8(P;, @11, Ppyr, PrviJ 1. J1r, T 1, T 13 9), (5.6a)

* For convenience we have changed the notation from (%, p,; Z P
G, Py d, B) to (x, PyiZ. P 05D, % ), from # to # and from x’ in
(4.34) to A,
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obeying the periodicity relations:

(P, @it Prar, Prvi I 1 I J 1ans J1vs9)
=1(P;+2n, Dy, Py, Povs I 1 I Ty J v )
=1(P, @y +2n, @y, oy J 1, 1, Ty v S)
=0(@r, Py, Py + 21, Prvi 1, Iy I iars v 8)
=0(®y, Py, Py Py + 2100 1, Ty T 14, T v 8)

=10(Py, Py, Ppyy, Pryi 1, J 1 T 1ins Jyvi s+ L). (5.6b)

The content of the parametrization (5.6a) is as follows.

If the SG forces and @ were to vanish, there would be
no spin-orbit coupling. In this case the J, @,
(k=1I,1I,I1T) would parametrize just the orbital motion
and Jpy, @5 would parametrize the spin motion. But
since in reality there is spin orbit coupling the
Ji. @y (k=1 1I,11]) become slightly modified by the
(very small) SG forces. For the same reason the orbital
motion acquires a small dependence of J;y, ®;y. Likewise
the spin motion, described by the components y,, yg be-
comes dependent additionally on the orbital motion
through the J, &, (k=1, 11, I1I).

Using this parametrization we can now obtain the
n-axis, the special solution of the BMT equation on a par-
ticle trajectory needed in the analytical theory of radiative
spin polarization. The n-axis is a unit vector obeying the
following periodicity conditions [3, 5, 26]:

0 (P, Prp, P Iy J 1 J1ars S)
=0(P;+ 27, Pyp, Pryps I 1, I 11, T 11159)
=0(Pr, P+ 21, Pyyy J 1 J 112 11139)
=0(Py, Ppp. Pryy +2m,J 1, I 11, I 11159)
=n (P, P, Py, J1, Iy Jiris+ L), (5.7)

and is thus a single valued function of the orbital phase
space coordinates and azimuth. Within this formalism,
n is simply the unit vector parallel to the spin vector ,
obtained from the elements y,, yg by setting J;, =0*. At
J1v=0 the vector y becomes independent of @,y so that
we can write:

B Vs

Using (5.8) the components of the n-axis with respect to
the dreibein (ny, m. 1) can be obtained from (4.10) and
have to be multiplied by a normalisation factor such that
it becomes a unit vector.
The action-angle variables Jy, @y, (k=1,11,II11,IV)in
(5.6a) can be constructed iteratively**:
=lim J,

vy w

B, = lim .

Lmd ]

o
CnE< ):(y7) =Cn(¢h @lh djl!I;J],J",J“,; S). (58)
Jiy=0

* Since S is in normal form J,,, is an integral of motion
** In practise one would only calculate to a finite order v=N



156

As a first step we introduce the variables (J{, #{”) which
are action-angle variables with respect to the linear
motion. In this way we obtain the Hamiltonian in a form
which can be used as the starting point for canonical
perturbation theory (Sect. 7). In particular we show that
the variables J{, @, (k=1I,I1, III,IV) introduced to
describe linear motion remain canonical in the presence of
the perturbation ",

6 Variation of constants in the coupled case
6.1 The unperturbed system

In this chapter for abbreviation we write:

J K= J ){O),

(pk = dalo) .

6.1.1 The equations of motion for the unperturbed sys-
tem. Taking into account only the first component, # ),

of the Hamiltonian (5.1) we obtain from (5.5) the equations
of motion for the unperturbed system:

d - 0H©
Sy ¢ Y
ds? 5 oy’
or
g ©0)_ 4.y@ 6.1
dSy _4 y 3 ( . a)
with

- (?-.#(0)
A'Y‘°’=—§°W, (6.1b)
and

©)
yV=

Because the equations of motion (6.1) are linear, the solu-
tion can be written in the form:

YO(s)=M (s, 50) ¥V (s0),

which defines the transfer matrix 1\_? (s, So)-
From (6.1), M(s, so) is determined by the differential
equations:

(6.2)

%A_?(s, so)=A(s) M(s, so), (6.3a)

M(s, so)=1. (6.3b)

Since the variables x, p.. z, p.. 6, p,, %, § are canonical, the
transfer matrix is symplectic [27]:

_AZIT(S’ 50) * S' M(S1 SO) =5‘ (64)

The symplecticity condition (6.4) ensures that the transfer
matrix, M(s, o), contains complete information about the
stability of the (linear) betatron motion.

Differentiating (6.4) with respect to s and using (6.3)
one obtains an alternative relation for symplecticity in the
form:

AT(s)+S+S- A(s)=0. (6.5)
6.1.2 Eigenvectors for the particle motion; Floquet-the-
orem. To come further we need the eigenvalues and the
eigenvectors of the matrix M(s+ L, s):

M(s5+ L, 5)V,(s) =4, v, (5), (6.6)

in order to study the normal modes. We proceed in the
usual way [28]:

_ The vector v,(s) in (6.6) is an eigenvector of the matrix
M(s+ L, s) at point s with the eigenvalue 4,. The eigen-
values are independent of s.

If the eigenvector v,(so) at a fixed point s, is known,
the eigenvector at an arbitrary point s may be obtained
by:

V,(5)=M((s, 50) V,(0)- (6.7)

Since A_Z (s+ L, s)is symplectic and we assume stability, the
eigenvectors v,(s) come in complex conjugate pairs

Vi, Vo=V (k=L 1L 111, 1V),

with complex conjugate eigenvalues.
In the following we put:

s a—ie2nQk
(e e, (©3)
(k=L 11,111, 1V),
with

k=0 (6.9)
where Q, is a real number.

Defining u,(s) by

Vuls)=u,(s)-e7H 2000, (6.10a)
we find:
u,(s+ L)=u,(s). (6.10b)

Equation (6.10a, b) is a statement of the Floquet theorem:
vectors v,(s) are special solutions of the equations of
motion (6.1) which can be expressed as the product of
a periodic function u,(s) and a harmonic function

e~ i-27Q,-(s/L)

The general solution of the equation of motion (6.1) is
a linear combination of the special solutions (6.10a) and
can be therefore written as:

y(s)= > {Ag-uy(s)-e 2re G0

k=IIIIII1V

+ A u_y(s)e et 2 G (6.11)



We have the orthogonality relations:
Vi (9) S vils)= —v74(s)- S v-y(s) #0,
v, (5)+ S v,(5)=0 for p#v,
(k=1 11,111, IV).

Furthermore the terms v, (s)- 5 -v,(s) in the last equation
are pure imaginary:
[V (9 S vu(9)1" =¥ (95 vu(9)= = [V (8)+ S+ v, ) 1.

(since ﬁ F=— S ). We choose to normalise the vectors vi(s)
and v_,(s) at a fixed point s, as:

Vi (50)* S *Va(so) = —vE4(s0) - S vy (s0) =1,
(k=1I, 11, III,IV).

This normalisation is valid for all s if we use the definition
in (6.7) for v,(s). Thus we obtain:

v (5)- 5
rios

Note that the Floquet-vectors

Vi(s)= —v24(5)- S+ v _w(s)=1,

v(s) 0 for LA V. (6-12)

() =7, (5) - 270 00D

then fulfill the same relationship:

{u:(s)s‘uk(s)=—u W) S u_y(s)=i
V.

6.13
ul (8)-S-u,(s5)=0 for p# (6.13)
Remark. The eigenvectors can be approximated by ne-
glecting the Stern-Gerlach forces (matrix B in (4.39)) and
using the matrix M(sy+ L, so) in (4.49).
For more details see Appendix A.

6.2 The perturbed system

Using these results we can now introduce a new set of
canonical variables which will be needed later.

We first remark that the general solution of the unper-
turbed equation of motion (6.1) may be written in the form
(see (6.10a) and (6.11)):

y(s)= > {Ak V() + Ak v_i(5)},

k=1,11,111,1V

(6.14)

where A,

I IV).
In order to solve the perturbed problem (5.5) we now

make the following “ansatz” (variation of constants):

ye)= Y (A W+ A9 vils)).  (6.15)
k=1,11,111,1V

Writing then for the coefficients A, and A_, (k=1 1I,
HIIV):

A_, are constants of integration (k=I,II,

A=/ J(5)-e7 ¥ (6.16a)
A_k=\/.]k(s ‘e+iwk(s), (6.16b)
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(6.15) takes the form:

y= Y SN (wls) e

k=111, 1111V
=y(8, Yy Ji): (6.17)

Note that in (6.16) and (6.17) the s dependence in Jy, ¥,
is to be understood as implicit, not as explicit. We intend
to treat the Jy, ¥, as dynamical variables. The explicit
s dependence of y(s, Y, Jy) is incorporated in the eigen-
vectors v, (s) which obey the unperturbed equations of
motion (6.1).

From (6.17 we now get:

=i (s) +v k(s) et i (S)}

dy dy - 0
Jp=~—S§- . .
s~ +Z aw, "”‘+Z or 2%y (6.18)
Then with
dy o on©®
P -S o (6.19)
we obtain:
o
Ji=—=8§ T . 6.20
Lo Wt S iS5 (620
Furthermore from (6.17) we have:
oy .
= —i/Iils)
W
{vils)-eTWR—y_y(s) e T}, (6.21a)
oy ! {vils) e Mrgv_ i (s) et VR}. (6.21b)

20

Taking into account (6.12) we obtain the equations:

R R i e

&y
3 wl—z-\/Tk-ém, (6.22a)
(i eyt e 8. Y g (6.22b)
~ o
, A
(v et pyt, -e’"‘“‘}-S_-%:O, (6.22¢)
. Y 1
(i eetyt et S Y ol S5, (622d)

=2i.
aJ, ! 2.\/‘]_*

Then from (6.20) with the help of (6.22) and the relation

Vo=V
_w"}'S'[-E-éf;“}

2 ST i= e

tive Lyt e

=I(V_k)T.c+im+(vk)T.c-iw,‘}.a (1)’
oy
or
’r__ 17 +|Ulk =i T, ”‘ w
'/’k—z‘\/*'k' {V_ +V +e } ay

_oyT o _an®

aJ,‘ ay —a—‘]k, (6233)
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and
oD
2%37 Jim e v [‘- e J
o° k
n
={(v_) etV —(v)T eV ﬁ"f
) o
= ceT ik _y LetivkT,
{vox-e vi-e Vg oy
or
. . X g‘;g}(ll
Ji=1-\/J_k'{vk-e”“""—v_k-e*'%}T. >
w n
= ay 5# 6‘# . (6.23b)
all’k 5)’ Oy

So, by this ansatz, the motion of J and ¢ can be attributed
entirely to the perturbative part # ‘) and the unperturbed
motion is embodied in the motion of the eigenvectors v,(s)
[7].

The relations (6.23a, b) were already used in [7] and
are similar to those of the uncoupled case [29, 30, 31] and
can now be the starting point for detailed investigations of
specific cases™.

Remarks. 1) From (6.23a, b) it follows that the quantities
Jo and W, (k=1 11, 111, IV) defined by (6.16a, b) are ca-
nonical variables and that (6.17) represents a canonical
transformation

X. Pxs 2, D22 05 Pas % B=Wr S Wan T W Jinn Yivs Jrv

(6.24)
2) From (6.15) and (6.12) we obtain
Ay=—1i+v; (s)+ S - Z(s), (6.25)
and from (6.16a, b) we have:
JHs)=1% ()-8 -2(s) | (6.26)

In the special case of vanishing coupling (see (6.45)in [28])
we may thus write:

Jyls)= {[oy y+By- 1> +y%. (6.27)

213 © "
The terms on the r.hs of (6.27) just represent the
Courant-Snyder invariants for the linear uncoupled case.
Therefore the term on the r.h.s of (6.26) may be interpreted
as the generalized Courant-Snyder invariant for the linear
coupled case.

3) Writing the Jacobian matrix

dy dy dy dy oy oy <y 65’)
I= e T e 3 6.28
- <0¢’1 CJI Olﬁu a-]u alﬁm 0J1u a'l’lv J ( )

as an 8 x 8-matrix written as a row of column vectors
(éy/éyr;) etc. and taking into account (6.21), the relations

(6.22) may be combined into the matrix form
s'-S.7=5. (6.29)

* 1In the case that the linear motion is uncoupled the Hamiltonian in
(6.23a, b) can also be obtained by a generating function [32]

This matrix equation may also be written as:
F-S-I7=8§,

(6.30a)

or
(ﬁzﬁﬂfiiiﬂﬂ.)

=S, (6.30b)

———
|
N
=5
|
==
-
~

since
TS F=S=[S"-£7]-[S-£]=1
=>[§7- s ]=[S- 4]
=[S-£1-[$7-£"]=1
=8 7-[ST-£7]=8
=48 57=5.
In terms of components, one obtain from (6.30b):
{ [w, Pl n=1, . (6.31)
[u, Iy, =Tt Po ],y =LPus PoJw.y=0 otherwise,
(u,v=x, z, g, ®),
\tr)vhere [ /2 9)w.n represents the Poisson bracket defined
y:
LS 9)w.n= [6‘3{ %-‘Ef‘ 22]

aJ, oy
-]
Ny 0dy oIy g

[6f_6g_6f.69]
aw!lf a‘]lll 8‘][11 a‘lllll
+[ of o9 o g J

iy 0y oy iy

These relations demonstrate again that (6.24) represents
a canonical transformation [33]. The new Hamiltonian in
terms of the variables Jy, ¥, is just # 4.



4) Starting from the Floquet-form (6.11) of y(s) and using
(6.16)*:

yo) = Y

k=II1,II11V

ST {uls) e u(s)-e %} (6.32)
with

N
<Pk=llu+2an-z, (6.33)

we may define another Jacobian matrix

7 I o B I ) B B M
B 3‘pl’a-’1’a¢u’a]u,aq’lu’a]ur’ad&lv’a’w '

in terms of the variables J,, ®,. This obeys the same
relation as £

-~

FT-§5- =8, (6.35)

as may be seen by using (6.13). Therefore @, J, are again
canonical variables.
For the unperturbed case:

H#' W =0 = (J,=const, ¥, =const),
k

and

% =0, (6.36a)
ds

d‘Pk _ 2n

&L O (6.36b)

So in that case, the quantities J, @ appearing in the
Floquet form (6.32) are standard action angle variables.
The transition

Vi Ji— Py, jk=Jk
may be affected by a canonical transformation using
a generating function of the form

FS(JIH (pky S)=

k=I,II,ITI, 1V

2
{-J,,-¢k+1k-T”Qk-s}. 6.37)

The corresponding transformation equations:

6F3 27'[
wk—_a_‘]k—d}k_z Qk+s, (6.38a)
- 0F;
Jk——a—.],‘ (6.38b)

are indeed identical with the defining equations for @, and
Ji (see (6.33)). N N
The new Hamiltonian 5 in terms of J,=J, and
@, then reads as:
0F;

B 93
+ ds

—#Vy ¥

k=III.IIT,.IV

2n
Jk.f Qk' (639)

* Recall, that in this chapter J,=J{?, &, = ®{*. Thus:

o= ¥ T fuy(s) e TN fu_y(s)- e 1)
k=I11.II1.1V
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This form of the Hamiltonian is useful for calculating the
detuning terms [34, 32].
5) From (6.35) one obtains:

7.8 F7=8, (6.40)
or
Uy Py l(e, = 1,
{[ Puli@. s . (641)
[u, v]@, n=[tt, Po]0.5y=[Pus Pol@,y =0 otherwise,

(w,v=x, z, 0, o).

Moreover, since the transformation inverse to (6.24):

Vi, JoVin S J i Y. Jiv =X, e, 2, P22, Pas O By
(6.42)

is also canonical one gets in the same way:

{ [Ps, Jl](y,Py)= Ot

[‘Iln']l](y.py) = [d)k’ (bl](y‘py)o’
(y=x, z, g, 2).
6) In lincar order J in (6.39) takes the form:
- 2n
H = Yo e T Or.

k=L1II11,1IV
Thus
JkEJ,EO)

is an integral of motion. The n-axis as defined through
(5.8) and fulfilling the periodicity relations (5.7) is in this
order proportional to (see (6.32)) [35]:

= 7. Uy e it [un]"). +j¢k}.
s k:l,;l,lllﬁ {(Um}) © +([uka]* ¢

(6.45)

(6.43)

(6.44)

A general spin-vector can then be represented by:

Y1 - . Uy La—iPk [um]*). +i¢>k}
()’s) St {(“&x) ¢ +([“k8]* ¢ k=1v (6.46)

So in first order a spin precesses around the first order
n-axis with frequency Q,y (see (6.33)).

7) In linear order (see (6.44)) we now introduce new ca-
nonical variables*:

2.," + COs d)k’

2Jk - sin ¢k9

by a canonical transformation

D, Je—= 4k Prs
using the generating function:
Fi(®y, gi)=1 g -tan &,
0F, 1 1
Jom 4t oty
b 2 29
- k cos” Pu (6.48b)

! tan @,
— e — -tan
Pk E gy 1an @y,

Q=+ (6.47a)

pr=— (6.47b)

(6.4%2)

* We have already come across this form in (2.22a, b}
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(note, that the defining equations (6.47) and g, and p; are
reproduced by (6.48b)) to obtain the new Hamiltonian:

a=#+1_ 7
as

2n
[P +4i1- T Qs (649)

= y 1
k=1,10111,1v 2
representing four s-independent uncoupled harmonic os-
cillators and have diagonalised the Hamiltonian (5.2a)
which described four coupled Hill oscillators™*.
Using the new variables ¢, and p;, the spin-orbit
vector y(s) in (6.32) may be written as:

1
¥(s) =7‘§' . “;”ll W{ [gx+ipi] - me(s)+ [qx—ipe] -u 4 (s)}

1
— 75',(:, ,,z,,, . {[u(s)+u_y(s)]

Qe +i[o(s) —u_y(s)] - pi}, (6.50)
or in matrix form:
Y(s)=R(s)-x(s), (6.51)
with
R=([u;+u_;],i[u,—u_/1,....[up—u_y/],
sifuy+u_y]), (6.52a)
and
[ q:
Pr
qr
r=| P (6.52b)
qdin :
D1
qv
\Prv

It follows from (6.50), taking into account the ortho-
gonality relations (6.13), that:

u.:(s)-i-y(s)=+;'/—§-[qk+ipk],

—uty(s)- S y(s)= —ﬁ-[qk—ipk],
so that:

q= —\% [0 (5)—u", ()15 ¥(6). (6.53)

D= _J—E [uf (s)+u4(5)]1S - ¥(s), (6.53b)

* The transfer matrix with respect to the Hamiltonian (6.49) is block
diagonal

or
[u/ —ul ]
ifuf +uf,]
[uf—ul;]
1 ifuf+u’f . .
r=— - [+“ +“] S.y=R"1y. (6.54)
\/5 [ui—ulyyl

ifuf+uty]
[ufy—u®py]
ifujy+u Tl

Equation (6.53) or (6.54) allows the quantities g, py to be
calculated in terms of the starting variables y,.
From the relation

y(s+L)y=M(s+ L, s)y(s),

we obtain, using (6.51):
R(s+L)¥(s+L)=M(s+ L, s) R(s)-(s),
or

r(s+L)=R “(s+L) M(s+L, s)R(s)* x(s)

R
R-

Us) M(s+ L, s) R(s) - x(s), (6.55)

(for the last step see (6.10b)).
The revolution matrix with respect to the variables
Dk 4 is thus given by

M®(s+L, 5)=R" () M(s+L,5) R(s). (6.56)
This matrix is block diagonal as can be seen from (6.49).

Equations (6.50), (6.51) and (6.55) represent the first
step in a normal form analysis [36].

In the next chapter we show how to put the Hamil-
tonian into normal form at the next and succeeding
orders. Implicit use will be made of the fact that the
Hamiltonian can be written as a power series in ¥ and
B (see Sect. 4.2.3).

7 Nonlinear perturbation theory and normal forms

The version of perturbation theory presented here is sim-
ilar to that given by Courant et al. (CRW) [34]. The
starting point is the Hamiltonian (6.39), written in terms of
J,=J9 and ¢, =

= o)+ T (D, J; 5), (7.1
with
- 2n
A= Y Jk.T Ox, (7.2a)
k=1,11,111,1V
and
P=W, (7.2b)

(sec Appendix B) where the unperturbed part, #,, de-
pends only on J, (k=1I,II, III, IV). The term V(®D, J;s)



resulting from (5.2b) and (6.14) which is in general nonlin-
ear, describes the perturbation and is periodic in s and @,:

(Dr, @1, rirs @rvs S d 10 D ans J1vs S)
V@427, @11, @ror, @ryv, I3 1 S v 9)
V(d’h Pr+27, Pryp Prvs I 1 Jans J v 5)
(P, Pyyy Py 27, Pry, I Ty Ty, J v )
=Vi®s, @11, Pryr, Crv +210, T 1,11 T, v 8)
=V, 11, Prir, Prv, 1 1 i, T v s+ 1), (7.3)

From (5.2b) we may write:

t

V(J, ®;5=Y V(] ®:5), (7.4a)
v=3

with

V.=, (7.4b)

The aim now is to transform the Hamiltonian (7.1) to
normal form, i.e. a form in which the new Hamiltonian
depends only on the new momenta. To achieve that, we
look for a transformation which cancels the perturbative
terms V), iteratively order by order.

At the (n—2)" step of itcration we have the Hamil-
tonian
H=Ho(J)+ V(D, J; 5), (7.5)
with
J=Jfd,
D=df ),

and

P, J:5)= 3. Vo0, J:9)= Vi, J: )+ W@, J55), (1.6)

v=n

W, ;)= Y VU@, T;s), (7.7)
v=ntl
where _I_;v is of order v and the higher order terms resulting
from V,..., V- at earlier stages of diagonalisation
have been absorbed in V), and W,. .
At a first step we separate off the average of V,:

~ sotL 2n 2%
<PL(J)>=W- j ds-% ddi,o(j; do,,
2n 2n .

«g dd,,, - £ dd;y - V, (D, Jis ), (7.8)
and add it to #, so that
H=Ho(J)+V(D,J;s), (7.9)
with
VD, J; 5)=V,(D, J; 5)+ W (D, J; 5), (7.10)
and
Ho(J)=Ho(J)+ Vo)), (7.11a)
Vi@, J: 5)=Vo(@, J; 5)— V(). (7.11b)
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(We comment further on this separation at the end of this
section.) .

As is clear from (7.2a) and (7.11a) the term {V,(J))
results in a tune shift of the form:

L @
*T2m ady
If {V,(J)> depends nonlinearly on J,, the tune shift is

amplitude dependent.
In a second step we make a canonical transformation*:

(P, Jk)—’(‘ﬁk, fk), (7.13)
with
jkEJ’(‘"_z),

(13,( = @;(n_ 2),

50 ValI). (7.12)

designed to cancel the term V,(®,J;s) by using the
generating function:

Fo@ i)=Y

k=IIIIII,IV

By T+ G(D, T; 5).

For the new variables &y, J:

. 0
qb,‘=—F.3= @+ Gy, (7.14a)
oy
iF, -
Jk=aT)z=J,‘+G,,k, (7.14b)
the corresponding Hamiltonian:
. oF . R
#=#+a—;=xo(1+ao)+ V(®, J+Gy; 5)+ Gy
=Ho(J+Go)+ Vo (D, T+ Gy 5)+ Wy(D, J +Gg; 5)+ Gy
(7.15a)

is in "™ order only dependent on J,. In (7.14) and below
we use the notation G,=3dG/d® etc.

For this purpose, following CWR, we rewrite (7.15a)
as:

,y‘f=.;fo(f)+{m(f+ Ga)—Ho(J)

- X

2—“-Qk(f)-6¢k}

k=1I1I1I1,IV

VD, T+ Gy 5)— V(D T 5)}
2

k=1I,1111I,1V ]’.

+ V@, J; 5)+ Wi(®, J; 5), (7.15b)

where for brevity we have written (see (7.2a), (7.11a) and
(7.12)):

0Ho(J)_2m.
G =LA

- - 0u(J)+ Gy, + G,

(7.16)

* In order to simplify the notation we drop the index n’in F, and G
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We now require that the generating function G satisfies
the partial differential equation:

e %-Q,‘u‘)- G+ G+ Vy(®, J;5)=0,  (7.17)
so that
H=Ho(J)+V, (7.18)
where
V=W\(®,J;s)
1 d? -
+k=l,ll.l”,lV§. Gy, G, m Ho(J)
+ Y G,,,k--a.- V(®, J;s)+ - - . (7.19a)

k=I,11,111,1V aJk

If the perturbation, V, in (7.9) is small compared to #,
then according to (7.17) we expect that G is small. It is then
clear from (7.19a) that ¥V in (7.18) is only a second order
correction compared to #,, so that we may write:

V@, Jis)= Y V(@ J:s)

v=n+1

(7.19b)

beginning the series expansion with the order y=n+ 1*.
For convenience we also require that the solution of
(7.17) is periodic in s:

G(®, J: s+ L)=G(®, J; 5), (7.20)

so that V is also periodic with the same period L. In this
case, the calculation embodied in (7.8-16) (and in the
Fourier expansion below) can be repeated in a sccond
iteration step, in which ¥ replaces ¥ in (7.5).

In particular we can use the average of V2

~ - so+L 2n 2r
Vpir)p=rg—e | ds .
G D=5 f ds £d¢, £d¢,,

2z 2r

Dy [ APy Vs (D, T3 5)
0 0

to calculate the contribution to the Q-shift in the next
order in analogy to (7.12).

A periodic solution to (7.17) can be obtained by writ-
ing V, and G as:

V@, b= Y

my, mz,m3,mq

ui(v'tln)mzmstJv S)

. ci Sma®pmady Fmadyy, + m-t"lv],

(7.21)

* Since W, is of order (n+1) and J, of order 2 and since G has the
same order nas V (see(7.21)and (7.29)) ¥V in (7.19a) becomes of order

2 for n=2,

min(n+1,2n—2)=
n+1 for n>3.

It follows that the canonical perturbation treatment does not work
in the linear case where n=2 since the corrections of linear trans-
formations remain linear. For that reason we have solved the linear
problem separately before (Sect. 6) using another method (variation
of constants)

and
G, J;5= Y

my,ma, mi3, mg

gm: 'lzllunu(j’ S)

o gl Mm@t mady t mady, +madyy)
b

(7.22a)

where o, mama is periodic in s and where according to
(7.20) we require:

Gmyimamsma (f, s+ L) =Imymamams (f, S). (722b)

On substituting (7.21) and (7.22a) into (7.17) we get the
differential equation connecting the coefficients g and v:

. 2m @
{1 N [miQr+myQp+msQu+maQpy 1+ g}

Imymamama (ja S)= - U}:}m;m;nm (j’ S). (7-23)
This may also be written as:
é

as {C"(ZRIL)IMxQ.+MzQ,, +m3Qyy+maQpls Gmsmamama (. s)}

— _ei 2/ L) [ma Q; + maQy + maQuy +maQu]s | Ug:: mamams (j, S) )
(7.24)

By integrating (7.24) from s to s+ L and using (7.22b) we
then obtain:

Imymamyms (J, §)+ {€1 BRI+ maQurmsQus + meQun)-(s-+1)
imam3ms ’
— i (2r/L)Im1Qr +maQy+m3 0+ msQu] ‘S}
s+L

= j ds-. v»(:l':m;m;m.q (j- §)

. ei‘ (2n/L)[m1Q;+m2Qy +m3Qpy+maQypy] - 3’

(7.25)
for which:
Imimamsma (j, s)
_ i
2-sinw[myQ;+myQp+msQpr+maQyv]

s+L N
* I ds- v:(v':x)mzmmu, S)
s

. el (2n/L) - [my Q;Fm2Q;; +m3Qy +maQy] - E—s— L/Z].

(7.26)
so that (7.22) finally:
G(®, ], s)
i
m;.m;.zm;.ma 2-sinm[m,Qy+myQy+m30Qyp+maQry]

s+L
Ll @t mady, Fmady - madyy] | ]‘ dg.v’(:‘ll)mmm‘u’ 5)

s

. ei' (2a/L)[m1Q; +m2Q;; +maQpy; +maQyy] - (5—5— L/l)'

(7.27)

If the function v ., m.m. in (7.27)is furthermore expanded
as a Fourier series in s:

- 2, —i.g3%.
Ug‘zmzm;m. (J: ?)=Z U;(v:':m;mynqq (J) ce AT S’
q

(7.28)



then G takes the form:

. ~ . L
G(P,J,5)=i 5 Y

miy,nz,m3,ms,q

() I
vm1mm:mnq('])
ei - [my®; +ma®yy +may by +madyy —q- (2w/L) -5)

' (m1Qr+mQur+m3Qr+maQr—q]

Since J# is approximately independent of &, the ca-
nonical equations:
d . o#
T = 7.30
ds™* 0P, (7.30)
predict that J, are approximately constants of motion
which together with (7.14b):

(7.29)

a J N
= N & J:
Jk Jk+a¢kG( ,J,S),

(k=111 111, 1V),

define invariant surfaces.

(7.31)

Remarks. 1) In separating off the average of V,:
< ’7n> = Ug’())OOO

in (7.11b) we have ensured that the term in (7.29) for which
my, My, my,my and ¢ in the denominator, [m;Q0;+
myQrr+maQp +maQry—q], are all zero, does not ap-

pear.
2) Taking into account the relation:

2n

[ do-e"™*=0 for m#0, (7.32)
0

the quantities { ¥,) vanish for odd values of v. As a result,
only integer powers of J, (k=1, I1, 111, 1V') appear in the
normal-form Hamiltonian. (So the half integer powers
disappear; see (7.4a), (B.5) and (B.7) for the leading order
and for higher orders [37]). -

3) Since J;y has the order of magnitude £, (see (6.46) and
(A.4a, b) in Appendix A) we may neglect powers (J;)" for
v>2 in the final Hamiltonian 5 which thus takes the
form:

.;?:hl(f,,j",j,,,)+h2(j,,f”,j,“).f,,,, (7.33)

whereby h, and h, represent power series in J,
(k=1I,11,111) (we denote the action variables in the final
form by J)*. It follows that:

dJ, 0H

3= "35.=0 (7.342)
dé, @

o= T, =const., (7.34b)

* This corresponds to the [act that we work only to first order in A.
In fact terms of order (J,,,)"? (N = 3) can be neglected at each stage
of the perturbation procedure [8].

The form of the final Hamiltonian in (7.33) looks similar to that
in [3]. However the meaning of J,, differs from that of the action
variable in [3]
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and thus:
Jy=const., (7.35a)
~ 2 “
Dy = I Oy s, (7.35b)
with
2n - a -
I'Qk(-lh)= +6_f: [hi+hy-Ji]. (7.36)
In particular we obtain for the spin motion:
Jyy=const., (7.37a)
‘I;nf:hz(-ila J-n, jm) S, (7.37b)
and

- L " A oA
le(Jk)=E' ha(Ur, s 1) (7.38)

ie. the spin tune depends only on the orbital action
variables J, Jyy, Jp;. See also [6] and paper III [40].
If the distribution function of the orbital action-angle
variables is known, one can calculate the mean square
spin tune spread {(Q;y — Qupin)*> With O, given by (4.7).
4) Since the transformation (7.13) is canonical, the Pois-
son bracket relations (6.43) remain valid for @, and J:

{[‘5&, jt](y.py)z‘sk"
[e: i), py = [Pks il s, py =0s

(y=x,z 0, ).

(7.39)

5) To calculate the n-axis (see (5.8)) we need the spin-orbit
vector y in terms of the new action-angle variables. The
n-axis is obtained from §, by taking J{%, &{% to be func-
tions of Jy, @, (k=1,I1, II1,IV) in (6.32) (and footnote
after eq. (5.7)) and putting J;,=0. Clearly this can be
a complicated procedure since in the CRW method the
old and new variables in the generating function are
mixed (see 7.14a, b)). It would then be more convenient to
apply another kind of canonical perturbation theory,
namely the method of Lie transforms (see [8, 10, 37]),
whereby one obtains directly the old variables as func-
tions of the new ones.

6) The above treatment of perturbation theory relies on
the assumption that the perturbation G in (7.14) is small
(see Sect. 4.2.3). From (7.29) it is clear that this condition is
not valid if

myQ+myQp +maQpr+maQry
is close to an integer. Thus the resonant case:
myQp+myQyy+m3Qyyy+myQy ~integer (7.40)

has to be investigated separately with other methods (see
for instance [7])*. In this case the Hamiltonian becomes
a function also of @ (k=1,I1, II11,IV). As aresult, J;, =0
is no longer a solution of the canonical equations of

* Since the SG forces are very small the spin motion can be con-
sidered to be a forced oscillation induced by the orbital motion (see
[6]). Therefore only the resonances (7.40) for which m, =0,+1 are
significant
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motion as used in (5.8) and the method for calculating
n described here breaks down (see also [3, 6]).

At linear order in this perturbation theory n contains
first order resonances (|my|+|my|+|ms|=1) and is of
first order in orbit amplitudes (see (A.4a) and (6.45) as well
as the Appendix in [23]). As can be seen in [6, 26, 40] at
N'™ order, n is of N** order in orbital amplitudes and
contains N'" order resonances with |m; +m,+ms|=N.

8 Summary

Following an earlier paper [1], we have used a classical
spin-orbit Hamiltonian for a spin 1/2 charged particle to
construct a canonical formalism of spin-orbit motion ex-
pressed in machine coordinates, taking into account all
kinds of coupling.

In addition to the orbital variables x, py, z, p,, g, p, of
the fully coupled 6-dimensional formalism we introduce
the canonical variables 2 and f to describe the spin
motion. All eight variables can be treated on the same
level. In particular, the equations of spin-orbit motion
can be linearised. Also the one turn maps are origin pre-
serving.

By expanding the Hamiltonian into a power series in
these variables, one may work to various orders of ap-
proximation for the canonical equations and the canoni-
cal structure of the formalism is well suited for the use of
Lie algebra and normal forms.

In this paper we show how it is possible in principle to
convert the spin-orbit Hamiltonian to normal form and
how then to construct the m-axis applying a modified
version of the canonical perturbation theory used by
Courant, Ruth and Weng. The analysis is restricted to the
non-resonant case but the resonant case could be incorp-
orated in a natural way leading to a method of estimating
the stopband width [30, 31] of spin-orbit resonances.

Finally we remark that, starting from the variables
X, Dxs Zy Pz> 05 Pgs 0, . and using analytical techniques
as described in [20, 22, 38] one can also develop an
8-dimensional dispersion formalism.
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Zimmermann for stimulating and interesting discussions.

Appendix A: An approximative calculation of the
eigenvectors for spin-orbit motion

The eigenvectors for linear spin-orbit motion in storage
rings may approximated by neglecting the Stern-Gerlach
forces. In this case the 8-dimensional transfer matrix
M((s, so) of linearised spin-orbit motion takes the form (see
(4.49)):

M, so)=('\—4(f’ s O > (A1)
- VEGls, 50) D5, 50)

with M, G, D given by (4.46-48). Note that M is a sym-
plectic matrix describing orbital motion.

The eigenvectors of the whole 8-dimensional revol-
ution matrix M(sq+ L, so) for spin and orbit which are
defined by:

M(s0+L, 50)* ¥, =2V, (A2)
can now be written in the form:
_ Vils) _ %
vk(sO)_(wk(s)>’ Vo ils) = [vi(s)]%, (A.3a)
for k=1, 11,111,
and
04(s0) ) *

¥ = . q-om(se)= So) 1%, A.3b

v (So) (WW(SO) q-rviso)=[qv(s0)] ( )
for k=1V.

By combining (A.2), (A.3), (4.46), (4.50) and (4.51) we ob-
tain the two-dimensional vectors w,(so) (k=1, I'l, I} and
W, (o) from the relation:

VEG(so+L, 50) Bx(50) + D (50 + L. 56) Wi (50)= Ay - Wi (50),
which leads to:
Wilso)= —~/&- [D(so+ L, so)— s+ 11"
*G(so+ L, s0)* Vi(s0)
= —VE [D(so+ L, s0)— 1= 1171

so+L

« | d3-D(so+ L. 3)- Gol5)- ¥i(s), (A.da)
S0

for k=1, II, III,

and

w,,,(s0)=—1—-( l,)-e“““""*""’, (A.4b)
V2 \Hi

for k=1IV,

with

Wi (So)=[Welso)I*, (k=1L II, IIL, IV), (A.5)

where the vectors ¥;(sy) are determined by the relation:
M(so+L, so)* %ic(s0) = Ax * Va(S0). (A.6)

Thus Vi (so) (k=1, I1, IIT) are eigenvectors of the (symplec-
tic) orbital revolution matrix M (s, + L, so) which may be
normalised by:

(A7)

As a result, the orthogonality relations (6.12) are then
approximately fulfilled (due to the small value of &).
The corresponding eigenvalues are

Vi (S)* S+ Vilso) = =V _(50) + S+ ¥—(50) =i

heme 20 (k=I, I, TIT), (A.82)
and
Ay=e "2 with Qpy = Qypin- (A.8b)

For the eigenvectors v, (s) of the transfer matrix _1\1 (s+L,s)
(initial position s):

M(s+L, 5)V,(s)=7,(5) - v,u(5). (A9)



we also have:

~ Vi(s
Viuls)=M(s, so) V,(so) = (w:((s))) (A.10)
In particular we get

0 .
VIV(S)=< ° ), q-v(s)=[qmv(s)]* (A.lla)
Wiy ()
with
=D _ /1

Wiy (s)=D(s, So)wn'(so)—ﬁ i

e WO w_p(s)=[wp(s)]*. (A.11b)
The eigenvalues are independent of s:
2u(8)=2,,(s0). (A.12)

Remarks. 1) Note, that the components w; in (A.10)
Wi(s)= —/E-[D(s+L, s)—ix-1171-G(s+ L, $)¥(s)
= —VE[DGH+L )= 2177

s+ L

- [ 5 D(s+L,5)- Gol3) - Ty(S), (A.13)

for (k=1, 11, I11) are solutions of (4.42b) (using the defini-
tion (4.43) with ¥(s)=¥(s):

)= —VE D6+ L9117

s+L d

. 5 05+ - D(s+ L, 5)- Gol$)-¥(3)
~VE[DG+L s =iy 177
*D(s+L,s+L)-Go(s+ L) Vi(s+L)
A E[D(s+ L, s)= 24177
*D(s+L,5) Gols) Vils)

= VEDG+L )~ ig-1]7"
T A5 Do(9)- D+ L, 5)- Go®) -3l
~VE[DG+L5)— 4117
1+ Go(s) - A Vils)
A E [ DG+L,s)—Ay-1] 1
*D(s+ L, s): Gols) - %(s)

=Do(s) Wels)+ /& [D(s+ L, )= A-11"
[D(s+ L, 5)— 24 1]+ Go(s) - ¥i(s)

=Do(5)- Wi(s) +/ &+ Gols)- Wa(s).

This result agrees with the definition of w(s) in (A.10).
That is, the spin-orbit eigenvector v,(s) defined by (A.10) is
a solution of (4.42), which represents the combined spin-
orbit motion.
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2) Introducing the spin vector
o Y7
51— =& (s)
(3)- )

N -¢” " ®v 4 compl. conj
=V v pl.cony.,
Upg /k=1v

(A.14)

(see (6.45)) which describes the spin motion around the
n-axis we obtain from (6.10a) and (A.11a, b):

1 — -
G=m [T gy e 1O e = 2500 G104 compl.conj.
V/E\/ D +compl.conj

= 2.’1V'COS [d)lV'I"l,spin_ZﬂQspin -(S/L)],

~ 1 — 1 _
f= _72\/1”, ,;e~ W+ = 270 (1] 4 compl.conj.
v

= 2J1V -sin [‘pr + '//spln - Zanpm " (S/’L)],
and therefore:
J=% [+ 7. (A.15)

Thus spins at the same point in the orbital phase space
(X, Py, Z, Pz, G, P;) and s, can be considered to precess
around a common axis n with a tilt angle w.r.t. n propor-
tional to Jyy. The quantity J;y describes the spin compo-
nent perpendicular to the n-axis.*

Using the variables g, and p, defined by (6.47a, b), we
can also write:

Z=+qv - Co8 [Yepin— 210 pin" (5/L)]
+ Py Sin [Wopin— 27 Qi - (/L) 1,

B=—ar +sin[Yepin—2705gin* (5/L)]
+prv €08 [Wopin— 210 pin * (5/L) ).

It follows that the quantities g;y and p,y oscillate around
@ and f (see (4.7)).

Appendix B: The Hamiltonian in terms of J, and ®,

In order to prepare a perturbation theory, the pertur-
bative component #Y) of the Hamiltonian defined in
(5.2b), which may be written as:

#0=F =3 ¥
n=3

v=3 prtpatdug=v
() (22 () (va) “(ysV*(ye) (y2)7 (ys)"*,
(B.1)
by using the notation of (5.4), should be expressed in terms

of the new canonical variables J, and ®,.*
This can be achieved by using (6.32):

y(S)= \/j;-[uk(s).e_’°k+u_k(s).e+i¢k]

k=I11,111,1V
EY(¢’(Y Jk; s)’

Cuspr-—us(9)

(B.2a)

* Outside the spin orbit resonances we may assume that the n-axis is
approximately parallel to n,

* In this Appendix as in Sect. 6 we write J,=J%, &, =¢\”
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with

w(s+ L)=wu(s). (B.2b)
From (B.2) one has the v"* component of y:

W= Y STkl e a1, (B.3)

k=I,II,III,1V
Thus we get:

- 1
(‘v")"=z (’;)-{ z \/‘I_k'[ukv'e_iak+u§v'c+iwk]}
k=111

=0

n—|
.{ z \/J_k'[ukv'e mk+u:v'eH¢k]}
k=II1,1V
= Z ( ) Z (?)(Jl)plz.[ulv'e_i¢l+u7{v'e+iwl]1’

p=0

,(‘[ )("P)?z,[u ,e‘ion_+_u}"“.e+i"u]l‘P

. Z ( ) Jin)? [uggpy- e m 4 ufyy, -0 1009

=0
.( )(n 1-q)2 [ulV e—|¢,.+uV .e+1d’,v]n l-q

5B E( e

TP ()R (I 0

£ () ranr o

~>-
. o

. z (l;p) .(u”v)l(u”",v)l—p- Ao idu(2i-1+p)

A=0

. Z ( ) () ()t * o™ Pm@Am0

n-l-q .

Z (u ’ q)'(“le)‘("va)"-‘_q_)'
i=0 -
Le T iPn(2i-ntltg) (B.4)
Thus the terms of 2" can be factorized into a periodic
and a harmonic function (see (B.2b)) and the Hamiltonian
takes the form:

A=Y NN Y Huyongneisinisna(s)

ny n2 n3 N4 Ay A2 A3 A4

ST T2 (T2 - (T )™

_c—i-{).l-0,+Az-0,,+/1;~¢,,,+}L4~¢,y} (BS)
with
Hnmznauulllzlgiu (S + L) = Hnngu;nd;lzx:.b(s)’ (86)
and
ApE{—ny,—ny+2,. .., +ny},
A€l —ny,—ny+2,. .., +ny},
2 { 2 2 2} (B7)
Aze{—ny,—n3+2,..., +ns},

146{—’14,'—"44‘2,. ey +n4}.

With (B.5) and (B.6) we have established the connection
with the canonical perturbation theory described in [31].

Note that the complex periodic functions w, (k=1, I1,
I11, IV') appearing in (B.4) arc determined by (6.6), (6.12),
(6.7) and (6.10a). They can be conveniently directly cal-
culated using computer programs (for example SLIM)*,
A description of a method to determine the eigenvectors of
the transfer matrix may be found in [24, 39].

Remark: In terms of the variables @, J, which are defined
by (6.32) the Hamiltonian takes the form (see (6.39)):

H=Ho+ V(@ Oy, Dpip, Py J 1 Jin Sy v s), (BB)

with

Ho= % Jk"zg:Qh’ (B.9a)
k=1 11,1111V

and

V=™, (B.9b)

Here the term I7(¢, J ; 5) describes the perturbation and is
periodic in s and @;:

V(@y, @y, raps Qs Iy Jir Jiass J1vi 9)

V@427, @11, Sy Opy, I 1 S T J v 9)
(Pr, Ppp+21, Py, Prvy I, 1 T J1vs 8)
=y, yp, Pppy+27 Pry, I, 1t T v )

=WV(Py, Oy, Pryy, @pv +20,J 1, J1ns T J1vs 5)

[ |
=t

= V(¢I’ ¢Ih ¢”Ia (pIVaJls JII’ ']lllaJlV; S+L) (Blo)
The corresponding canonical cquations read as:
dd,  # 2m @V
Tk - — B.
& o, LT, (B-11a)
dJ, o# oV

e e (B.11b)

ds 0o, oo,

In this form the Hamiltonian can be used for a version of
perturbation theory given by Courant et al. [34, 32].
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