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We show how to 
onstru
t an equation of the Fokker{Plan
k type for the spin

motion of ele
trons in a storage ring.

1 Introdu
tion and motivation

Relativisti
 ele
trons 
ir
ulating in a storage ring 
an be
ome spin polarized by

the emission of spin{
ip syn
hrotron radiation. This is the so{
alled Sokolov{

Ternov (ST) e�e
t [1℄.

In the absen
e of spin 
ip, spin motion for ele
trons moving in ele
tri
 and

magneti
 �elds is des
ribed by the T{BMT equation [2, 3℄ d

~

S=ds =

~


 ^

~

S

where

~

S is the rest frame spin expe
tation value of the ele
tron and s is the

distan
e around the ring.

~


 depends on the ele
tri
 and magneti
 �elds, the

velo
ity and the energy. Thus

~


 is a fun
tion of s and the ve
tor ~u of the six


anoni
al phase spa
e 
oordinates [4, 5℄.

The sto
hasti
 element of photon emission together with the a

ompanying

damping determines the equilibrium phase spa
e density distribution and the

beam 
an be des
ribed by a Fokker{Plan
k (FP) equation. This is traditionally

derived by simulating the sto
hasti
 photon emission with Gaussian white noise

[6, 7, 8, 9℄. The same photon emission also imparts a sto
hasti
 element to

~


(~u; s) via its dependen
e on ~u and then, through the T-BMT equation, spin

di�usion (and thus depolarization) 
an o

ur in the inhomogeneous �elds of

the ring [10, 4, 5℄. Thus syn
hrotron radiation 
an 
reate polarization but 
an

also lead to its destru
tion! In pra
ti
e the polarization 
omes to equilibrium

at a value given by the formula of Derbenev and Kondratenko and of Mane

[11, 12℄. Further details on this formalism 
an be found in [4, 5℄.

However, if we are just interested in spin di�usion it would be useful to

have a kind of spin{orbit FP equation whi
h would allow non{equilibrium

spin{orbit systems to be studied.

We now show how to obtain su
h an equation following the traditional

route based on Gaussian white noise in analogy with the des
ription of orbital

motion. From now on we will treat

~

S as a 
lassi
al spin ve
tor. This a

ount

will be very brief but more details 
an be found in [13, 4℄.
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2 Spin{orbit transport with radiation

We model the photon emission as a Gaussian white noise pro
ess overlaid onto

smooth radiation damping. Then the orbital phase spa
e density W

orb

evolves

a

ording to a FP equation:

�W

orb

�s

= L

FP;orb

W

orb

; (1)

where the orbital FP operator L

FP;orb

a

ounts for \Hamiltonian" 
ow, damp-

ing and noise and 
ontains zeroth, �rst and se
ond derivatives w.r.t. the 
om-

ponents of ~u. The detailed form for L

FP;orb


an be found in [6, 7, 8℄ but is

not important for the argument that follows. After a few damping times W

orb

approa
hes an equilibrium form.

The analogue of Eq. (1) for spin will be an equation for the polariza-

tion density

~

P = 2=�h

~

S where

~

S is the spin angular momentum density

per parti
le. In terms of the lo
al polarization,

~

P

lo


(~u; s), at (~u; s) we have

~

P(~u; s) =

~

P

lo


(~u; s) W

orb

(~u; s).

We now introdu
e the joint spin{orbit density W (~u;

~

S; s). This 
ontains

a fa
tor Æ(�h=2 � j

~

Sj) a

ounting for the fa
t that we are des
ribing pro
esses

for whi
h j

~

Sj = �h=2. We normalise W to unity:

R

d

6

u d

3

S W (~u;

~

S; s) = 1.

Moreover

R

d

3

S W (~u;

~

S; s) = W

orb

(~u; s). The polarization density 
an now be

written as

~

P(~u; s) =

2

�h

Z

d

3

S

~

S W (~u;

~

S; s) : (2)

The polarization of the whole beam as measured by a polarimeter at azimuth

s is

R

d

6

u

~

P(~u; s).

Sin
e here, spin is a spe
tator, being only indire
tly a�e
ted by the radia-

tion through the orbital motion, the FP equation for the 
ombined orbit and

spin density is

�W

�s

= L

FP;orb

W � (

~


 ^

~

S) � (

~

r

~

S

W ) (3)

where

~

r

~

S

W is the gradient of W w.r.t. the three 
omponents of spin.

Using Eq. (3) we 
an write

2

�h

Z

d

3

S

~

S

�W

�s

=

2

�h

Z

d

3

S

~

S

�

L

FP;orb

W � (

~


 ^

~

S) � (

~

r

~

S

W )

�

(4)
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and then by Eq. (2) we obtain

�

~

P

�s

= L

FP;orb

~

P +

~


 ^

~

P : (5)

This is the equation of the Fokker{Plan
k type for spin that we have been

seeking. We 
all Eq. (5) a \Blo
h" equation following the usage for equations

of this general form in the nu
lear magneti
 resonan
e literature. Con
rete

examples of this equation for simple exa
tly solvable models 
an be found in

[14℄.

3 Dis
ussion and 
on
lusion

The derivation of the Blo
h equation for

~

P given here is independent of the

sour
e of noise and damping and as soon as we have the L

FP;orb

for a pro
ess we


an write down the 
orresponding Blo
h equation for

~

P. The Blo
h equation

is valid far from spin{orbit equilibrium and it is linear in

~

P . It is also universal

in that it does not expli
itly 
ontain the orbital density W

orb

.

The 
orresponding evolution equation for

~

P

lo



an be found by putting the

relation

~

P =

~

P

lo


W

orb

into Eq. (5) and using Eq. (1) but it is 
ompli
ated and

it is not universal sin
e it 
ontains W

orb

. So to extra
t

~

P

lo


one should �rst

solve Eqs. (1) and (5) separately and then use the relation

~

P

lo


=

~

P=W

orb

.

The �rst FP{like treatment of spin motion in storage rings was given in

[15℄. This was a semi
lassi
al 
al
ulation of the e�e
t of syn
hrotron radiation

on the evolution of the spin{orbit density operator, � =

1

2

(�

orb

+ ~� �

~

�), where

~� is the spin operator, �

orb

is the density operator of the orbital motion and

where the operator

~

�, whi
h en
odes information about the polarization, is

equivalent to

~

P . The resulting evolution equation for the Weyl transform of

~

�


ontains terms equivalent to those on the r.h.s. of Eq. (5), whi
h are due to

pure spin di�usion, together with terms due to the ST e�e
t. There are also the

\
ross terms". So starting with Eq. (5) one 
ould, using physi
al intuition, add

in the ST terms by hand. But the 
ross terms would be missed. So to obtain

a 
omplete des
ription of spin motion a full quantum me
hani
al, or at least

semi
lassi
al, treatment of 
ombined spin and orbital motion is unavoidable.

Our work is a 
lassi
al re
onstru
tion of the pure noise and damping part of

Eq. (2) in [15℄ and it helps to illuminate the meaning of the latter. Sin
e the

evolution equation for the orbital phase spa
e density in [15℄ is the usual FP

equation, one sees that the 
al
ulation in [15℄ provides a physi
al justi�
ation

for using Gaussian white noise models for orbital motion.
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