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Abstract

We extend the clomed orbit correction formalism of Ref. 1 to take into account
the notion that the polarization in electron storage rings may be more sensitive
to tilts, 63, of the equilibrium spin axis in some parts of the lattice than in
others. This im achieved by means of a pericdic weighting function. The forma-—
lism requires some modificationz of the computer program already developed for
implementing the ideas of Ref. 1.
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1. Introduction

In an earlier article /1/ we described a general closed orbit correction scheme
designed to minimize the detrimental effect of misalignments on the degree of
polarization in electron storage rings. The technique consists of minimizing
the tilt away from the design direction of the periodic spin solution, EO, on
the closed orbit.

That article is the basis of the orbit optimization program FIDO /2/, written
by S. Mane and which is used for simulation of the optimization of polariza-
tion in HERA.

In this note we gshow how the formulation can be extended to take intce account
of the fact that a certain deviation, 53, of the periodic spin solution, 3,
from the design solution, 30, may be more detrimental at some positions in the
lattice than at others. As an example, it 1g clear, trivially, that a tilt, 63,
from the vertical in the arcs is only important at the quadrupoles /3/. However,
it is also clear that the effect of the tilt, d;, will tend to be most important
at those quad}upoles where the beta functions and dispersions are particularly
large or, equivalently, where the {periodic) absolute values of orbit elgenvec-
tor components are large. The relative orbit and spin phases are of course also
important /3/ but it would nevertheless be of intereat if, instead of minimizing
6;, we were able to minimize the product 63(3)-3(3) where gi{s) iz some general

periodic weighting function such as a Twiss parameter.

This 18 the object of the formalism described below.

2. The change in the n-axis én caused by closed orbit shifts

2.1 The equation of spin _orbit motion

As a starting point we summarize the basic equations of spin orbit coupling. More
introductory material and details of notation may be found in Ref. 1. As before,
we work within the framework of lincar spin-orbit theory.

1) Orbit

The linearized equatiens of orbit motion are:
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The matrix A describes the influence of lenses and cavities on the particle mo—
tion, the vector 21 the action of the fields AB, and AB; (due to fileld errors
and correction ceolls) while go is determined by local radiation of energy in
bending magnets and energy uptake in cavities.

In detail we have:

a) g A0 ; N=H=V=0; K =K =0;
quadrupole ;

by NAO  ; Heg=V=0;K; =Kz =0
skew quadrupole;

c) G, = K: +g; G, =-gorG,=8; G~ K: -g;H=V=0
combined function magnet;

dy HEO ; g=H=V=0; K, =K, =0 ;

solencld;

e) V#0;g=N=H=0; K, =K, =0

2) Spin

Linearised classical spin motien is described by the equations

ji =Dy - C+R o+ [F-y+2,] (2.2)

with
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Equations {2.1) and (2.2} can be combined into the form

d =+ _ ~ 3
si=aled (2.3)
3
with R ¥
u = _)]; (2.38)
£
~ A
A= [f g ] ; (2.3b}
Gy D,
g, + e
3=[°.,‘}; (2.30)
Re,
Go=R-F (2.3d)

where the first six components of the eight dimensional vector Uts) describe
‘the tranaverse and longitudinal orbit motion and the last two describe the
spin components.

¥e now require that U s periodic

dts, + L) = Ulsy) , (2.48)
80 that
» x . a
y = ¥ with ¥y(sy + L} = ¥(g,) (closed orbit};
(2.4b)
l e = &n with 63(30 + Ly = 63(50) {change of n-axis)

i.e. the orbit components of 3 now give the =ix dimensional closed orbit while
the spin components give the change 1in the ﬁ-axis due to the closed orbit
shift.

2.2 The transfer matrix
The solution for the inhomogenecus equation (2.3} can be written in the form

o Y
[ uis) u(sO)] (2.5)

1 ] = Mis,s84) [ 1

where the 9-dimensional transfer matrix M(s,s,} gsatisfies the relations

N =4
4 2 i A p ] " .
ds His,sq4) = [ 0 o His,s4) 3 {2.5a)
M(s,sy) = 1 (2.5b)
If we write M{s,s,) as
Mis,5,) als,5,)
His,sq) = [’ e o ] (2.6)
0 1
with
(8,8, 1]
M(s,s,) = [!° e = ] 2.7
Gis,8,) Dis,8,?

{ H,(8,8,) = transfer matrix for the orbik;

G{s,s,) = spin-orbit coupling matrix

we then obtain

1
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or
d 2 _r e + > 3
as a(s,8,) = A - a(s,8y) + p; als,, 85} = 0 ; (2.8a)
4 his,sy) = A - Mls,s,) 1 =1 (2.8D)
ds His,s,) = A » M(a,s8,4 ; Misg,85) = 1 Z.8b
Equ. (2.8a) has the solution
As,8,) = Hig,9,) IS 45 . Hisg,® + P
S0
3 - - 3~
= I ds « M(s,3) . pls) , (2.9}
S0

where the vector ;(s> iz given by (2.3c).

Furthermore, from equ. (Z.8b) together with (2.3b) and (2.7) we have the rela-

tionz
d [ H, o ] [ A 0 ] [ H,
@ lg D G Doi LG
. [ Al
Go Mo + D G
[ Hyi8,85} 0 ] _
G(s,85) Disy, 85}
or

L

D 2,50 = A - Hola,sg) 5 Holsesy) =

==3 My(s + As, 8) = 1 + As + Ats)

Ld

| L= Lo
—_—

}’U =1
=
[—]

(2.10)

In

III}

d
ds D(s,84}

Dyis?

= Dis,s,)

d
E; Gils,q,)

=3 Gls,s4)

il

Dols) « Dis,s4) ; Dlmg,sp) =1

g (s) [_g t ] following eqn. (2.2¢) ;

[ cos[y(s)-¥(s,] sinly(a)-¥(s4}]
~sin{y(s)—yla,)} cos[¥(a)-yis,)]

Gpis) + Myls,845) + Dyis) . Gis,sq) ; Gisg,85) = 0 ;
Dis,g,) - IS ds + Digy,3) + GolS) » HylS,54)
85 .

s . - - w
I ds - Dis,a) - Gyis) » Myis,s,)
Sg

(2.11)

(2.1



Remark: The above relations are also useful for describing the orbital transfer

matrix M,:
- My(8,8,)  85(8,84)
Hots,8,) = (2.13)
0 1
with
;(s) A ;(so)
" = Hyis,8,) " . (2.14)
For this we write (2.1} in the form
a [ ¥ A ¢ ¥
ds = (2.1%)
1 0 0 1
with
$(8) = Zole) + gle) . (2.46)
The matrix ao(s,so) then obeys the equation
4~ A ).
as M ta,8,) = 0 0 H,(s,85) ; (2.17a)
Hotag.s,) = 1 (2.17b)
80 that using (2.13)
4 -
1 Bot8.80) = A Mols,m0) 5 Mylsg,mg) =1 ; (2.18)
1 Rotasg) = A dgtmsp) + 25 Bptsunp) - 3 (2.19
Once M,(a,s,) is known, (2.19) can be solved in the form:
e d ' -~ - > o~
ayl8,8,) = Myis,8,) » Js ds « Myl(3,,8) » cig)
S0
= r 48 - Mols,8) » &8 . (2.20)
8o

This i & convenient form for handling the transfer matrix of a tilted, displaced
solenoid (mee Appendix I).
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2.3 Thin_lens_approximation

An approximate but very convenlent way to solve the equations of spin orbit mo-
tion is to divide the magnetic elements into a sufficient number of thin slices
of length As and develop the solution &(s+ﬂs,s) in powers of As. If only the terms
linear in As are retained, then from eqnz. (2.6) and (2.7} together with (2.9},
(2.3c), {2.11) and {(2.12) we obtain the thin lens approximation:

M, (s+Aa,s) 0 [Cota)+c,(a) ) 08
Hs+hs,s) = | Gois)-As Dis+hs,s) Ris)+C,(8) (2.21)
e ] 1
with
Disthe, ) = [ cos[yis+a=s)—¢(s)] sin(y(s+As)-¢is) ] (2.22
~sinlys+As)—§(s) ] cos[yia+As)-¢{a}]

The orbit matrix H; must of course remain symplectic during the linearization.
This can be achieved by writing it in the form

M, (sths,s) = Mpls+as, 9+A79) - [1 + Ctsy-As] - R(ABY - g;,(swﬂ?S,s) (2.23)

0 o o 0 0 0
—(G,+H2) 0 N 0 0 Ky

c - 0 o 0 0 0 o |
- N 0 -(G+HZ) 0 0 Ky
K, 0 K, 0 0 0
0 o 0 0 gz-k-zfﬂocosq;-z sta-s) O

]
(2.24)
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cosAf 0 +31nAd 0 1] 0
0 cosAf 0 +31nA@ 0 0
R(AG) = |-sinAe 0 cosAe 0 0 0 (2.25a)
¢ -3inAg 0 coshd 0 0
)] i} 0 [ 1 0
0 4] 0 0 4] 1
with A6 = H{s) . As (Z.ZSb;
and
1 L o 0 o [+]
0 1 L] 4] 0 0
Mpis+e,8) = | © 0 1 t 0 0 (2.26)
0 0 0 1 0 0
0 0 0 0 1 4]
| 0 0 0 0 0 1

(= transfer matrix for a drift of length £)

In linear order, the r.h.s. of eqn. (2.23) agrees vith the r.h.s. of egn. (2.10).
Furthermore, all factor matrices on the r.h.z. of (2.23) and therefore §0(3+As,s)

itself are aymplectic.

Remark: The rotation matrix R(A8) commutes with M, and also with C(s) if N=0,
G, =G, = 0. Therefore, for a pure sclenoid field the factors R{A8) in
(2.23) can be extracted and combined into one rotation RiG):

R(G) = R(AO,} - R(46,) ... RiAdy)
with

which only needs to be applied ence.
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Z.4 The equation for &n

We now use this thin lens approximation for calculating the periodic solution
of the spin orbit wvector Y(ar. As in (Z.4b) this will lead to the closed orbit
2

¥ and the tilt of the n-axis én.

2
v and 5 at pesition s, can be obtained immediately by writing (2.4a) and (2.5)
in the form

2 2
Yisg? ¥ig8g}
Mls,+L,z,) » | 8n(s,)| = | &nisy) (2.27a)
1 1

and extracting the eigenvector with eigenvalue 1. The normalization of the
eigenvector is fixed by requiring that the 9th component be unity. 3(3) at
other positions 18 obtained by applying (2.5) which we rewrite here as:

2 2

yig) yisg)

3> o 2>

dnig}| = Mis,s,)f énisy)} . (2.27b)
1 1

Using (2.6}, eqn. {(2.27Ta) can also be written as
2 2
Hisgtl,sg) Ulsy) + alsgtl,sy) = Uisy) ,
from which we immediately obtain
2 >
[1 - Misy+L,sy)] ulsy) = alsgtl,sy) ;

2
G(8g) = [1 - HisgtL,so01™% « alsgtl,sy) . (2.28)

>
This provides another way to calculate ﬁ(so).

3
In the following we consider that U(s) and in particular snis) are already

known.
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3. Harwonic orbit optimization

From eqn. (2.27), with the help of (2.2b), (2.3c}, ¢2.6) and (2.9) it is clear
that 8nts) depends on the field errors and correction fields. The aim is then
to find correction filelds such that the changes in the 3~axis caused by field
errors can be corrected. Thig problem has already been treated in Ref. 1.
In this work we wish to extend the formalism so as to handle the possibility of
enhancing the correction to &7 at those pogitions in the ring where it has the
most damaging effect on polarization. This will be achieved with the aid of a
a pericdic weight function gis).

We recall that according to eqns. (2.2}, (2.2c) and (2.4, snis) satisfies:

¢ 1
diaﬁmqr'- [ ]-.sﬁ+3 3.1
5 -1 0
with the periodicity condition
Snte+l) = énts) (3.1
where
d, (&) 2 5
dter = =R - [F - ¥ + 3,1 ; (3.2a)
d,ta)
ey = 3 . (3.2b)

We now introduce a periodic weight factor
gls) = gia+l) (3.3

which will be used to emphasise those parts of the ring where sn(s) has the
sost damaging influence on the pelarization and we put

shia) = gla).dnis) . (3.4)
Alternatively, by setting g(s) to zero in some parts of the ring, we can conglder

that gi{s) provides a means of masking out those parts of the ring where 8% has
the least damaging effect.

- 14 -

3
The new function &N(s) obeys a modified ferm of egn. (3.1a), namely:

&it i 5n d
I e I R P RLERE
ds | s&h, -n, n, d,

or
4 [&T, = i+én,] = iy’ {81, - i+én,1 + fls) ; {3.5a)
ds i, i-én,] = i’ - n, i-60,, s) .5a
{87, - i:8T,)g = [0, - i+8f,)geL {3.5b)
with
fls) = gis) - (d, - i.dy) + g'(s) - (&, - 1-én,) = fig+l) (3.6)

whereby 53 and 3 are to be obtained from the solutions to (2.27}.

Eqn. (3.2a) can also be written as

4 i) . - 1.8 = e-i-¥is)
i {e-t-¥ts) . (an, 1280, ) = e WS L fe) 3.1

By integrating (3.7 from {(s-L} to s and applying the periodicity conditions
(3.5b)

¥i{s) — yis+tl) = 2nv
we find

-

2 sinmo

(87, - 1-80,] = £ . — 2 . cll¥is)-m] . F ds - e"t¥(s} . f(m)
g

If f(8) {(which is periodic) is expanded in a Fourler seriles:

+© -
e : 8
£5) = ) £y . eltkeZneg (3.8a)

k=—e

L. . :
L r“ ds - £(5) . e irkeZmep (3.8h)
Sg

o
=
I
[l
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>
&h can algo be written as

= - q.aR I S ST I TS 5 )
[s1i,(8) = 1-8f,(8)] = 2" siom " © ¥

X 2: fi - s . eilke2nd - ¥®1 | (3.9
X k =-L

If, as in Ref. 1, the phase function hag the form

ws>=¢mo)+2m:-sf° (3.102)
=—p wm:-¢@>:2m:.i§ {3.10b)

eqn. (3.9) finally becomes
(&R, (8) = 1+8fy(e)] = -1 - 2= - k:iw - ei'iﬂt'% (3.11

Thig equation describes the connectlon between the weighted perturbation 6% of
the n-axis and the Fourler coefficients fy of the function f(s) defined in
(3.6). If g'(g)} 1s zero, so that g(s) 1is constant, these equations just reduce
to those of Ref. 1, Section S.

- 16 -

4, Correction_schemes

>
From eqn. (3.11) it is clear that the largest contributions to &f come from
those harmonics, fy, for which

k=w,

It is these Fourier components which we will try to minimize with the aid of

suitable correction coils.
To do this we first of all separate f(s) {eqn. (3.6)) into two parts

f(a) = fis) + @M=y (4.1}

where f{s) describes the effect of field errors ABy, ABj;, ABg and of the vector
2, (gee (2.1b)) and £(%)(s) '

1

Floleg) = gla) + (afor - 1.d40h) + g'(sr . (8n,fO) - 1.8nt0))

fletes - 16800 ; (4.2a)

£400¢s) = glsy « af®) + g’ (s} .+ &nf®)

(4.2b)
£L00(m) = gty » af0t + g’ (e - &nk0)

describes the influence of horizontal correction fields ﬁBéD)(S). As in Ref. 1
we rely on corrections to the vertical closed orbit only. This division of f(s)
inte two componentz is possible due to the linearity of the defining equations
(2.3) and (2.4} for 3 and 88, Thus di®) and a{®) are given (see egn. (3.2)) by

dtol(g)

[ afel sy

2
(o) ] =R+ [F - y00s) + clo)]  (a.m
asol sy

with (see eqn. (Z.2Zb))
0
alodey = ~ 2 . | aBfodesy | (4.4
0
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2
while according te (2.3 and (2.4}, ¥} and $7(0} obey: where the summand
2(0) 2o} (o) 4By, -+ Sis-sy)
da (Y I + | % : (4.5a)
ds | galo? 2 ] g3t R (o))’ )

describes pointlike correction colls at pogitions = = 8, the real and imaginary

4 arts, ap and tn {(4.8), can be t in the form:
o) (arl) yielea parts: %k P N b m
> = > (4.5b)
sn (0} (a4l sned(q) -
sk =) Ay v ABy
L (a.11)
with (gee eqn. (2.1c}) by = Z Byy + 4By
i
2 (onT = £ 4pl0) g
(c,oh™ = (o0, 0, 0, B ABLO?, 0, O) . (4.6)
where the coefficlents Ay, and By, are determined by eqns. (4.2)-(4.9) and the
Eqne. (4.5a) and (4.5h) are of course to be solved using the methods of coil positions sy:

gections 2.3 and 2.4.
. AB,(‘O) = 4By, - Sls-s3) .
The separation of f{s} int¢ components f(s) and fl0)(g) leads to a corresponding

separation of the Fourler coefficients fy The further development runs in just the same way as in Ref. 1.
fi = fi + fio), (4.7 We consider the effect of a family of 8 correction colls with fields AB_, AQ,,
. AB,.
where in particular f:;°’ i8 given by eqns. (3.8b) and (4.2}
o z By writing k = r, r+1, r+2, r+3, eqn. (4.11) takes the form
glor = 1. r" ds - [£F407(3) - L.£f800(3)] . e7lokeZnep
L 8 T
\
= 8 = 1by (4.8) a. 4B,
by AB,
a1 - ~ al"«-l. ﬂBS
=1 [ g (0} (a 8, . floyes 8 . 2
ak = [ * ds - {£5%/(3) . cos(Zﬂk-L ) f19'(8) - sin(anoL 3 I bp,y a8,
B : ~
o “ . 4.9 a,_, | = kK - | aBg (4.12)
_1 Botl. oz 8 (0)(3 s B
by = * dg « (£807(s) - sin(2nk. } + £107(8) . cost2nk-; )] . b, AB
8, ~
8re3 4B,
A
br,y 4By

By writing the correction fleld AB,‘("’ as

8B{0)(s) = ) 4B, . 8(s-s) (4.10)
P
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with
Ari Ar-z Ara Arl1l ArS Ar'q?. Ar’l Are
By Brp Brg Brgq Bps Brg Brg Brg
Ar+l,1 Arv1,z Ar+1,3 Arvi.q Ar’i.s Ar+1,6 Ar+1,‘r Ar+i,8
K= Bras,1 Brer2 Brags Breta Breiis Brese Breg,7 Broyp | 1413
Arez,1 Arez.z Arezs Arezia Arezs Areze Arez1 Arezie
Beez,it Brez.z Brez,s Brez.a Brez,s Briz.s Brez,v Breals
Ariz,1 Ares,z Mras,s Ares,a Preas Areae Bresr Arasee
kBros,1 Brus.z Bres,s Brss,a Brea.s Bres.s Brea,7 Breaz.s
On inversion:
s, N
~
AB, b,
A%s Broy
A'Eq bl"+ 3
ABg =K1 . A g (4.14)
A%s br-z
AET Ar+a
L 4By Br.g

we can calculate those fields ABp which are required for changing the quanti-
ties a. = Re ff.°>, b, = ~Im f,‘.") independently of each other, so that the dan-
gerous Fourier coefficients

fy = ;k * fﬂO) (k= v)

can be made to vanish systematically.

For example, to correct a,, we write the system (4.12) as the column vector

- 20 -

(4.186)

i
o 9 Q0 o O o o =

The other components bD., a.,..,» be,ys 8.2, Dpon: 84,5, Dp,, can be treated in
the same way.

With this correction scheme we are in the position to minimize the weighted
>
t1lt &1 = 8neg.

5. Conclusion

Ag explained in Ref. 1, normally we cannot measure the closed orbit to sufficlent
accuracy to calculate the corrections fg. Instead, we would operate empirically,
by calculating the correction coil strengths ABP up to an overall scale factor

and then maximising the measured polarization by varying the scale factor.

In the formalism developed here, we have more freedom than in Ref. 1; here we can
experiment with the weighting function to see if, for example, it is safe to
ignore ttlts &n in those gtraight sections where the g vector should be longitu-
dinal in comparison with tilts 63 in the ares. Or it might be, that it is more
important to correct &1 in regions where the horizontal disperslonlia Iarge than
in regions where the horizontal beta function is large., One would then choose
gl{s} appropriately.

Finally, we point out that the present formalism is only slightly more complicated
than in Ref. 1; here, we must calculate not only the closed orbit corresponding to
& particular correction field excitation, but also sn(s) {(see eqn. {4.2b}). This
requires some modifications to the program FODO /Z/; in particular a 63(3) must be

2
stored for each closed orbit y{(s).
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AFPPENDIX I

The transfer matrix for a tilted and displaced solenoid

To calculate the transfer matrix of a displaced and tilted solenoid we supple-
ment the usual (s,x,z) coordinate system with a second coordinate system (t,u,v)

fixed to the solenoid. The T-axis lies along the solenoid axis (see Fig. 1).

iz} iv)

Fig. 1

Figure 1

.22 -

In the {t,u,v} system the orbital equations {Z.1) become

u’ = py t H- pys

p]’]=_H2°U+H°pv;
vi = - HB .+ u+pg;
p",=-H'pu‘H2'V

or, by eliminating py, Py:

u' = 2H « v’ + H .« v ;

u=%u%+a, +s - sina, ;

v=2*%a; +ts: sinuy

and by substituting of (I.2) inte (I.1) we obtain

2H + (2" + sing, ) + H' - (z + a; + 5 - gina, )

ZH - 2z + H +» z+ ZH - sing; + H » {a, + 8 - sindgy ) ;

- 2H « {x* + singy) — H « (x + ay + & - ginoy}

(I.1}

(1.2}

~2H « x> -H +x-2H . singy- H - {ay + 8« sing ) .
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By using the variables

this may also be

il

]

Py

Pz

written in the form

Py +Hez;

z' =py;=~H~-x;

*" - H=»- 2 ;

z" + H .+ x

-H2 « x +H - py + ZH - ginaz+ H' + (azp + 8 » sindz ) ;

pp=-Hepy-HZ -z —-2H . sinay- H' + (ay + 8 - sinay)

where H and H' are given by eqn. (2.1d) (see Fig. 1}:

The variables ¢ and

e
Ey °

o
1]
B |

{o
T

)

H' =H . 8ig=3,) ~ H - &(s-s8,).

¢ =0 ol(g}

py = 0 pgis?

need not be considered in the following.

To integrate eqn.

(I.3) in the domain

8, ¢ 8§ 8,

pg which (eqn. (2Z.1a}} are constants:

als,)

pgls,?

(1.3}

(I.4a)

(I.4b)

(I.5)

we must distinguish thre

a) s, — €< 8¢ 8, *tE (

1

In this region {I.3) and (I.4b) become {(with s, = -

x
4 Px |- .
ds H
2
Pz

and we have the solution

x{g,

Px(s,
zlg
Pz(s,

This leads (I.5) to the

Hots,+0,8,-0) =

o o o o o o -

- 24 -

e cases:

0<e >0} .

0
(ay + 8 « sinaGy
0

-{a, + 5 - singy )

Sla-a,) -

+€) = xis, - €} ;

+€) = pyls, —€) +H - (ag — % « 3ing; ) ;

+e) = zls; - €) ;
|4
- €) = pgls, +€) —H . (ay -5 - sinay )
transfer matrix
¢ 0 o0 o 0 0
1 0o 0 Q 0 +H-(az-% » ging; )
0 1 o 0 0 0
6 0 1 0 0 -Hiay-: - singy)
o ¢ O 1 0 0
o ¢ 0 0o 1 0
0o o 0 0 o 1

{1.6)



- 75 .
by g, +0< 88, -0. = 301(5-31*'0’
The equatioens of motion are
85, (8,5,+0)
X 0 1 0 X 0
-Hz
E% Px | . H H Px | + 20 . sina;
z -H 1 z -sin &y 303(s,si+0)
P 0 -H -HZ ¢ Pz 0
In the representation 304‘3s91*°’
>
- B, a2 By
- - T -
M, = [0 1 ;oag = (am, 8,57 Bg51 2540 Bpg¢ aos) {I.7)
" aos(s,s1+0>
for the T-dimensional transfer M; we find for M,:
X " s s 805(5v51+°)
E(i-‘-cos 20) P ain 20 Esinze ;Zrﬁti-cos 20y 0 0
#-1 ginze L(14cos 260 - H-l(t-cosze) Lsinze 0o o ) &, - ¢
2 2 2 2 c) 8, e <8 s,
-1 oinze L 4-coszer  Li1econ20)  } minze 0 o
Holm, o, +0) = § 2 2 2 2H x
d Px
Hoelt1ecos 200 -Lainze © - H-sinze Liecos2r 0 0 ds |,
2 2 VA 2
0 0 ] ] 1 0 Pz
] [ 0 ¢ 0 1
\
{I.T7a}
with ® = H » (8 - =)

and for :o (gee (2.20)):

30(5,31*‘0)

f

with 2F = 24 . (o,

~ ) . Mois,*+0,s,-0) =
ds « Myis,s) - cla)
10

sina, , ~sindy, 0, 0, 0 ;

il

- %6 -

1 - cos 20 sin 26
sinay « ST~ sinagy - [{s-s,) ~ S 1
; sin 26 1 - cos 26
H - {sina, - [(s-8,) + T 1 - singy - T} ;
g2in 20 1 - cos 28
-sindy - [{s-8) + Z5— 1 = sinay - "5y~
1 - cos28 _ gin2e ...
H + {sina; - ZH *osina, - [(s-s,) + "y i};
0
0. (I.Tb)
3
1]
- H . &(g-8) tay + 8 - 8ina, }
2
o]
~(ay + 8 » SinGy )
4
with 5, = + 7
1 6 o 0 0 © 0
0 1 0 0 O 0 —H-(az+% + sinay )
0 0 1 o 0o ¢ 0
0 ¢ o0 t 0 0 +Ho(ax+% - sinoy ) (1.8}
o o 0 ¢ 1 © 0
o6 o0 0o 0 1 0
o 0 0 0o o o0 1
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We now have the transfer matrices for all three regions Acknowledgments
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is of course the product of all three:

g,o(sz+e, 8,~€) = 50(92*51 32"(-:) . ﬂo(sz—c y3,HEY . 50(31”:' s,-€k {I.9)
The corresponding matrices G and D for the spin motion in each region can now

also be calculated using these equaticns for H, together with eqns. (2.11) and
(2.12}.



