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Abstract 

We present a general formalism for correct1ng perturbations to the equilibrium 
spin axis in electron storage rings due to the orbit errors so that depolari-
zing effects due to machine misalignments can be controlled. The method propo-
sed is suitable for rings containing e.g. solenoids, skew quadrupoles and ver-
tical bends and since it is based on a SLIM-like l) representation of the orbi-
tal and spin motion it can be conveniently realized as a straight forward ex-
tension to that program. 
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1. Introduction 

In electron storage rings the electron spins become polarised antiparallel to 
the magnetic bending field as a result of synchrotron radiation emission (the 
Sokolov-Ternov effect)>), The maximum polarization obtainable from this effect 
is 92.4 % and occurs when the ring contains no vertical bends and the equili-
brium spin vector lies everywhere along the guide field. 

In addition to the polarizing effect there are a number of sources of depola-
rization resulting from the coupling of the spin motion with the transverse 
and longitudinal orbital motion. Thus, in practice, the equilibrium polariza-
tion is less than the Sokolov-Ternov prediction and can be strongly dependent 
on the precise optical state of the machine. Therefore, if high polarizations 
are to be consistently obtained, it is at least necessary that steps are taken 
to suppress the depolarizing effects and to do so in a way which is convenient 
and reproducible. 

At the level of the linear theory of depolarizing effects used in the program 
SLIM by A. Chao 1 • 3 ) two kinds of measures are available: 

To begin with, the depolarization effects which occur in the ideal machine 
must be minimized. The required opt imi zat ion techniques are now 
well-known 4 • 5 • 6 • 7 ) and can, for example, be inferred from the equations des-
cribing the rate of depolarization s). In the case of the ideal flat machine, 
the equilibrium spin axis, the so-called is vertical in the arcs and 
an important source of depolarization resulting from horizontal particle os-
cillations can be neglected 9 ). 

Unfortunately, in a real machine these ''spin matching'' conditions are not 
sufficient. As a result of unavoidable errors in the fields and the posi-
tioning of the machine elements the closed orbit becomes distorted and this 
causes the to become tilted from its ideal direction. In this case, 
the spin motion can again become strongly coupled to the particle oscilla-
tions (which can be considered as receiving contributions from both betatron 
motion and dispersion motion) and further steps must be taken 7 • 9 • 1o,u). 
Furthermore, gradient errors in the quadrupoles can also spoil the spin mat-
ches. 
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This work will be devoted to a discussion only of methods for the correction 
of the depolarizing effects caused by the closed orbit distortion. It will be 
shown how the method already proposed by R. Schmidt et.al. 10 ) for a decoupled 
flat machine such as PETRA (whereby vertical correction coils are used to cor-

+ rect the closed orbit so that the tilt of the n-axis is reduced), can be gene-
ralized to cover machines containing skew-quadrupoles, solenoids and vertical 
bends. Thus, the forma 1 ism presented here wi 11 be app 1 i cab 1 e to rings con-
taining spin rotators 9 • 12 • 13 lby means of which the spins can be made longitu-
dinal at the interaction point. 

2. Equations of motion 

The starting point for the study of the general harmonic correction scheme is 
the specification of the equations of spin-orbit motion 3 l. 

2.1 The equations of motion for the orbit 

Using the notation of Ref. 3), the linearized equations of orbital motion are 
written as 

d + + + + asY = !:;_y + co + cl ( 2.1) 

with 

0 1 H 0 0 0 

- ( G1 + H 2 ) 0 N H 0 Kx 
-H 0 0 1 0 0 

A = 
N -H -(G2+H") 0 0 Kz 

- Kx 0 - Kz 0 0 0 

0 0 0 0 eV 2n o(s-sv) 0 E•k·- COS<!> • l: o L v 
( 2. 2) 

+T (0, 0, 0, 0, 0, eV . o(s-sv) - C1 + (2.3) co = - s1n<!>•l: 
Eo v 

_,.T (0, e llBz, 0, e llBX' 0, 0) (2.4) cl = Eo Eo 
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H=lJL.s(o) 

N "; ·::L., 
9 :..!:.. 

Eo =z=o 

Gl = K2 + g X 

Gz = K2 g z 
2 

cl = e2 Yo 
3 Eo 

+r y = (x, Px, z, Pz, a' n) 

Px = x' H • z 

Pz = z' + H • X 

In this form, the matrix describes the effect of lenses and cavities and the 
vector ! 1 the effect of field "errors" t>Bx, t>Bz caused by magnet misalignments 
etc. and by orbit correction magnets. Field errors t>B, have been neglected 
here because they only appear in second order in the equation of orbit motion. 
The vector describes the effect of energy variations caused by radiation 
in the bending magnets and energy uptake in the cavities. In detail, one has: 

a) g f 0 N = H = v = 0 Kx = Kz = 0 quadrupole 

b) N f 0 ; H = g = v = 0 Kx = Kz = 0 skew quadrupole 

c) G1 = K2 + g G2 = -g or Gl = g Gz = K2 - g H = v = 0 X z ' 
combined function magnet 

d) H f 0 g = N = v = 0 Kx = Kz = 0 solenoid 

e) v f 0 g = N = H = 0 Kx = K = 0 z cavity. 
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2.2 Spin motion 

Spin motion in a storage ring is described by the BMT 14 ) precession equation 

d ... ... 

where 

i. (!;) 
describes the spin vector and (Ref. 3) 

" = 0 

"T = - 2H • ( 1 + a) - liB, • ( 1 + a) + 
Eo 

+ 2H ·n ·(1 +a)- ay0 • (X 1 
• Kz- Z 1 

• Kxl 

- ( 1 + ay0 ) • [( N - H 1 
) • x + g • z ] + a y0 • 2H • x 1 + 

+ ( 1 + ay 0 ) • V sin <P • l: 8 ( s - sv) • z 1 
-

Eo v 

(1 + ay0 ) • f- · l'IBx 
0 

+ (1 + aY0 )• [(N + H1 )•z- g•x] + aY0 • 2H· Z 1
-

- (1 + aY0 ) V sin<P • l: o(s - sv) • X 1 
-

Eo v 

( 2. 5) 

(2.5a) 

(2.5b) 

(2.5c) 
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The "spin matrix" 0. in (2.5) can be decomposed into two parts: 

with 

and 

Q=Q(o)+w 

n ( 0 ) = - 2H • ( 1 + a) 
T 

= Kz • ayo 

= -Kx. ayo ' 

w = - • ( 1 + a) + 
T Eo ' 

+ 2H • n • (1 +a) - ay0 • (x 1 
• Kz - Z 1 

• Kxl 

wx-- (1 + ay0 ) + (1 + ay0 )• z- K2 • n 
Eo 

- ( 1 + ay 0 ) • [ ( N - H 1 
) • x + g • z J + ay 0 • 2H • x 1 + 

+ (1 + ay0 ) • V sin<!> E o(s - sv) • Z 1 

Eo v 

wz = - (1 + ay0 ) • llBz - (1 + ay0 ) • • x + Kx • n + 
Eo 

+ ( 1 + ay 0 ) • ( N + H 1 ) • z - g • x J + ay0 • 2H • z 1 

e 
- (1 + ay0 ) •- V sin<!> • z.; o(s - sv) • x 1 

Eo v 

where n(o) is due to spin precession on the design orbit. 

Furthermore, equation (2.8) can be written in the form 

("' + + wx = £:.•y+c 
wz 

with 
t:.B • ( 1 + a) 

+ e llBx • (1 + ayo) c = • 
Eo 

llB 2 • (1 + ay0 ) 

(2.6) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.8a) 

(2.8b) 

(2.8c) 

(2.9) 

(2.10) 
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and 
F = ((Fpvll 

F16 = 2H • ( 1 + a) 

Fzl = - (1 + ay0 ){N - HI) 

Fzz = ayo· 2H 

FzJ = (1 + ay0 ) • - g) + ay0 • 2H' 

Fz4 = (ayo + 1) • eV sin<P • l: 6{s - sv) 
Eo \) 

Fz6 = - Kz 

F31 = - ( 1 + + g) - ay0 • 2H 2 

F32 = - F24 , 

F33 = (1 + ay0 )(N + HI) 

Fpv = 0 otherwise. (2.11) 

From {2.5) and {2.6) it follows that 
-> + 

d J = (n(o) + crs- -=>· (2.12) 

where we assume that w can be treated as a small perturbation. 
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If as in SLIM we make the ansatz 

we obtain from (2.12) in first order approximation 

d = 0 (o) • 
ds 

+ + 
= 1;(o) x + t:i x 

Q(o) 
'( 

1;(o) Q(o) + = w = X 

Q ( 0) 
z 

w, 

wx 

wz 

(2.13) 

(2.14a) 

(2.14b) 
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+ + -t 3. The (n, m, spin coordinate system 

The matrix nlo) can now also serve to define a new orthogonal coordinate sy-
stem (n, iii, 1) for describing the spin motion, and we thus consider the 3x3 

transfer matrix !(s,s0 ) of the precession equation (2.14a): 

(3.1) 

and investigate the eigenvalue spectrum of the one turn matrix !(s0 +L,s0 ) to 
obtain: 

(3.2a) 

+ ( \ + 
al = 1 rl sa! = n ( s0 ) 

+i•27f\) -> + + i • 10 (s0 ) az = e rz(sal = m0 (s0 ) (3.2b) 

-i•27f\l + + + 
a3 = e r 3(s 0 ) = m0 (s0 ) i • 9-0 (s0 ) 

where L is the length of the orbit and where the "spin tune" v can be separa-
ted into an arbitrary integer part K and a fractional part v: 

(3.2c) 

O:Ov<l 

and where 

(3.2d) 

Using, as usual s) the spin phase function 1 (s) with the property 

(3.3) 

+ + + 
we now introduce new vectors (n, m, 9-) defined by the relations: 

(3.4) 
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and 

and we find 
+ + + n(s) "m(s) d(s) 

"i:i(s) 1 i(s) 

+ + + 
ln(s) I " lm(s) I " I_Q,(s) I " 1 

+ + + + + 
(n, m, _Q,)S"So+L = (n, m, _Q,)s-s - 0 

+ + + 

(3.6) 

(3.7) 

so that the vectors n, m, _Q, comprise an orthogonal system which transforms into 
itself after one turn. 
In addition,from (3.3) and (3.4) and by using (3.1), it follows that: 

Js ( s) + i • i ( s) J = e- H'f( s) 

+ + 
- i •'II' (s) [m(s) + i • _Q,(s)] 

so that 

• 
(3.8) 

+ 'V•(s) • m(s) 

and 

(3.9) 

We would like to emphasize here that apart from the restriction in equ. (3.3) 
the spin phase function can be otherwise quite arbitrary and can be tay-
lored so as to lead to the choice of spin basis vectors best suited to the 
problem in hand. As is clear from (3.4) and the discussion to follow each 
choice corresponds to a particular choice of the rotating coordinate spin sy-
stem from which spin perturbations are viewed. 
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4. Solutions of the equation of spin motion 

In order to solve the spin perturbation equations (2.14) we use the following 
ansatz: 

5' = -'o • 1i ( s) (4.1a) 
+ '! 1

) = • [a(s) • r;(s) + B(s) • !(s)] (4.lb) 

Thus, equation (2.14a) is, according to (4.1a) and (3.9) already fulfilled 
whereas from (2.14b) we obtain 

d + + ds [a • m + B • JC] + + + w x n 

or, using (3.8): 

-+ -+ -+ -+++ 
a' • m + B' • Q, + a '-!'' • Q, - B '-!'' • m = w x n 

Thus 

= B 't'• + r;T + + a' • (w x n) 

= B '¥• + + + •(nxm) 

= B 'fl• +T + + w • Q, 

= B \f'• +T + + Q, • w 

B' = -a • If• + :Q:T + + 
• (w x n) 

= - a • 'V' +T + + + w •(nxJC) 

= - a•'f" +T + 
- w • m 

= - a .lfl• +T + 
- m • w 

so that with (2.9) we get: 
+ + 

fs S = Q0 • S + R f F • y + (4.2) 
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with 

i = (:) (4.2a) 

R" .:: .::) 
(4.2b) 

.!!.o = "o/' . ( 0 1 ) • 
-1 0 

(4.2c) 

The solution of (4.2) can be constructed in closed form as: 

+ + s 
S(sl = Q<s,s 0 l • fS(s 0 l + f ds • Q(s0 ,sl • [.E_(S):Y + c(s)J (4.3) 

so 

where we introduce the rotation matrix 

(
cos [lj'(s) -

-sin ['1-'(s) -

sin [ 'f( s) -

cos [ o/(s) 
(4.4) 
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+ . 5. Calculation of the perturbed n-ax1s 

+ Equation {4.3) describes the spin motion on an arbitrary particle orbit y(s). 
However, (4.3) can also be immediately applied to the case where the particle 
is moving on the closed orbit 9!s) defined by 

d! -+ -+ + Os y(s) = + c0 (s) + c1 (s) ; 
+ + 
y(s0 +L) = y(s0 ) • 

If we also require that tne resulting spin motion is periodic: 
+ + 
S(s0 +L) = S(s0 ) , 

+ 
then gives the perturbation + + . on(s) of the n-ax1s caused by the error 
fields C:.Bx(s), C:.B 2 (s) and t:.B,(s) as well as the effect of energy variation on 

+ the closed orbit due to c0 • Thus: 

s + + + J ds Qlso,'s). c(s)} on ( s) =D(ss)· {On(s0 ) + - , 0 (5.1) 
so 

with + + 
c(s) f(s) • y(s) + = + c(s) (5.2) 

and the periodicity condition takes the form 

{5.3) 

From {5.3) one then obtains in the form 

X (5.4) 
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By substituting (5.4) in (5.1), on at arbitrary s becomes: 

+ on ( s) = 

s + L 
x 0 f ds•D(s0 ,s)•R(s)•c\s) + 

so 

s + 
+ f ds• D(s0 ,s)• R(s) • c(s)} 

so 

= X 

s + 
x J ds·Q.(s0 ,s)·R(s)·c(s) + 

So 

s +L + 
X 

0 J ds • Q_(s 0 ,s) • R(s) • c{S) 
s 

Since, by changing variables 

so + 
= J ds I. Q.(so +L,s '+L) • .!3_(s '+L) • c(s '+ L) = 

s-L 

so + 
= J ds'•Q.(s0 ,s')·.!3.(s')•c(s') 

s-L 
(5.5a) 
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we can write 

s + 
X { f ds' Q_(s 0 ,s) c(s) + 

so 

s +L + of ( N) N + ds•Q.s0 +L,s 
s ./ ' 
So X J ds' •Q(s0 +L,s'+L) c(s'+L) 

s -L '- ./ '---v---"" 
.. + 

D(s0 ,s') c(s') 

(due to equ. (5.5a)) 

s + 
= Q(s,s0 ) • [1.- Q.(s0 +L,s0 )r

1 • f ds • Q_(s0 ,s) • • c(s') (5.5) 
s-L 

Since 

Q.(a) • Q.(B) = Q.(a + B) = Q.(B) • Q_(a) 

where 

D(cp) ( 
coscp 

= - sincp 
sincp) 
cos <p 

then 

so that 

Thus (5.5) becomes 

s + 
on(s) = Cl.- Q.(s0 + L,s0 )r

1 • f ds • Q.(s,s) • • c(s) (5.7) 
· s-L 
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Furthermore, the rotation matrix in (5.7) (see (3.3}, (4.4}} 

( 
cos 2nv 

-sin 2nv 

can be diagonalised as follows: 

with 

u = 

J = 

1 
12 

so that the factor 

on the right hand side of (5.7} becomes 

sin 2nv) 
COS 2TI\! 

[ 1 D( )] -1--[uu-1-Q.;!.Q-1]-1 _- _ s0 +L,s0 

= [.!:!_. (l- 2) .!:!.-1]-1 

= u • (l - 2l -1 • u- 1 

Equation (5.7) can be reexpressed as 

and by writing 

+ +"" B,(s). c(s) = d(s) -

(5.8a) 

(5.8b} 

(5.9} 

(5.10) 

(5.11) 
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(5.10) can finally be written (see (4.4) and (5.8)) as 23): 

('',(;) - j • ,,,(;)) i 1 (:-'" '.,,") = - . • X 
en 1(s) + i • en 2(s) 2 Sln1TV -e 

s 
e H 't(s) - \t'(s)J. [d1(5) - i • d2('s)J 

X I d$. 
s-L e- i • [o/( s) - \j'('s )J. [ d Js) + i • d2('S)J 

Since, in this vector equation, the two components are just complex conjugates 
of each other, it suffices to use just one component: 

en1 (s) - i • en 2(s) = j_ 
2 

1 ·eH\f(s)- 11v] 
Sln1TV X 

X f dS' • e- i • 'f ('S) • [ d 1 ('$) - i • d 2 (s)] 
s-L 

.... 

(5.12) 

We also note that for en to remain small so that the perturbation theory re-
mains valid, v must not be too close to an integer (equivalently, det [Q - lJ 
must not be close to zero). It is also clear that the components en 1 and en 2 
depend on the choice of phase function. However, (en1 ) 2 + (en2 )2 is of course 
independent of the choice of o/(s). 
Because and ! are periodic we find that the expression 

in (5.12) is periodic and can thus be expanded in a Fourier series: 

(5.13a) 

where 
s0 + L 

I ds·Cddsl 

,.., 
i • d2(s)J• e-i·k· 211 f (5.13b) 

So 

If we now choose a spin phase function which increases uniformly with s accor-
ding to s- s0 + 211\1 • --=-

L 

so that (3.3) is satisfied, then (5.12) takes an especially simple form: 

[en 1 ( s) - i • en 2 ( s )J = - i • 2\ • I 
k 

f • e L 
k k - \) 

(5.14) 

(5.15) 
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+ This equation describes the connection between the perturbation on of the 
n-axis and the Fourier harmonics fk of the scalar function dds) - i • d 2 (s) 
(5.11) (see also equ. (5.2) and (2.10)) 

( ::) 0 (.:: 

IIBT ( 1 +a) \ 

,, ) y e IIBx (1+ay0 ) 
-mz • - -· Eo 

IIBz (1 + ay0 ) 

( 5.16) 

which in turn is determined by the shape of the closed orbit and by the magni-
tude and the position of the field errors IIBx, IIBz, IIBT. 
This equation will serve as the starting point for the investigation of the 
optimization method but before proceeding, we will make a number of comments 
on the content of the last few equations. 

Firstly, since in (5.16) d1 and d2 depend on the relative orientation of the 
vectors it and 1 and the closed orbit distortion, two machines with the same 
closed orbit deviation but with different orientations of the h-axis in the 
interaction region (say) will have different distributions for the harmonic 
strengths fk· Thus, in a machine like HERA 15 ) the strength .of the correctors 
which would be applied for adjusting the fk (see below) would, even if the 
closed orbit were to remain unchanged, depend on whether the spin rotators 
were switched on. 

Secondly, it is clear that two totally different vectors (defined in 
equ. (2.10)) generated by different sources of field error can result in the 
same strength ·for a selected harmonic fk· Thus, an fk generated by one type of 
error (e.g. a closed orbit deviation in a solenoid spin rotator 9 l or a IIBT due 
to an incorrectly compensated solenoid) could be cancelled by applying in ad-
dition a different kind of error such as a IIBx distribution. The second exam-
ple would be a generalization of the use of local beam bumps to correct for 
solenoid effects already suggested for PETRA 16 ). 

The phase function chosen in (5.14) differs from that used in Ref. 10) where 
the quantity representing the phase function only advances in the bending mag-
nets 17 ). However although, as mentioned above, (on) 2 does not depend on the 
phase function, the advantage of the present choice is that it enables a sim-
ple Fourier expansion of on to be made (5.15) so that the relationship between 
oii and the harmonics of the closed orbit is particularly clear. 
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Furthermore, once the f k have been ca 1 cul a ted, equ. (5 .15) enables on to be 

specified in a very simple manner at all points in the ring and at all ener-

gies. As we will see below, the latter possibility then allows on to be mini-

mized (with the aid of correction coils) at all points in the ring and not only 

near to horizontal bending magnets 10 ). 

Although constructed from a different point of view (Equ. (3.3)) the spin re-

ference frame generated by the phase function 'f'(s) given in (5.14) is in fact 

identical to the frame used by Ya. Derbenev et. a1. 18 ) and J. Buon 19 ). Thus 

Eqs. (5.11) - (5.16) are also closely related to equations for oh in 
+ 

Refs. 18, 19). However, in the present treatment the dependence of 6n on the 

complete 6-dimensional closed orbit is given so that energy variation on the 

closed orbit is included. The latter can be particularly important when sole-

noid spin rotators are used. Furthermore, as we will see below, 1\ith the form 

for the fk given by (5.11) and (5.13b) we are already in a position to invent 

correction schemes for on even for the exotic rings mentioned in the introduc-

tion. 

Finally, for later considerations, we return again to equ. (3.2c) and note 

that the integer part K crf the tune v and the phase function 'fJ can be chosen 

so that the vectors i reflect the periodicity of the machine structure. 

For example, with a fourfold symmetric machine (see fig. 1) we can arrange 
that 20 ) 

+ L + n ( s + -) = n(s) 
4 

+ L + (5.17) m ( s + -) = m(s) 
4 

+ L + 
Ji,(s + -) = Jl,(s) 

4 

6. Correction schemes 

As will be recalled 10 ), if in a flat storage ring the on the closed or-

bit is tilted from the vertical in the arcs of the ring, strong depolarization 

can occur as a result of horizontal betatron and horizontal dispersion motion. 

The remedy is then to reduce the tilt, 
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In more comp 1 i cated rings such as those containing spin rotators the "design" 
h-axis may not be vertical everywhere and the special optical design strate-
gies (spin matching) adopted to ensure that at least in linear approximation, 
the depolarizing effects in the perfectly aligned machine are zero, become 
more involved. Moreover, it is again necessary to consider the effects of 

+ closed orbit errors and in these cases, a non-zero on represents not only a 
tilt of the from the vertical in the arc but could also represent, for 
example, a tilt out of the horizontal plane in the interaction region. Never-
theless, at the level of linear theory, the main depolarizing effect is expec-
ted to arise from the tilt on of the from the vertical in the arcs. The 
purpose of this section is then to investigate how equ. ( 5.15) can be ex-
ploited so that can be made small even in the presence of exotic elements 
such as experimental solenoids, skew quadrupoles and vertical bends 12 • 13 ) or 
solenoid type spin rotators 9 l. 

+ From (5.15) it is clear that the largest contributions to on tend to come from 
the harmonics for which k ., v and that could be reduced by adjusting the 
corresponding fk's to zero. This can be achieved with the aid of suitable clo-
sed orbit corrections. 

Thus, we begin by separating the coefficients fk into two parts: 

,-' 

where fk results from the closed orbit distortions caused by field errors nBx, 
+ 

6Bz and nB, and from closed orbit energy variations (due to the vector c0 ) and 
results from correction fields nB(o). With this description fk will be 

zero when f 0
) is adjusted to be equa 1 to -1\. As mentioned above, there is 

some freedom as to how the should be generated and in the spirit of the 
scheme of Ref. 10) we will, in the following, only consider the use of verti-
cal orbit correction coils. These are always able to influence the tilt of the 
n-axis. The task is then to discover what distribution of coil strengths is 
required for generating a particular 

Since in practice we cannot measure the closed orbit with sufficient accuracy, 
we do not know the fk· Thus we calculate the to within a scale factor and 
would adjust the overall strengths of the coils empirically so as to maximize 
the polarization. 

l 
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By (5.13b) the are given as: 

1 So+ L 
- - • J ds. 

L So 
. -i•k•21T s 
1 • 2 s •e L = 

1 So+ L ( ) 
ak =- • f ds· {d1 ° (s) • cos(21T k _Ls) 

L So 

where we use 

and where, by our restriction to vertical correction coils and by (2.10) 

e =--Eo 

so that 

• t(o)(s) 

0 

• (1 + ay0 ) 

0 

(6.1) 

(6.2a) 

(6.2b) 

(6.3) 

(6.4) 

The closed orbit §(o)(s) in (6.3) resulting from obeys the equations: 

d 9(o) =A 9(o) + • as - E 0 

0 
0 
0 
LIB(o) 

X 
0 
0 

(6.5a) 

(6.5b) 
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By approximating the correction fields using delta functions so that 

= l: o(s - (6.6} 

where is the position of the correction coil, the closed orbit genera-
ted by the correction coils in collaboration with the other (arbitrarily com-
plicated} linear machine elements 21 l can be written in the form 

where 

and 

.... 
Thus, for the vector d0 in (6.3} we obtain 

J(o)(s) = l: • tJs) 

or alternatively, in components 

d\ 0 )(s) 
A 

= l: c1 ( s) • 

A 

= l: C2 ( s} • 

with 

0 
0 
0 
1 
0 
0 

(6.7} 

(6.8a} 

(6.8b} 

(6.9} 

(6.10a) 

(6.10b} 
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Finally, by substituting (6.10) in (6.2) the quantities ak, bk are given as 
A 

ak = l: Akp • l>Bj.l 
p (6.11) 

A 

bk = l: Bkp • M11 p 
where 

1 s0 + L ...., 
Akp -- • J ds • {C 1P(s) ·cos [21! k fJ czp(s) • sin[21l k fJ (6.lla) 

L so 

1 s0 + L ,._, 
Bkp -- • f + C2 p(s) • cos[21l k fJ (6.llb) 

L s L 
0 

We now have expressions specifying how the effects of quite arbitrary machine 
errors in an arbitrarily complicated linear machine can be minimized just by 
the use of vertical orbit correction coils. 
As an we consider a family of 8 correction coils with fields llB1 , llB2 , 

••• , llB 8 • Since we have 8 free parameters - the strengths, we expect that it 
should be possible to set a total of 4 different fk's to zero (each fk has an 
ak and bk part). Naturally these fk's are chosen to correspond to k's close to 
the spin tune v. 
By considering (6.11) for k = r, r+1, r+2, r+3, we may rewrite it in matrix 
form as A 

ar l>Bl 
A 

br l>Bz 
A 

ar+l llB3 
A 

br+l llB4 
= K • A (6.12) 

ar+Z l>Bs 
A 

br+z 
ar+3 llB7 

A 

br+3 l>Ba 
where 

An Arz An Ar4 Ars Ar6 An Ara 
Bn Brz Bn Br4 Brs 8r6 Bn Bra 
Ar+l,l Ar+l,Z Ar+I,3 Ar+I,4 Ar+I,5 Ar+I,6 Ar+l,7 Ar+I,B 

K = Br+l ,1 Br+l,Z Br+I,3 Br+I ,4 Br+I,5 8r+l,6 8r+1, 7 Br+I,B 
Ar+Z,l Ar+z,z Ar+Z,3 Ar+z,4 . Ar+z,s Ar+Z,6 Ar+Z,7 Ar+z,a 
Br+z,l Br+z,z 8r+z,3 Br+Z,4 Br+Z,5 Br+2,6 Br+Z,7 Br+z,a 
Ar+3,1 Ar+3,2 Ar+3,3 Ar+3,4 Ar+3,5 Ar+3,6 Ar+3,7 Ar+3,s 
Br+3,1 Br+3,2 Br+3,3 Br+3,4 8r+3,5 Br+3,6 Br+3,7 Br+3,a 
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and depends on the optical and state of the ring. We are then immediately 
in the position to calculate the that are required for varying the quanti-
ties Re • f · a; = (i r, r+1, r+2, r+3) 1 = (6.14) 

bi = - Im • f; 

independently of each other: 
A 

ar 
br 
ar+l 

K- 1 
br+l 

= ar+z 
(6.15) 

br+Z 
ar+3 
br+3 

If, for example only ar is to be corrected, then in (6.15) we use: 
ar 1 
br 0 
ar+l 0 
br+l 0 = p • 
ar+z 0 

(6.16) 

br+z 0 
ar+3 0 
br+3 0 

where p is a scale factor reflecting the fact mentioned above that in general 
the exact amount of ar to be corrected must be discovered empirically by va-
rying all the with the same common factor. 

The treatment so far was quite general and made no assumptions about symme-
tries in the ring structure. Thus, in this formalism there is no reason why 
the family of coils should not be expanded so that a larger number of harmo-
nics could be controlled together. However, care would be needed in the 
handling of the inversion of the large Also, it is certainly inad-
visible to try to use all available coils simultaniously since, in practice, 
not all power supplies will be in operation. 

Finally, we note that in a typical machine there will be many distinct fami-
lies of 8 coils so that in principle a particular group of 8 harmonics can be 
corrected in many different ways. Thus, if the number of coils to be used is 
kept to a minimum we retain the flexibility to choose that combination which 
has the smallest effect on the closed orbit but which at the same time has the 
largest effect on the harmonics 22 l. 
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In practice, the optics and the orientation of the n-axis often exhibit symme-
tries and thus can lead to further simplification. Consider a fourfold symme-

tric arrangement (Fig. 1) with 8 coils positioned as shown (see also 

equ. (5.17)), then with (6.10): 

c1fl(s) = C11 (s [1 - 1 •LJ - 8 
fUr ll = 3, 5, 7 

c2fl(s) = c 21 ( s fl - 1 • L) - 8 

(6.17) 

and 

c1fl(s) c 12 ( s fl - 2 •LJ = - 8 
fUr ll = 4, 6, 8 • 

c2fl(s) = c22 (s - fl - 2 • L) 
8 

( 6.18) 

Thus, the matrix elements Akfl and Bkfl for fl = 3, 5, 7 ([1 = 4, 6, 8) 
can be written in terms of Ak 1 and Bk 1 (Ak2 and Bk2 ): 

a)[J=3,5,7: 

= 1 
L 

1 "' ' 1 ( s' = s -.fl...:_:!:· L · ds' = ds · = .2... +.fl...:_:!:) 
8 ' 'L L 8 

So+ L s' ll 1 f ds'•{C (s')•cos[2rrk-+2rrk• - l 11 L 8 -

- C (s') + 2rrk· fl- 1 J} 21 L 8 

1 So+ L ' 1 
= • f ds'•{C (s')·[cos(2rrk.2...)·cos(2rrk·fl-) L 11 L 8 

so 

- sin(2rr k • sin(2rr k. fl - 1 )] -
L 8 

- C21 (s') • [sin(2rr k sl') •cos(2rr k • fl 1 ) + 

+ cos(2rr k • sin(2rr k • fl - 1 )]} 
L 8 

= Ak 1 • cos(2rrk•fl 1)- Bb • sin(2rrk .fl 1 ) (6.19a) 



- 26 -

IP1 Vertical orbit correction 
Coil N°8 Coil N°1 __ ...--t----

521 5, 
I 
I 
I 
I 

Coil N°7 ( l 
51 I 52\ 

IP4 \-----------t-----------
Coil N"6 

52 
: 51} 

I 
I 
I 
I 
I 

5, II 52 
Coil N° 5 

Fig.1 

Coil N° 2 
IP2 

Layout of the ring with 4 equally separated interaction points (I.P.). 
The positions of a family of 8 vertical orbit correction coils are indicated. 



b)tt=4,6,8: 

- 27 -

1 -L)•sin[2nki] + 
L 
,._, 

+ C2Js- fl- 1 -L) 
8 L 

= Ak 1 • sin ( 2n k • fl 1) + BkJ • cos ( 2n k • fl 1) 

Akfl = Ak2 • cos ( 2n k • fl 2) Bk2 • sin ( 2n k • fl 2) 

(6.19b) 

(6.20a) 

(6.20b) 

If in addition, by a suitable choice of'f (s0 ) in (3.5) and by setting s1 = s2, 
the following conditions are satisfied (reflecting the mirror symmetry of the 
guide field and n, m, taxes with respect to the interaction point): 

then 

C1fl(s) = + C11 (L - s - 8 fl • L) 

c2fl(s) = - c21 (L - s - 8 fl. L) 
tt=2,4,6,8 

Akfl Akl • cos ( 2 n k 8 - 11) Bkl • sin(2n k 8 - 11) = 8 8 

8ktt - Akl• sin ( 2 n k 8 - 11) - Bkl • cos (2n k 8 - fl) = 8 8 

for fl = 2, 4, 6, 8 

(6.21) 

(6.22a) 

(6.22b) 

so that to calculate Kit suffices only to know Ak1, Bk1 for k = r, r+1, r+2, 
r+3. In this case, it is even possible to solve the equation system (6.12) for 
the harmonics fr to fr+ 3 directly. 
To do this, we expand (6.19) and (6.20) fork = 4n, 4n+1, 4n+2, 4n+3 (i.e. we 
put r = 4n): 

1) fl = 3, 5, 7: 

a) k = 4n 

Akfl = Akl 

= BkJ 



b) k = 4n + 1 

= Akl • - 1)· :!!.] 
4 

= Akl • - 1). 

c) k = 4n + 2 

= Aki • - 1) . :!!.] 
2 

= Aki • - 1).2!.] 
2 

d) k = 4n + 3 

= Akl • - 1). 31TJ 
4 

= Akl - 1). 31TJ 
4 

a) k = 4n 

= Ab 

= 8k2 

b) k = 4n + 1 

= Ab 2) '*] 
= Ak 2 • sin [ ( - 2) • *] 

c) k = 4n + 2 

= Ak 2 • - 2) • fJ 

= Ak 2 • sin [ ( - 2) • f] 

d) k = 4n + 3 

= Ak 2 - 2) • 3
41T] 

= Ak 2 • 2) • 
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- Bkl • sin [ ( - 1) • :!!. J 
4 

+ Bkl. - 1). :!!.] 
4 

+ Bkl. - 1) • :!!.] 
2 

+ Bk 1 • cos[{u - 1) • :!!.] 
2 

- Bk 1 • - 1). 31TJ 
4 

+ Bki. - 1). 31TJ 
4 

- Bk • - 2). 2!.] 
2 4 

+ Bk • - 2) • .:!!.] 
2 4 

- Bk 2 • - 2). fJ 

+ Bk • - 2) • .:!!.] 
2 2 

- Bk • 2) • 31T] 
2 4 

+ Bk • cos [( - 2) • 31T] 
2 4 
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Then, recalling the condition (6.22) 

f'' = Akl 

Bks = - Bk . 
1 ' 

and making the abbreviations 

Po = 
Aki1 for k = 4n 

qo = Bkl 
(6.23a) 

P, = 
Aki} for k = 4n + 1 

q, = Bk 1 

(6.23b) 

p2 = 
Akl} for k = 4n + 2 

q2 = Bkl 
(6.23c) 

Pg = '"] for k = 4n + 3 
q3 = Bkl 

(6.23d) 

where Akl, Bk, (k = 4n, 4n+1, 4n+2, 4n+3) are obtained from (6.11), the 
matrix K in (6.13) takes the form 
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The inverse matrix K- 1 can now be written in the form 

1 1•A2 1•A3 1·A4 1•As 1•As 1·A7 1•As 

1 -1•\2 p3 q3 -1•As 1•As p1 ql -·A3 -"A4 --"A7 --"As q3 p3 q1 p1 

1 1·A2 p3 
--"A3 q3 

q3 -•),4 
p3 

-1•As -1•As pl 
-"A7 q, 

q1 
--"As P, 

1 -1·A2 -1•A3 1·A4 1•As -1•As -1·A7 1•As 
K-1 = A • 

1 1•A2 -1·A3 -1·A .. 1•As - 1·A7 -1•Aa 

1 -1•A2 
p3 

--"A3 q3 
q3 

--·A .. p3 
-1•As 1•As P, 

-"A7 q, 
q, 
-•As pl 

1 1•A2 q3 
--·A .. q3 p3 

- 1•As -1•As P, 
--•A7 q, P, 

1 -1•/.2 1·A3 -1·A .. 1•As -1•As 1·A7 - 1•As 

where A and Ai are suitable constants. 

This matrix has a structure identical to the table of excitation currents 
given in Ref. 10) and we see that although the detailed forms of the Pi, Qi 
will differ from those in Ref, 10) the structure of only depends on the as-
sumption of the fourfold mirror symmetry. This is the case even when the ma-
chine is otherwise arbitrarily complicated and not just flat. 
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Summary 

We have shown how the SLIM 1 '
3 )formalism can be extended to provide a systema-

tic means of correcting perturbations to the equilibrium spin axis in electron 
storage rings with magnet misalignments and field errors. This 6x6 fully coup-
led formalism is straight forward to implement even in rings with complicated 
spin rotator systems and includes the effects of energy variations on the clo-
sed orbit. 

Naturally, in addition to the closed orbit effects treated here correction 
schemes for dealing with the effects of gradient errors and the depolarizing 
effects of spurious vertical dispersion are also needed 10

• 7 ) 
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