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We present details of a design of a solenoid spin rotator that would enable longitudinal polarization to 
be achieved at electron storage rings.' The advantages of the system are the ease of helicity reversal 
(since no orbit displacements are needed), the high degree of polarization attainable (-90%) and the 
comparative insensitivity of the polarization to energy changes. 

1. INTRODUCTION 

In electron storage rings, the electron spins become polarized antiparallel to the 
magnetic bending field as a result of synchrotron-radiation emission (the Sokolov- 
Ternov effect).' The maximum polarization obtainable from this effect is 92.4% 

However, most of the interest among high-energy physicists for use of polariza- 
tion lies not with this naturally occurring transverse polarization, but with 
longitudinal polarization, which would enable spin dependent effects in weak- 
interaction physics to be in~est igated.~ Since the Sokolov-Ternov mechanism only 
works effectively if the equilibrium spin direction is close to vertical in the arc 
bending magnets, it is then necessary to devise optical systems that rotate the 
spins from vertical to longitudinal just before the particles reach the interaction 
point and to rotate them back to the vertical before they reach the arc again. Such 
devices are called 'spin rotators' and, as a glance at the literature shows,4 they are 
neither trivial nor inexpensive. Several kinds of scheme have been proposed1,4,5,6 
for use in future machines such as TRISTAN, HERA and VEPP-4, but so far 
none has been installed in an existing ring. 

The basic principles of spin rotators can be understood by reference to the 
Bargmann-Michel-Telegdi (BMT) equation,'.* which describes electron spin mo- 
tion in electromagnetic fields. In the following, two consequences of this equation 
are of importance: 

(a) Fields transverse to the particle momentum precess the spin around an axis 
parallel to the field direction (Fig. la).  A rotation of the spin by 90" with 
respect to the outgoing particle direction requires an integrated field 

+ Present address: CERN, Geneva, Switzerland 
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FIGURE l a  Precession of a spin vector in a magnetic field, H, transverse to the particle momentum. 

FIGURE l b  Precession of a spin vector in a field parallel to the particle momentum. 

strength of about 23 kG-m independently of the particle energy. In general, 
the spin rotates with respect to the outgoing momentum vector by an angle 

where O, is the angle of particle deflection, a = g-212, where g is the 
electron g-factor, y is the Lorentz factor and a y  is called the spin tune. 

(b) Fields parallel to the particle momentum again precess the spin around the 
field direction (Fig. lb).  In this case a field integral of about a y  x 23 kG-m 
is required to attain a 90" spin rotation. At a beam energy of 27.5 Gev, a y  
is 62.4. 

Thus it seems clear that spin rotators employing transverse fields would be 
preferred and indeed the first rotator to be designed used the vertical S-bend 
geometry.9 This device has an important disadvantage: 

-To switch between positive and negative helicity, the vertical beam displace- 
ment must be reversed so that the particle trajectory at the interaction point 
changes. 

-Vertical bending also introduces vertical dispersion and thus excites vertical 
betatron oscillations. This latter can lead to a reduction of the degree of 
polarization. 

Since the early days, more sophisticated schemes have been developed consist- 
ing of a combination of horizontal and vertical bends such as in the 'Mini Rotator' 
of Buon and Steffen for HERA.1° The rotators are installed outside the interac- 
tion region and form part of the arc. A helicity change again requires polarity 
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inversion in the vertical bend magnets and the resulting vertical trajectory 
displacements must be accommodated either by use of large-aperture rotator 
magnets or by arranging that the rotator magnets can be moved vertically. There 
is, however, no displacement of the trajectory in the interaction region (I.R.) but 
special constraints on the optics ('spin matching conditions') are needed to reduce 
the depolarization by vertical betatron oscillations.11~12~13~14~15~16 There are two 
further consequences of fitting these rotators into the HERA arc: 

(a) In practice the sections of rotator in which the equilibrium spin direction is 
not parallel to the bending field result in significant lowering of the 
maximum polarization attainable by the Sokolov-Ternov effect. 

(b) Since the arrangement of the horizontal bends in the HERA rotator is 
symmetric with respect to the interaction point, at energies away from the 
design energy the equilibrium spin direction is not exactly vertical in the 
arcs and strong depolarization effects resulting from synchrotron and hori- 
zontal betatron oscillations can occur.1° 

These considerations were the starting point of our quest to design a spin 
rotator with no moving elements, no vertical beam deflection and a degree of 
polarization approaching 90%. A further major impetus came from the realisa- 
tion that reasonably priced superconducting solenoids of the required field 
strength are now available from manufacturers. 

2. THE ELEMENTS O F  THE SOLENOID 
SPIN ROTATOR 

The essential features of the proposed solenoid system are shown in Fig. 2a. A 
solenoid with an integrated field strength of ay l ( l+  a )  x 23.1 kG-m placed at the 

longitudinal 
solenoid 

horizontally 
deflecting 
magnet 

I .P .  
FIGURE 2a Essential features of a rotation system showing how solenoids and dipoles are 
combined. The spin motion is also indicated. 

f ield 

I I.P. 

FIGURE 2b As in (a) but with reversed helicity. 
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Rotator: solenoid + 

C- 

FIGURE 3a A rotation system with antisymmetric dipole arrangement. 

FIGURE 3b A rotation system with symmetric dipole arrangement. 

entrance to the interaction region rotates vertical spins leaving the arc into the 
radial direction and a dipole placed just before the interaction point (I.P.) rotates 
the spin by 90" into the longitudinal direction. At the same time the dipole causes 
a horizontal beam deflection of 90°1ay i.e. 25 mrad at 27.5 GeV. The helicity at 
the I.P. can be changed by simply reversing the solenoid polarity (Fig. 2b) and the 
central particle trajectory is the same for both helicities. Following the interaction 
point, the spin must be returned to the vertical direction by a second rotator 
system. 

There are then two possibilities, as illustrated in Fig. 3. In the anti-symmetric 
scheme of Fig. 3a, the solenoids and dipoles on one side of the interaction point 
have polarities opposite to those on the other side. Therefore, even if the system 
is not run at design energy, so that the equilibrium spin direction is not parallel to 
the beam at the I.P., the spins return exactly to the vertical in the arc. Thus, away 
from design energy, depolarization effects due to horizontal betatron motion and 
synchrotron motion do not o c c ~ r . ~ ~ " ~  

In the symmetric scheme of Fig. 3b, the solenoids and dipoles have the same 
polarity and it is evident that this would be a mono-energetic device in the same 
way as the symmetric Mini-Rotator. In addition, it is not trivial to arrange that 
dispersion vanishes both in the rf accelerating system and at the I.P. with such a 
scheme. Therefore, although it is easier to fit the symmetric scheme into the 
HERA tunnel, in the following, the antisymmetric scheme is preferred. 

So far, we have ignored the fact that a solenoid which rotates the spin by 90" 
will, owing to the combined action of the longitudinal central field and the radial 
end fields, rotate the plane of the betatron oscillations by 90"/2(1+ a) .  Thus the 
beam becomes 'twisted' 19320 and the vertical and horizontal betatron oscillations 
become coupled at the I.P. In the antisymmetric scheme, the second solenoid 
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FIGURE 4 Internal layout of the proposed rotator. 

would 'untwist' the beam before it reaches the arc. However, optical complica- 
tions arise from the intervening dipoles, which generate dispersion and additional 
betatron excitations (see section IV). 

In order to maintain a conventional uncoupled optics at the I.P. and to avoid 
generation of vertical emittance, it is then necessary to modify the simple solenoid 
rotator concept by introducing extra quadrupoles into the rotator. For example, a 
set of 2 normal and 2 skew quadrupoles can be placed at the end of the solenoid 
or, as proposed for VEPP-4,s,21 a set of 6 normal quadrupoles can be inserted 
between two solenoids of half length. Since there is no field on the axis of the 
quadrupoles, they have no effect on the equilibrium spin direction. 

Inspired by the latter approach, we finally split the solenoid into 6 slices with 
normal quadrupoles interleaved. By this means, it is possible not only to untwist 
the beam but to ensure a "spin-transparent" solenoid-quadrupole arrangement 
(see below). 

The arrangement currently favoured is shown in Fig. 4, which lists all parame- 
ters. The total length of the rotator is 41.6 m and the solenoids have central fields 
of about 72 kG. The whole arrangement transforms a flat beam into a flat beam 
and rotates the spin by 90". We should also point out that in principle a whole 
range of similar rotators may be designed (Appendix 11). Furthermore, if the 
solenoids are turned off for running with vertical polarization, the quadrupoles 
can be retuned to create a normal uncoupled optics. 

3. T H E  PRACTICAL ENGINEERING LAYOUT 

A schematic plan view of a proposed layout of the system is shown in Fig. 5 where 
the basic elements of Fig. 3a and Fig. 4 are combined. The labels that indicate the 
major components will be used in later discussions. 
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FIGURE 5 Schematic plan view of the whole rotation system. The main features are labelled. 

Since in HERA the electron ring must coexist with the proton ring and fit into 
the proposed tunnel, the arrangement of the rotator system is subject to a number 
of constraints: 

(a) Near the I.P., the low-beta electron quadrupoles must be arranged to leave 
space for the low-beta proton quadrupoles. 

(b) The dispersion must be zero at the I.P. and in the rf section and the beta 
functions in the rf section must be small. 

(c) The interaction-region dipole section which at 27.5 GeV must deflect the 
beam by 25 mrad should for reasons of optics (see next section) be long. 
However, the lateral separation of the rf sections must not be too large 
because the usable tunnel cross section is limited. 

(d) The limited available length of the straight sections also restricts the 
allowed length of the rotator. 

Fig. 6 shows22 a possible solution to these problems. The total straight section 

limitation of the 
available space / in the tunnel (solenoids r%r + quads) \\\ 

FIGURE 6 Sketch indicating how the proposed system would fit into the available space in the 
antisymmetric version of the HERA tunnel together with the dimensions. The vertical bars represent 
quadrupoles and the parallelograms represent dipoles. The rf cavities are not shown. 
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space required is 2X 180 m and as can be seen, by tilting the whole assembly it 
can be made compatible with the layout of the existing tunnel. 

4. DEPOLARIZATION EFFECTS AND 'SPIN MATCHING' 

Preamble: In the preceding description of spin manipulations with solenoids, we 
have only covered the behavior of spins of electrons travelling exactly on the 
(central) design orbit which passes down the centre of the solenoid and quad- 
rupoles. As we have seen, with sufficiently strong solenoids, spin manipulation for 
such electrons is straightforward. In reality, however, the electrons execute 
horizontal and vertical betatron oscillations around the central orbit. As a result, 
they are subjected to additional fields as they travel off axis through quadrupoles 
and solenoids and in general their spin precession acquires a small additional 
orbit-dependent component. 

In addition, an ensemble of electrons with energies distributed around the 
design energy will emerge from a solenoid with a small spread of angles of 
precession around the beam direction and will emerge from a dipole with a small 
spread of angles of precession around the dipole field direction. The generation of 
this spread of spin directions in the magnets can create serious depolarization 
effects unless the optics is organised so that the small precessions cancel. 

An essential part of the present proposal is that it has been possible to design 
the rotator (Fig. 5 )  system so that these depolarizing effects indeed largely cancel: 
a spin entering the first rotator and pointing exactly vertically emerges from the 
second rotator again pointing almost exactly vertically independently of its 
horizontal betatron coordinates, x, x' and energy on entering the first rotator. 

Detailed Discussion: As explained in detail in Appendix I, the precession errors 
due to orbital motion can be described in terms of angles a, 6 which specify a spin 
orientation with respect to the equilibrium spin direction, n. Changes in a,  6 
caused by passage through a section of the ring can be related to the particle 
coordinates at the entrance to the section with the help of a 2 x 6-dimensional 
transfer matrix G 

where y = (x, x', z, z', 1,6) and x, x' describe horizontal motion, z, z' describe 
vertical motion and 1, 6 describe longitudinal displacement and energy deviation. 
In addition G may be subdivided into three 2 x 2-dimensional matrices g,, g,, g, 

where the g's describe perturbations due to motion along the three axes sepa- 
rately. If gx (or g,, g,) for a section of the ring is zero we describe the section as 
being "horizontally (or vertically, longitudinally) spin matched". 

The basic concepts presented in the Preamble above can now be restated by 
saying that it is in systems where gx, g,, g, are non-zero that betatron and 
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synchrotron oscillations can cause small changes in a, /3 and thus cause depolari- 
zation. These oscillations are excited by synchrotron photon emission in dipole 
magnets and it can be shown in the linear theory11,12,23,24,25 that these notions can 
be combined in the following statement: 

(a) If the matrices g,, g,, g, are non-zero for one circuit around the ring 
beginning and ending at a slice of dipole which is exciting beam oscillations, 
then depolarization can occur and there are depolarizing resonances cen- 
tered at energies where a y  = k f  Qi (k = integer, Qi = orbital tune). 

(b) The total depolarizing effect is obtained by summing over all dipoles. The 
contribution of a particular dipole is proportional to the degree of beam 
excitation in that dipole. 

In a perfectly aligned ring consisting only of horizontally bending dipoles and 
quadrupoles, the n-axis is vertical and g, and g, for these elements are zero (see 
Appendix I). Thus in such a ring, the one-circuit g, and g, matrices at any dipole 
are zero and cause no depolarization effects. Although g, is non-zero, the beam 
has zero thickness in the perfect machine and there is no depolarization contribu- 
tion. 

If, however, a spin rotator section is introduced so that n is locally radial or 
longitudinal, the local g, and g, become non-zero (Eq. (AI-9), (AI-10)). Thus the 
one-circuit g, and g, can also be non-zero for any dipole inside or outside the 
rotator region. The non-zero one-circuit elements arise solely from the rotator 
region as n is vertical in the arcs. 

Since in solenoid schemes, it is the main ring dipoles that are responsible for 
most of the beam excitation around the machine, we see that it is essential to 
arrange for a horizontal and longitudinal spin match for the section between the 
entrance to the first rotator and the exit from the second rotator. 

In the present scheme, this spin match is achieved by ensuring that g, is zero 
for each rotator (Appendix 11) and by ensuring that g, and g, are zero across the 
quadrupole and dipole section between the rotators (the "straight section"). The 
contribution to g, originating in the solenoids and representing small additional 
precessions around the beam direction is zero because the solenoids have opposite 
polarities. 

In a straight section containing only drifts and quadrupoles, g, is generally 
non-zero but g, is automatically zero (Eq. (AI-5)). Usually however, g, becomes 
non-zero as soon as horizontal dipoles are introduced and if the n-axis has a 
horizontal component. That this is so is immediately clear from Eq. (AI-9) but in 
physical terms can be traced to the fact that the dipoles create additional 
horizontal dispersion. Since the main contribution to the spin perturbation comes 
from the change of x' due to horizontal focusing, (see e.g. Eq. (AI-10) and 
accompanying comments), the spin perturbation acquires an energy-deviation 
dependence resulting from the change of track direction caused by the focusing of 
the additional dispersion and g, is correspondingly non-zero. The spin perturba- 
tion can be made small if the total change in x' due to focusing is made to vanish 
both for the pure betatron part and for the horizontal-dispersion part11s12,25 of the 
orbit. The betatron condition forces g, to vanish and by evaluation of the 
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straight-section matrix one sees that the simultaneous application of the disper- 
sion condition causes gs to become small; g, then only contains small terms arising 
from additional precession of off-energy electrons in the dipoles. If only one of 
the conditions is applied, the corresponding spin perturbation will be zero, but g, 
and gs need not both be zero or small. 

In this particular system with its symmetric quadrupole arrangement and 
antisymmetric dipoles, the optical requirements are actually much simpler since it 
may be shown that as soon as g, is made zero by enforcing the betatron condition, 
g, is automatically also zero.26 This is facilitated by the cancellation of the 
antisymmetric extra spin precessions of off-energy electrons in the dipoles. 
Because the focusing effects are symmetric around the I.P., the betatron condition 
is satisfied by using an optics for which 

where 4, is the horizontal betatron phase advance between the I.P. and the 
entrance to the outgoing rotator and is the slope of the horizontal beta 
function? at the same point. Since n is radial between the rotator and the I.R. 
dipoles, g, in the quadrupoles is zero in this region. Between the incoming and 
outgoing I.R. dipoles, where n is not radial, g, is non-zero but again, as the beam 
has zero height, this is not dangerous. 

Once g, and gx are zero, we could in principle allow a quite arbitrary horizontal 
dispersion profile in the straight section. However, since the dipole polarities are 
antisymmetric, it has been convenient to design the optics so that the dispersion is 
antisymmetric and vanishes at the outer ends of the I.R. dipoles (Fig. 7) and in the 
rf section. 

Having dealt with the spin matching of the whole I.R. for excitations generated 
in the arcs, we return to consideration of the effect of beam excitation in the I.R. 
dipoles. Ideally, if there were sufficient space in the machine tunnel, one would at 
least arrange for horizontal spin matching between the exit of the first rotator and 
the entrance to the first I.R. dipole, between the I.R. dipoles and between the 
exit of the second I.R. dipole and the entrance to the second rotator. 

In practice, this requires extra space for the insertion of strings of match- 
making quadrupoles that is not available. Thus in this scheme, no attempt has 
been made to impose these extra matching conditions. Instead, the I.R. dipoles, 
which must deflect the beam by 25 mrad at 27.5 GeV, have been made as long as 
possible so that the synchrotron-radiation power is low. In addition, the dipoles 
have been divided into sections so that those nearest the I.P. are especially weak 
and the high-energy physics experiment at the I.P. is not subjected to excessive 
synchrotron-radiation background. By placing quadrupoles between the dipoles, it 
is then possible to have small beta functions at the I.P., no dispersion (v,) at the 
I.P. (but q: not O), and vanishing dispersion at the outer ends of the I.R. dipoles. 
It is also possible to arrange for small horizontal beta functions over the region of 

t Should not be confused with the previously used 6 .  
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FIGURE 7 Beta functions and horizontal dispersion near the interaction point, in the interaction 
region dipoles and in the rf section. 

the dipoles where the dispersion is large and a small dispersion where the beta 
function is large (Fig. 7). 

By these means, the horizontal betatron excitation is made small and the extra 
spin matching is not needed. Because the I.R. dipoles are not too strong, the 
upper limit to achievable Sokolov-Ternov polarisation is not significantly suppres- 
sed. A version of an optics satisfying these conditions and which according to 
SLIMs leads to polarizations of 89% for a perfect machine with four interaction 
regions equipped is shown in Fig. 7. 

Finally we note that radiation in the I.R. dipoles causes a small change in 
average beam energy between the rotators so that the n-axis rotation is not 
exactly cancelled by using solenoids of opposite polarity. Calculations indicate 
that this is not an important problem when the energy step is limited by use of 
weak I.R. dipoles. If it were, a small readjustment in solenoid strengths would be 
enough to ensure that n is again vertical in the arcs. A similar comment applies to 
energy changes caused by the rf system if it is placed between the rotators. 

Horizontal shifts in the closed orbit resulting from energy gain and loss effects 
in the arc dipoles and rf system should again cause no shift in the equilibrium spin 
direction (n-axis) if the I.R. is horizontally spin matched as described. 

This completes the description of the currently favoured spin-matching scheme. 
In Appendix I11 we describe an alternative. 

5. SUMMARY 

In this article we have shown how solenoid spin rotators can be conceived which 
have important advantages compared with previously proposed schemes: 
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-the basic polarization for the perfect machine, as calculated by SLIM, can reach 
almost 90%. 
-the degree of polarization is essentially independent of the energy. 
- helicity reversal is simple since there are no moving parts. 
-the natural beam height is zero. 
-no spin matching of the arcs is necessary. 

We have also shown how such a scheme could be fitted into a version of the 
layout of the HERA interaction region. In future studies, we intend to investigate 
methods for correcting the effects of orbit errors and magnet r n i ~ a l i ~ n m e n t s . ' ~ ' ~ ~  
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APPENDICES 

In these appendices we give more detailed explanation of topics alluded to in the 
main text. In particular we go into more detail on the subject of spin matching 
and show how other types of spin rotator systems might be conceived. 

APPENDIX I 

The Linear Matrix Theory 

Calculations of the polarization in storage rings are most conveniently carried out 
using the linearised transport-matrix formalism of the computer program SLIM of 
A. Chao,' which we briefly review here.23,24 

In electron storage rings, the polarization vector points along the n-axis, a 
periodic unit spin vector defined uniquely for each point on the closed orbit which 
transforms into itself when transported once around the ring on the closed orbit. 
We associate with n two other unit vectors m and 1 so that the set n, m, I forms a 
right-handed unit-vector basis. m and 1 also precess like spin vectors. In a flat 
machine, they would precess by an angle 27rya around n for one circuit of the 
ring. 
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In the presence of depolarizing effects, when a spin may not be exactly aligned 
along the n-axis, the spin vector is written: 

S = n + a m + p I ,  (AI- 1) 
where a2+p2<< 1. 

Thus spin perturbations may be represented in terms of two angles a ,  P and the 
complete state of an electron may be represented in terms of an eight component 
vector: 

where x, x' describe horizontal motion, z, z' describe vertical motion and 1,6 
describe longitudinal displacement and energy deviation. 

The combined linearized transverse, longitudinal and spin-perturbation motion 
may then be handled using 8 x 8 transport matrices with the structure: 

where M,,, is a 6 X 6 matrix describing the (coupled) transverse and longitudinal 
m o t i ~ n ~ ~ ' ~ ~  and G2x6 is a 2 X 6 matrix describing the dependence of changes in a 
and p on the betatron and synchrotron motion. G depends on ay and on the 
x, z, s components of m and I and on the optical properties of the particular 
magnet. O,,, is a 6 x 2  null matrix resulting from the independence of orbital 
motion from the spin motion. I,,, is a unit matrix. 

Clearly, columns 1 and 2 of G (which we call g,) describe changes of a and 0 
due to horizontal motion, columns 3 and 4 (g,) describe perturbations due to 
vertical motion and columns 5 and 6 (g,) describe perturbations due to energy 
oscillations. 

The spin-perturbation properties of short sections of ring may be studied by 
constructing the 8 x 8 matrix for the section and extracting the G matrix. 

For drift spaces, quadrupoles, skew quadrupoles, dipoles and solenoids and in 
the absence of closed-orbit errors, the 8 x 8 matrices take the following forms as 
may be shown by executing the integrals of Eq. (8-22) in Ref. 24. (See also Ref. 
8). 

Drift space of length L :  

Quadrupole (the cosine, sine cosh and sinh terms are represented symbolically 
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by letters): 
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Skew quadrupole: 
C S R T 0 0  
k i R - i . 0 0  

R F k i O O  
0 0 0 0 1 0  
0 0 0 0 0 1  

(1 + aY)(Rlz - e lx )  (1 + a y ) ( h z  - (5  - l)l,) 
-(I + ay)(Rm, - km,) - ( l +  ar)(?m, - (2 - l)mx) 

Solenoid consisting of an idealised thin radial entrance end field, a longitudinal 
central field of length L and a radial exit field, with 

Mentrance 
exit 



SOLENOID SPIN ROTATOR 

where 

2 x orbital twist angle e 
R = =- B, 

length of central field pc 

and 4 = a y R L ,  S =sin (RL), C = cos (RL) and I, and m, are spin basis compo- 
nents at the entrance to the central field. For presentational clarity here, in the 
spin-rotation motion around the beam axis used in the spin integrals, the term 
1 + a has been replaced by 1. 

Horizontally 
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- (1  + ay)K  L - - I,, + KLI,, 

( l + a y ) K  L - -  m,,-KLm,, i 3 
where K = horizontal curvature, L = length, S = sin ( K L ) ,  C = cos ( K L ) ,  i = 

sin (-ayKL),  k = cos (-ayKL) and I,, m, are the spin basis vectors at the 
entrance of the dipole. 

We now note that the G matrix terms contained in these equations have simple 
physical interpretations. 

For example in quadrupoles, if the n-axis is radial (n, = 1, m ,  = I ) ,  then from 
Eq. (AI-5):  

(AI -  10) 

This represents a perturbation of the spin by a small rotation around the vertical 
axis proportional to the change in the horizontal trajectory direction and is just a 
restatement of the linearised BMT equation. Note that when n has a horizontal 
component, the vanishing of g, implies that Ax' vanishes and vice versa. That this 
is also the case for an arbitrary string of drifts and normal quadrupoles can be 
seen by inspecting the structure of g, in Eq. (AI-13) below. 

If n is vertical in a quadrupole, g, is zero since there is no precession of n 
around a vertical field. Likewise in a dipole g, is zero if n is vertical. 

Similar analysis may be applied to solenoids and it is found for example (Eq. 
(AI-7) ,  (AI-8))  that when a solenoid rotates an initially vertical n-axis by 4 2  into 
the horizontal, the horizontal betatron motion causes perturbations to the emerg- 
ing spins of the form (m,,= 1, n,,= -1) 

(AI- 1  1) 
Ap = 

This represents a perturbation of the spin at the output by a small rotation around 
the vertical axis and is related to the forwards/backwards tilting that occurs in 
the weak-solenoid case." 

We now see that by combining a solenoid with a rr/2 spin rotation with a set of 
quadrupoles, it might be possible to arrange that the spin precession errors cancel 
since the effects in the solenoid and the quadrupoles are of the same order, viz. 
ayx'. If the quadrupoles follow the solenoid, the precession errors are also around 
the same axis. 

It is this kind of behaviour that is at the basis of schemes which combine 
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solenoids and quadrupoles to achieve spin matching. A way to achieve spin 
matching in the presence of weak solenoids has already been discussed in Ref. 20. 
The g, terms for the solenoid describe the small perturbations in the angle of spin 
precession around the solenoid axis as a result of fractional energy fluctuations, 6. 

We recall that the G matrices of quadrupoles and skew-quadrupoles describe 
the fact that spin perturbations are proportional to the change in track direction 
(see, e.g., Eq. (AI-10)) and we again expect on the basis of the BMT equation 
that a similar G matrix behaviour should result for an arbitrary system of drifts, 
quadrupoles and skew quadrupoles in the absence of dipoles. This is indeed the 
case; if the 4 x 4  (transverse motion) matrix has the form 

(AI- 12) 

then the g-matrices have the forms 

Thus, for example, the spin-perturbation properties of a whole string of normal 
quadrupoles can be simply represented in terms of the six independent parame- 
ters of the 4 x 4  matrix (AI-12). We return to this topic in Appendix 111. 

Finally, we would also like to point out that some of our work has been carried 
out using the algebraic-manipulation program REDUCE," which has proved 
useful for investigating the algebraic properties of products of 8 x  8 transport 
matrices. 

APPENDIX II 

Design of the Spin Rotator 

From the earlier discussions, it is clear that the primary design requirement for a 
spin rotator is that in its 8 x  8 matrix, the off-diagonal blocks of the 4  x  4  optical 
matrix should be zero, so that no optical coupling is introduced, and that g, 
should be zero. By choosing 1, = 1, this reduces to the requirement that G(2 , l )  
and G(2,2) be zero. 

Thus, since the 4 x 4  optical matrix is symplectic and since for a system of 
quadrupoles and solenoids, rows and columns five and six of the 6  x 6  matrix 
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contain only unit diagonal elements, a mimimum of six parameters is needed to 
enable adjustment of the off-diagonal blocks and the two spin elements to zero. It 
is clear that the final optical-transfer matrix should also be "reasonable" and 
allow a comfortable optics to be established in and around the rotator, that the 
rotator should not be too long, and that the quadrupoles should not be too strong. 

In the proposal discussed here, these requirements have been met by dividing 
the solenoids into sections and interspersing them with an arrangement of normal 
quadrupoles that is symmetric with respect to the mid-plane (Fig. 4). The six 
matrix elements have been calculated using the matrices given in Appendix I and 
by taking into account the spin-basis rotation in the solenoids. The matrix 
elements have then been adjusted to zero by varying the four independent 
quadrupole strengths, their lengths, and the spacings between the magnets. Using 
this approach, a whole family of broadly similar rotators may be designed. 

Once horizontal spin matching is achieved for a vertical n-axis entering and 
radial n-axis leaving the rotator, it is found that, as expected, the reverse rotator is 
also matched for a radial n-axis entering and a vertical n-axis leaving. The g, 
elements also remain zero when the rotator solenoid polarities are reversed. We 
also note that since the G matrix terms for quadrupoles and solenoid end fields 
depend on ay  + 1 and the G matrix terms for the solenoid central field depend on 
ay, the quadrupole strengths for the decoupled spin matched rotator are slightly 
energy dependent. However, since a y  - 63, this effect is not large. 

APPENDIX Ill 

An Alternative Scheme 

In the text, we described a spin-matching scheme in which the rotators were 
each internally horizontally spin matched and the region between the rotators was 
separately matched. Here, for completeness we describe an alternative approach 
in which the whole I.R. including the rotators is matched in one piece and which 
would be useful if the rotator itself could not be internally matched. 

Such a rotator is sketched in Fig. 8a and consists of a 20-m solenoid which 
rotates n by 90" and the beam by about 45". This is followed by a set of "tuning" 
skew quadrupoles, and two pairs of quadrupoles and skew quadrupoles with equal 
separations. These latter four elements serve to rotate the beam back by 45" to 
remove the coupling introduced by the solenoid. The tuning skew quadrupoles 
serve to adjust the optics of the whole rotator without introducing extra coupling. 

This kind of rotator is not automatically internally matched, but we introduce 
between the rotators two arbitrary mirror-symmetric systems of normal quad- 
rupoles and drifts (called "ersatz sections") represented by the 4 x 4  transfer 
matrices El and E,  respectively (Fig. 8b). The symmetry ensures symmetry of the 
beta functions around the I.P. and the elements of E, are uniquely determined by 
the elements of El and the symmetry. As we have seen in Eqs. (AI-12) and 
(AI-13), the orbital and spin motion properties of E ,  relating to horizontal spin 
motion are determined by three parameters. 
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Tuning Skew Decoupling 
Ouadrupoles Section 

towards 
' y ' ~ o l e n o i d  & 

towards 
arc V P I .  P. 

I 

Alternative Rotator 1 E Normal 
Ouadrupole 

1 E Skew 
Ouadrupole 

FIGURE 8a An alternative rotator using a solenoid, quadrupoles and skew quadrupoles. 

Incoming Rotator Ouadrupole System : 

I 
----- 

Outgoing Rotator 

I , Beam 
I 

Puadrupole system : 
Matrix = El 

Alternative Rotator - Reverse Rotator Scheme 
with Quadrupole Systems El and E2 

FIGURE 8b Two such rotators combined to make a rotation system. In both rotators the solenoids 
face the arcs. 

Horizontal spin matching of the whole I.R. and rotator sections now consists of 
choosing a suitable spin basis (Appendix I) and adjusting the three independent 
(horizontal) matrix elements of El so that the total gx vanishes. With the kind of 
rotator shown in Fig. 8a, it is found numerically that in the approximation that 
1 + a  -, 1 (Eqs. (AI-7), (AI-8)), this is achieved when the horizontal part of the 
transfer matrix for the whole region is a unit matrix. This may be arranged, for 
example, by setting 

independently of beam energy, where p is the optical transfer matrix for the 
incoming rotator. This implies that the horizontal matrices for each half are either 
+I  or -I. The horizontal beta function at the entrance to the solenoids coming 
from the arcs is therefore the same as at the interaction point. 

The matching procedure then has two steps. The first step involves using the 
approximation 1 + a  + 1 and tuning the rotator so that its horizontal and vertical 
transfer properties are reasonable and then creating an optics between the 
rotators for which Eq. (AIII-1) is satisfied. Inspection of the gx matrices for each 
half of the region shows that the spin match is achieved as a result of an exact 
energy-independent cancellation of the gx terms of the two halves. 

The solution proposed in Eq. (AIII-1) is not unique: any mirror-symmetric 
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quadrupole system with a unit horizontal transfer matrix (which is therefore 
horizontally spin matched) may be inserted in addition between E ,  and E, and 
the optical flexibility for designing the optics thereby improved. 

In the second step, a is given its correct value of 0.0011596, the solenoid 
strength is proportionally lowered and g, is again brought to zero by slightly 
retuning the previously established El. 

Such schemes were investigated for HERA and again SLIM predicted high 
polarizations and it is clear that the use of the "ersatz" matrix parametrization is a 
useful way to investigate spin-matching problems, and to create rotators, espe- 
cially since there is a wide variety of ways to combine quadrupoles, skew 
quadrupoles and solenoids to make optically decoupled  system^.^^^^ 




