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Ahltract 

Me extend the closed orbit correction for•alism of Ref. 1 to take into account 

the notion that the polarization in electron storage rings aay be more sensitive 

to tilts, ~~. of the equilibriu. spin axis in some parts of the lattice than in 

others. This is achieved by means of a periodic weighting function. The forma

lisa requires some modifications of the computer program already developed for 

iiiPle•nting the ideas of Ref. 1. 
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1. Introduction 

In an earlier article /1/ we described a general closed orbit correction scheme 

designed to minimize the detrimental effect of misalignments on the degree of 

polarization in electron storage rings. The technique consists of minimizing 

the tilt away from the design direction of the periodic spin solution, ~0 , on 

the closed orbit. 

That article is the basis of the orbit optimization program FIOO /2/, written 

by S. tfane and which is used for simulation of the optimization of polariza

tion in HERA. 

In this note we show how the formulation can be extended to 

of the fact that a certain deviation, &~. of the periodic 
• 

take into account 
• spin solution, n, 

fro• the design solution, n0 , may be more detrimental at some positions in the 

lattice than at others. As an example, it is clear, trivially, that a tilt, &ri, 
from the vertical in the arcs is only important at the quadrupoles /3/. However, 

it is also clear that the effect of the tilt, ~~. will tend to be most important 

at those quadrupoles where the beta functions and dispersions are particularly 

large or, equivalently, where the (periodic> absolute values of orbit eigenvec

tor coaponents are large. The relative orbit and spin phases are of course also 

iaportant /3/ but it would nevertheless be of interest if, instead of minimizing 

&ri, we were able to minimize the product ~ri<slog(s) where g(s) is some general 

periodic weighting function such as a Twiss parameter. 

This is the object of the formalism described below. 
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• • Z. The cha~_!!l..._the n-axis_On_~aused _Qy_ c;:J.Q~_e_c:!_ <>_t_i;!:i,!_shifts 

2. 1 Ih~-~ill!!'_lion __ Q.f.__spi n ~ or~_i_t___!!!_q_t._!_g_!:! 

As a starting point we summarize the basic equations of spin orbit coupling. Hore 

introductory material and details of notat1on may be found in Ref. 1. As before, 

we work within the framework of linear spin-orbit theory. 

1> Qrbit 

The linearized equations of orbit motion are: 

with 

0 1 

-<G:t + H2J 0 

-H 0 

A = I N -H 

-Kx 0 

H 

N 

0 

d • 
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(2.ial 

+r eV [ 2 2 c0 = (0,0,0,0,0, E sin+ o O<s-s~l - C:t<Kx + Kzl) ; (2.1bl 

0 " .., . • c:t = (0, - E ~z.O, ~ o ~x,O,O) (2.icl 
0 0 

H = 1 ~ o B(ol 
2 E

0 
't 

(2.idl 

N 1 ~ (aBx _ aBz) 
2 E0 ax az x=z=O 

; <2.1el 

e [aBz J g =- -
Eo ax x=z=O 

; (2.1fl 

{G:t=K~+g ; (2.ig) 

G2=Kz-g 
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2 y~ 
c .... "' 3 ez E 

0 

<Z.ih> 

~ = (x, Px• z, Pz, a, ~~ <2.11) 

{ Px • x' - H•z 

Pz = z' + H•x 
<2.1j> 

The .. trix ~ describes the influence of lenses and cavities on the particle mo-
~ 

tion, the vector c"" the action of the fields nB,c and ABz (due to field errors 

and correction coils} while ~0 is determined by local radiation of energy in 

bending aagnets and energy uptake in cavities. 

In detail we have: 

a) gJII:O;H=H=V=O;Kx=Kz=O 

quadrupole 

b) NJII:O;H=g=V=O;Kx=Kz=O 

skew quadrupole; 

c) Gi. = K~ + g ; G2 = - g or G2 = g ; G2 = K~ - g ; H = V = 0 

combined function magnet; 

dl H I 0 ; g = H = V = 0 ; Kx = Kz = 0 ; 

solenoid; 

e) V I 0 ; g = N = H = 0 ; Kx = Kz = 0 

cavity. 

2> Spin 

Linearised classical spin motion is described by the equations 

..!!_-t_ -t .... 
ds C - ~ C + R • [F • y + c 2 ] (2.2) 

With 
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( : l ~ c : <2.2a) 

[ 68, 
<1 + a> 

• e 
6Bx <1 + &Y0 ) c2 = - Eo 
6Bz <1 + ar0 > 

<2.2b) 

~ = ,.. ( -~ ~ l ; <Z.Zc) 

r ,, '• '• R • 
""'t - ... -"z 

<Z.Zdl 

E = (<F!-11.1)) <2.2e) 

F~2 = - ar0 • Kz 

F~4 = + ay0 • Kx 

Fi.6 =2H• 1 + a) 

F2 i. = - <1 + ar0 > <N - H' l 

F22 = ay0 • ZH ; 

F23 <1 + ay0 J<K~- g) + ay0 • ZH2 

F,_ eV '\ 
(ay0 + 1> • E sinq. • L &<s - sJ..Il 

0 " 
F2G - Kz 

F, -<1+ar0 > <K~ + gl - ay0 • 2H2 

F32 = - F2" ; 

F33 <1 + ar0 > • <N + H' l 

F34 F22 ; 

F3., Kx 

FJ..IV = 0 otherwise . 
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Equations (2.1> and <Z.Zl can be combined into the form 

-il~=A~+P ds -
(2.3) 

with • 
• [ ; l <2.3al u " ; 

~ " [ :. Q I ; <2.3b) 
~. 

• • • I Co + c~ 
p " • I 

Rc 2 

; <2.3cl 

\lo g • E (2.3d) 

where the first six components of the eight dimensional vector ~<sl describe 

the transverse and longitudinal orbit motion and the last two describe the 
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2.2 The~li matrix 

The solution for the inhomogeneous equation (2.3) can be written in the form 

( ~<1s>) ~(s,so> ( 
• 
u<~o>) <2.5) 

where the 9-dimensional transfer matrix ~(s,s 0 l satisfies the relations 

[ * 
• d A ~) t!<s,s0 J ds t!<s,so> = ; <Z.Sal 

t!<s,s0 > =.! <2.5b) 

If we write H<s,s 0 > as 

r H<s,s0 > 
• 

H<s,s0 ) = 
a<s,s 0 ) 

Q 1 
<2.6) 

with 

tL<s,s 0 l Q 
,.._' -

spin coaponents. 
!1< s. - ' ......, 

• We now require that u is periodic 

~<so + Ll ~(s0 l <2.4.al 

so that 

• • • + Y<s0 + Ll = Y<s0 l y 5 y With (closed orbit l; 

} <2.4.b) 

( 5 4~ with 4~ts0 + L) = 4~ts0 > <change of ~-axis) 

i.e. the orbit coaponents of ~ now give the six dimensional closed orbit while 

the spin 

shift. 

• coaponents give the change in the n-axis due to the closed orbit 

we then obtain 

J! ~<s,s0 l 

ds Q 

~<so,so> 

Q 

g<s,s0 l _Q(s,s 0 > 

{ ~(s,s0 l = transfer matrix for the orbit; 

Q<s,s0 l =spin-orbit coupling matrix 

• a(s,s0 > 

1 

• a<s 0 ,s0 l 

1 

~ 
Q 

~ 

1 

g l ( ~(s~s0 l 

~(s,s0 > ~ 

Q 

• a<s,s0 > 

1 

• • a<s,s0 l + p 

0 



- 7 -

or 

d • -
ds a<s,s0 ) =!! 

~ -t ... -+ 
a<s,s0 J + p ; a(s0 ,s0 l = 0 <2.8al 

d 
ds ~<s,s0 l = ~ • ~<s,s0 > ; t!<s0 ,so> = 1 (2.8bl 

Equ. (2.8a) has the solution 

:cs,s0 J = ~<s,s0 l .r: ds 
So 

~(s0 ,SJ . -p<s> 

J
s • 

= ds 

•• 
~<s,SJ . -p(S) (2.9) 

where the vector P<sl is given by <2.3cl. 

Furthermore, from equ. (2.8b) together with <2.3bl and <2.7> we have the rela

tions 

.J!_[!!o 
ds g ~ l (~ ~ l [ ~ ~ ) 

[ 
A !!o 
<iotJo+Qo<i ~ Q) 

[ 
~(s,s0 ) 

Q<s,s0 l 

0 

Q<s0 ,s0 l 
l = 1 

or 

I> ! !:!o<s,s0 l = !!<sl • ~<s,s0 l ; !:!o<s0,s0 ) "'!. 

===+ ~<s + 11s, s) ~ !. + l1s ~(s) (2.10) 

II) 

III> 
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d 
ds Q<s,so> = no<s> • Q_(s,so> ; D<so,So) = 1 ; 

Qo<s> = o/'(s} • (-~ ~) following eqn. <2.2c) 

~ Q<s,s0 l 
[ 
cos[~<sJ-~<s0 >] 

-sin[o/<s>-1V<s0 J] 

sin[ If< s >-~¥< s 0 )] 

cos(\jl'(sl-lft<s0 l] 

d 
ds Q<s,so> = go<sl ~(s,so> + no<s> • ~(s,so> ; Q<so,so> = Q_ 

-g<s,s0 l = Q<s,s0 J • J: dS 
•o 

Q<s0 ,Sl §:o<SJ ~<S,s0 l 

r - -= ds • Q<s,sl 
So 

<io<S> !'!o<S,:i!ol 

<2.11) 

(2.12> 
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Reaark: The above relations are also useful for describing the orbital transfer 

matrix no= 

with 

tJo<s,s0 l 
( J!o:s,s0 l 

~ ao<:,so>) 

( Y:s') = no<s,so> 
~ 

( Y:S0)) . 

For this we write <2.1l in the form 

~ 

! ( y:sll = [ ~ ~ l 
~ [ y:s)l 

with 
~ ~ ~ 
c(sl = c~<s> + c 1 <sl 

The aatrix ~<s,s0 l then obeys the equation 

d • [ ~ 
ds ~(S,Bo) = 0 t ]• 0 lfo<s,so> 

~(s0 ,s0 l = ! 

ao that using <2.13> 

d 
ds ~<s,s0 > = ~ ~<s,s0 ) ; ~<s0 ,s0 > 

d ... ... ... ... 
ds ao<a,so> :: ~ ao<s,soJ + c ; ao<so,so> 

1 

L 

Once ~Ca,a0 > is known, (2.19) can be solved in the form: 

~ J: - - ~-&o(s,s0 ) = &<s,s0 ) • ds • !!o<so,S) • C(S) 
•o 

J: d8 • ~(s,S> ~ -C(S) 

•o 

<2.13> 

(2.14.) 

<2.15> 

<2.16) 

<2.17a> 

<2.17b) 

(2.18) 

(2.19) 

<2.20> 

This ia a convenient fora for handling the transfer matrix of a tilted, displaced 

aolenoid (aee Appendix I>. 
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2.3 Ihin. lens.....rumroximation 

An approximate but very convenient way to solve the equations of spin orbit mo

tion is to divide the magnetic elements into a sufficient number of thin slices 

of length 6s and develop the solution ~(s+6s,s) in powers of 88. If only the terms 

linear in 6s are retained, then from eqns. <2.6> and <2.7> together with (2.9), 

<2.3cl, (2.11) and <2.12> we obtain the thin lens approximation: 

~ ~ 

[ !!,<s+t.s,s) Q [c 0 (s)+c~ (s) ]•lis l 
~(s+6s,s> = Q0 <s~·6s Q<s+6s,s) R<s) •c 2 <s> (2.21) 

Q 1 

with 

( cos[~<s+6s)-•(s)] sin(V<s+ds)-~(s)] I 
(2.22) D<s+6s,s) = 

- -sin[V<s+6s>-v<s>] cos(~(s+hs)-•(s)] 

The orbit matrix !:!o must of course remain symplectic during the linearization. 

This can be achieved by writing it in the .form 

~(s+6s,s> 

I 0 

~o<s+ds, s~> 
2 

0 0 

-<G:~. +H2) 0 N 

~ = I 0 0 0 

[! + ~(s) ·6s] R<6&> tfu<s+6s s) 
2' 

0 0 

0 0 

0 0 

N 0 -<Gz+H2> 0 0 

-Kx 0 -Kz 0 0 

0 0 0 0 ev 2n [ 
~·k·~·cos~· 6<s-s~) 

0 v 

<2.23) 

0 

Kx 

0 

Kz 

0 

0 

I 
(2.24.) 
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co.t.e 0 +sinli9 0 0 0 

0 cosd9 0 +siM.9 0 0 

gct.el = 1-o1nt.e 0 cos.69 0 0 0 <2.2Sal 

0 -sinA9 0 cosbe 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

with !19 = H<s> • As <2.25bl 

and 

1 t 0 0 0 0 

0 1 0 0 0 0 

&<s+t,s> = I o 0 1 t 0 0 (2.26> 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

<= transfer matrix for a drift of length t> 

In linear order, the r.h.s. of eqn. <2.23> agrees with the r.h.s. of eqn. <2.10>. 

Furthermore, all factor matrices on the r.h.s. of <2.23> and therefore ~{s+ds,s> 

itself are symplectic. 

Remark: The rotation matrix R<dO> commutes with ~ and also with ~(s) if N = 0 

G~ = G
2 

= 0. Therefore, for a pure solenoid field the factors R<d9> in 

(2.23> can be extracted and combined into one rotation R<O>: 

R<O> R<d9~> • R(d82 ) •.• R<69n> 

with 

n 
e [ 69v 

\1=1 

which only needs to be applied once. 
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2.4 The equation for &ri 

We now use this thin lens approximation for calculating the periodic solution 

of the spin orbit vector ~(s). As in (2.4b> this will lead to the closed orbit 
;t ~ ~ 
y and the tilt of the n-axis &n. 

;t ~ 
y and 6n at position s 0 can be obtained immediately by writing <2.4a> and <Z.S> 

in the form 

[ 
$cs0 l l 

~<s0+L,s0 l • &ri:s0> 

;t 
y<so) l 
&·ri:s0 > <2.27a> 

and extracting the eigenvector with eigenvalue 1. The normalization of the 

eigenvector is fixed by requiring that the 9th component be unity. ~<s l at 

other positions is obtained by applying (2.5) which ·we rewrite here as: 

[ ~Is) l 
&ri:s) = ~(S,S0 )[ 

~ 

y<s0 ) l 
6~:s0 > 

Using <2.6>, eqn. (2.27a) can also be written as 

;t ~ 
tl<s0 +L,s0 > u(s0 > + a(s0 +L,s0 > 

;t 
u<s0 > 

from which we immediately obtain 

~ (!- ~(s0+L,s0 >] u<s0 > 

;t 
u<s0 ) [1- !:i<s0+L,s0 >1-~ 

~ 
a<s0 +L,s0 > 

~ 
a<s 0 +L,s0 > 

~ 

This provides another way to calculate tl<s0 ), 

~ 

<2.27b> 

(2.28) 

In the following we consider that tl<s> and in particular 6~(s) are already 

known. 
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3. Har.onic orbit optimization 

Froa eqn. (2.27), with the help of <2.2b>, (2.3c), <2.6> and (2.9) it is clear 

that 6~(s} depends on the field errors and correction fields. The aim is then 

• to find correction fields such that the changes in the n-axis caused by field 

errors can be corrected. This problem has already been treated in Ref, 1. 

In this work we wish to extend the formalism so as to handle the possibility of 

enhancing the correction to 6~ at those positions in the ring where it has the 

.ost daaaging effect on polarization. This will be achieved with the aid of a 

a periodic weight function g(s), 

We recall that according to eqns. (2.2>, (2.2cJ and <2.4), O~(s) satisfies: 

d • 
ds On "' !fr' L: ~ ) • 6~ + d 

with the periodicity condition 

dri<s+U • 6n<s> 

where 

a,., = 
d..t. (s) 

d
2

(S) 

acs+LJ 

R (E 

~ .. , . 
we nov introduce a periodic weight factor 

g(s) g<s+LJ 

• A • 

y<s> + c 2 ] 

<3.1a> 

<3.1b) 

C3.2aJ 

<3.2b) 

(3.3) 

• which will be used to eaphasise those parts of the ring 

.ost daaaging influence on the polarization and we put 

where 6n(s) has the 

6itcs> g<s>·6ri<s> . 

Alternatively, by setting g<s> to zero in some parts of 

that g<•> provides a .eans of masking out those parts 

the least daaaging effect. 

(3.4) 

the ring, we can consider 

of the ring where 6~ has 
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• 
The new function &ii<s> obeys a modified form of eqn. <3.1a), namely: 

or 

with 

_Q_ 
ds 

6fi:1 

&iiz 
~· 

d [ - - l ds 6n"1 - i•6n2 

[60:~. - i·OOz)s 

Oii2 

-&n:l 
+ g' (s) 

[ 
&n, l 
6n

2 

+ g<s> 

io/' • [60~ - i•60z1 + f(s) 

(Oil~ - i•Ofizls+L 

f(s) g(s) • <de.~. - i•dz) + g' (s) · <6:1.1 - i·Onzl f(s+U 

whereby ori and dare to be obtained from the solutions to (2.21>. 

Eqn. (3.2aJ can also be written as 

_Q_ {e-i•\jt(sJ • (6fi - i·Oi'i >} 
ds ~ z 

e-i·~<s> • f(s) . 

d, 

d2 

(3.Sal 

<3.5b) 

(3.6) 

(3.1) 

By integrating (3. 1) from (s-U to s and applying the periodicity conditions 

<3.Sb> 

we find 

[6i'i1. - i•Oi'iz] ! 
2 

V<sJ - ~(s+Ll = 2nu 

~t~ . ei[\jt<s>-m>J • fS dS 
sinnu Js-L 

e-i·V<S> 

If t<S> <which is periodic> is expanded in a Fourier series: 

t<S> 
+m 
~ fk • ei•k•211·~ 

k=-<» 

=9 fk 
1. fSo+L 
L ' j., ctS 

so 
f<S> e-i·k•2n·~ 

t<S> 

(3.8a) 

(3.8b) 



~ &n can also be written as 

[&fi~(s) - 1•4fi2 (sJ) 1 
2 

_1_ 
sinm> 
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eHift<s>-n\l) 

XL fk 
k 

f" ds 
· Js-L 

eHk·Zn•~ L w<S> J 

If, as in Ref. 1, the phase function has the form 

=-

lf<s> 
s-s0 

lf(s0 ) + 2nu • ~ 

'f'<s> - t<S> s-s 
Z'ffil • L 

eqn. <3.9) finally becomes 

[&~<s> - 1•4fi2 (s)] ·~ _!,_ 
-1 • 211 [ f•. 

k"'-(1) 

ei•Znk·~ 
k-u 

(3.9) 

<3.10a) 

<3.10b) 

(3.11) 

~ 

This equation describes the connection between the weighted perturbation &ii of 

the ~-axis and the Fourier coefficients fk of the function f(s) defined in 

(3.6). If g'(s) is zero, so that g<sJ is constant, these equations just reduce 

to those of Ref. 1, SectionS. 
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4. Correction schemes 

~ 

From eqn. (3.11) it is clear that the largest contributions to &ii come from 

those harmonics, fk, for which 

k = \) . 

It is these Fourier components which we will try to minimize with the aid of 

suitable corr~ction coils. 

To do this we first of all separate f(s) Ceqn; <3.6) J into two parts 

f(s) f(s) + r<o> {s) (4.1> 

where f(s) describes the effect of field errors flBx, fiBz, 6B8 and of the vector 

~0 <see C2.1bJ) and r<o>cs> 

r<o> <s> g(s) • <d,io>- i•dio>),.. g'<s> • <On:~.<o>- i•&n
2

<ol) 

f~O)(S) - i•f~O)(s) i C4.2aJ 

{ 
f~o>cs> g(s) • d,to> ,.. g' (s) • &n,to> 

(4.2b) 

f~OJ (s) g(s) • d1o) ,.. g' (s) • &nio> 

describes the influence of horizontal correction fields 6B4o>csJ. As in Ref. 1 

we rely on corrections to the vertical closed orbit only. This division of f(s) 

into two components is possible due to the linearity of the defining equations 

• (2.3) and <2.4> for y and&~. Thus d~o) and d~o) are given (see eqn. (3.2)) by 

d<o>csJ ;:; 

with (see eqn. <2.2b)J 

~1o> (s) 

diO)(g) 

d;o> (s) 

_._ 
Eo 

R 

68~~) (s) l 
lE 

:t 
y<o>csJ ,.. ci0 ><sJ] (4. 3) 

(4.4) 
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~ 
while according to <2.3> and <2.4), y<ol and &rt<o> obey: 

_!!_ 
cis 

y = A 
:ttol l 
&~<ol -

~ 

[ 
y<ol ts+L> l 
&~<o>ts+Ll 

y + :tto> l 
6~(o) [ 

c ( 0) l 
R~c~ol 

~ 

[ 
y<o> tsl l 
&~<o>tsl 

with <see eqn. t2.1cll 

• (c"S.<o>)T (0, 0, 0, : t\B~ol, 0, Ol . 
0 

<4.5al 

(4.5bl 

(4.6) 

Eqns. (4.5a) and (4.Sbl are of course to be solved using the methods of 

sections 2.3 and 2.4. 

The separation of f(s) into coaponents ftsl and r<o>tsl leads to a corresponding 

separation of the Fourier coefficients fk 

fk fk + r!o>, 

where in particular f~ol is given by eqns. <3.8b) and (4.2) 

r<o> • 
! . r.o+L dS • [r<o>tS> - i•t<o>tS>] • e-1·k·2~·~ 
L • ' •• 

ak - ibk 

1 r.o+L .. < ) .. 8 < ) .. 8 

•o 
{ •k = L • do • !fa0 <sl • cos<2nk•L l - f, 0 <s>. s1n(2nk•L >J 

1 r.o+L - ( ) ... -S < > - S 
bk"' L • da • {fa0 (sl • sin(Znk•L ) + fx 0 (s) • co8(2~k·L )} 

•• 

By vritinc the correction field ~o> as 

h8~0)(8) z= 6B~ • &<s-s~> 

" 

(4. 7) 

(4.8) 

<4..9) 

<4..10) 

- IS -

where the summand 

611,J • 6ts-sv> 

describes pointlike correction coils at positions s 

parts, ak and~ in (4.8), can be put in the form: 

sV' the real and imaginary 

•k 

"" 

L Ak" 

" 
OS, 

L Bk" • OS, 

" 

(4..11) 

where the coefficients Ak]J and Bkll are determined by eqns. <4.2>-<4.9) and the 

coil positions sv: 

6B(ol 
X liB" 6ts-s11

> 

The further development runs in just the same way as in Ref. 1. 

We consider the effect of a family of 8 correction coils with fields 88~, 6B2 , 

... ABe. 

By writing k r, r+1, r+2, r+3, eqn. (4.11> takes the form 

•r ~· 
br ~· 8r•l ~· 
br•1 ~· 
ar•2 = ! ~5 I (4..12) 

br•2 ~· 8r•3 ~7 
br•3 IIIla 
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with 

' Art Arz Ar3 Arq Ars '·· An Are 
B., Brz Brs Brq 8rs s •• Bn s •• 
Ar•L. 1 Ar•t,2 Ar•t.,3 Ar ... t,,4 Ar•t. 5 Ar+t,6 Ar+t,7 Ar+t, a 

~ = I sr ... t.t Br+t,2 8 r ... t,3 8 r·.-t.4 Br•t, s Br•t,6 8
r+t' 7 

8 r+t. a I (4.13) 

"-r ... z,t 1\-... z.z ""·2.3 Ar.z.4 "-•2.5 "-•2,6 Ar ... z.7 Ar ... z.e 
8 r ... 2,1 Br ... z.z 81'"+2' 3 81'"+2,4 Br+2,5 81'"+2,6 8 r,..z,7 81'"+2,8 

"'-•3' 1 Ar+3,2 A,-... 3.3 A,-... 3,4 "-•3,5 Ar•3,6 "-•3,7 Ar+3,8 

8 r+3,1 Br•3.2 Br+3,3 Br•3,4 Br ... 3,5 8 r•3.6 8 r+3,7 Br+3,8 

On inversion: 

' 

~· •• 
~· br 

~· 
8 r ... t 

~· br•t 

~5 "' !Ct. . 81'"+2 (4.14) 

~· br•2 

~1 81'"+3 

t.s. br+3 

we can calculate those fields ABv which are required for changing the quanti

ties ar = Re f~0 >, br = -Im f~o) independently of each other, so that the dan

gerous Fourier coefficients 

fk fk + r<o> 
k 

can be made to vanish systematically. 

<k !1. u) 

For example, to correct ar, we write the system (4.12) as the column vector 
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•r 1 

br 0 

ar ... t 0 

bl'"+1 0 

8 r+2 = 0 I (4.16) 

br•2 0 

81'"+3 0 

br+3 0 

The other components br, ar•t' br•t• ar ... z• br.z• ar ... 3 , br,..3 can be treated in 

the same way, 

With this correction scheme we are in the position to minimize the weighted 
• • tilt &ii = &n•g. 

S. Conclusion 

As explained in Ref. 1, normally we cannot measure the closed orbit to sufficient 

accuracy to calculate the corrections fR. Instead, we would operate empirically, 

by calculating the correction coil strengths 6Bv up to an overall scale factor 

and then maximising the measured polarization by varying the scale factor. 

In the formalism developed here, we have more freedom than in Ref. 1; here we can 

experiment with the weighting function to see if, for example, it is safe to 

ignore tilts &ri in those straight sections where the ri vector should be longitu-

• dinal in comparison with tilts 6n in the arcs. Or it might be, that it is more 

important to correct 6~ in regions where the horizontal dispersion is large than 

in regions where the horizontal beta function is large. One would then choose 

g<s> appropriately. 

Finally, we point out that the present formalism is only slightly more complicated 

than in Ref. 1; here, we must calculate not only the closed orbit corresponding to 

a particular correction field excitation, but also 6~(s) <see eqn. <4.2b)). This 

requires some modifications to the program FOOD /2/; 
t 

stored for each closed orbit y(s). 

• in particular a 6n<s> must be 
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APPENDIX I 

The transfer matrix for a tilted and displaced solenoid 

To calculate the transfer matrix of a displaced and tilted solenoid we supple

aent the usual (s,x,z) coordinate system with a second coordinate system <~,u,v) 

fixed to the solenoid. The ~-axis lies along the solenoid axis <see Fig. 1>. 

X u 
I >I ,., 

.-s 

- -- . ..1. ax,;~: 

a" 
' 

S= s, S= s, 

Fig. 1 

Figure 1 
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In the <~,u,v) system the orbital equations <2.1> become 

u' Pu+H•Pv 

p~ = - H2 • u + H • Pv 

v' - H • u + Pv 

Pv - H • Pu - H2 • v 

or, by eliminating Pu• Pv= 

u" = 2H • v' + H' • v 

( I.i) 

v" = - 2H • u' - H' • u . 

If l«xl « 1, ICXzl « 1 we have 

' s 

u x + ax + s • sin <lx ( 1.2) 

v z + az + s • sin «z 

and by substituting of <1.2> into <1.1> we obtain 

x" = 2H • (z' + sin«z) + H' • (z + Bz + s • sin«z) 

ZH • z' + H' • z + 2H • sin«z + H' • <.sz + s • sin«z > 

z" - 2H • (X' + sin ax) - H' 0 (X + Bx + s • sin «x) 

- 2H • x' - H' • x- 2H • sin«x- H' • <ax+ s • sin«x) . 
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By u.tnc the variables 

Px = x' - H • z 

Pz = z' + H • x 

thie aay also be written in the form 

x' Px+H•z 

pX ::: - H2 • x + H • Pz + 2H • sin «z + H' • ( Bz + s • sin <Xz ) 

z' = Pz - H • X 

PZ = - H • Px - H2 • z - 2H • sin «x- H' • <ax + s • sin «x > 

where Hand H' are given by eqn. <2.1d) (see Fig. i): 

H ! ~ s<o> 
2 E0 'C 

H' H • &<s-s~)- H • &<s-s2 ). 

The variables a and Pa which <eqn. (2.1a)) are constants: 

{ 

a' " o 

p(J = 0 
{ 

a<s> 

~ Pa<s> 

a< s~) 

Pa< s~ > 

need not be considered in the following. 

To integrate eqn. (1.3) in the domain 

S:~_ ' s ' S 2 

(I. 3) 

CI.4a) 

(!.4b) 

( 1.5) 
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we must distinguish three cases: 

a> s~ - £ < s < s~ + € (0 < € -+ 0} • 

In this region {1.3) and <I.4bl become (with s~ ~ ): 

X 0 

_<i Px 
ds 

H • &<s-s:~.> • <az + s • sin«z> 

0 z 

Pz -<ax + s · sin«x) 

and we have the solution 

x(s'i.+£)= x(s'i. - £) 

Px(S'i. + £) 
t 

Px<s'i.- £) + H • <az- 2 • sin«z> 

z(s:1 + £) z(s:1 - £) 

t 
pz(S 1 - e:> = pzCs:1 + €> - H • <ax - 2 • sin«x) . 

This leads <I.S> to the transfer matrix 

1 0 0 0 0 0 0 

0 1 0 0 0 0 ' +H·<az -2 sin «z > 

0 0 1 0 0 0 0 

&<s.l.+O,s:a.-0> = I 0 0 0 1 0 0 ' -H·<ax-z • stn«x > 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

( 1.6) 



- 25 -

bl 8~ + 0 < s < 8 2 - 0 . 

The equations of motion are 

X 0 1 H 0 

J!_ IPx = 
-H2 0 0 H 

ds z -H 0 0 1 

Pz 0 -H -H• 0 Pz 

X 

0 I sin «z 
-si~ «x 

Px + 2H • 
z 

In the representation 

!!o [ ~ :· l • 8~ ~ <aot' 8oz• 8 o3' 8 o4' 8 os• 8 o6> 

for the 7-di~nsional transfer ~ we find for ~: 

~ti+cos 29> 2~ • sin 29 
1 2 sin29 2~<1-cos 29> 

H·i s1n29 ~(i+cos 29> - H·l<t-cos 29> ~ sin28 

1 _ _!_<1-cos 29> 1 1 
IL,<•,s:i.+O> = rzstn29 ZH z<t+cos 29) ZH sin29 

H·~<i+cos 28> _!. s1n29 z - u.! s1n29 z ~(i+cos 29> 

0 0 0 0 

0 0 0 0 

with 9 = H • (S - si.) 

and for : 0 <see <2. 20}): 

• I" - - ·-ao<s,s"1+0) = J.. ds Ho<s,s) • c(s) 
s:i.+O 

With "tr = 2H ·to, stnexz, -sin«x, o, o, O> 

(!.7) 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

<I. 7a> 
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==9 a
01

<s,s:t+0) 
1-cos29 sin29 

sin«z • -~-- sin«x. (<s-s:l._) -~ 

&02 <s,sj,_+0) . sin 29 ] 1 - cos 29 
H. (sln<Xz • [<s-s:i.) + -~ - sin«x • ZH 

a 03 (s,s:a.+0) 
sin29 1-cos29 

-sin«z. [<s-s:t) + ~- ] - sin«x: · ZH 

804 ( s' 81. +0) 
1 - cos 29 sin 29 

-H • (sin<Xz • ZH + sin«x • [Is-s.,_) + 2H ]}; 

a 05
(s,s""+0) 0 

a
06

<s,s:1.+0> 0 . (I. 7b) 

c) s 2 - E ( S ( s 2 + E • 

J!_ 
ds 

X 

Px 
z 

Pz 

Ho<s
2
+0,s

2
-0> 

- H • t\(s-s
2

) 

with s
2 

+ ! z 

[ 
... 

-<ax 

1 0 0 0 0 0 

010000 

001000 

+ ; • sin "z > l 
+ s • sin «x ) 

0 
t 

-H·<az+2 • sin<Xz) 

0 
t 

0 0 0 1 0 0 +H·(&x+2·sin«x_) 

000010 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

<1.8) 
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We now have the transfer matrices for all three regions 

s~ - E < s < s~ + e: 

s 1 + E < s < s
2 

- £ 

s
2 

- E ( s ( s
2 

+ E 

(€ ~ 0) 

The matrix for the whole region 

8_1 ' s ' 82 

is of course the product of all three: 

l!o<s
2

+e:, s1 -e:):: l!o<s
2
+e:, s

2
-E> • ~<s2-E ,s:~.+E) • Ho<s 1+£, s.1-e:). (I. 9) 

The corresponding matrices g and Q for the spin motion in each region can now 

also be calculated using these equations for tlo together with eqns. (2.11) and 

<2.12). 
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