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We show how to construct an equation of the Fokker—Planck type for the spin
motion of electrons in a storage ring.

1 Introduction and motivation

Relativistic electrons circulating in a storage ring can become spin polarized by
the emission of spin—flip synchrotron radiation. This is the so—called Sokolov—
Ternov (ST) effect [1].

In the absence of spin flip, spin motion for electrons moving in electric and
magnetic fields is described by the T-BMT equation [2, 3] dS/ds = QA S
where § is the rest frame spin expectation value of the electron and s is the
distance around the ring. Q depends on the electric and magnetic fields, the
velocity and the energy. Thus Q) is a function of s and the vector @ of the six
canonical phase space coordinates [4, 5].

The stochastic element of photon emission together with the accompanying
damping determines the equilibrium phase space density distribution and the
beam can be described by a Fokker—Planck (FP) equation. This is traditionally
derived by simulating the stochastic photon emission with Gaussian white noise
[6, 7, 8 9]. The same photon emission also imparts a stochastic element to
Q(U; s) via its dependence on @ and then, through the T-BMT equation, spin
diffusion (and thus depolarization) can occur in the inhomogeneous fields of
the ring [10, 4, 5]. Thus synchrotron radiation can create polarization but can
also lead to its destruction! In practice the polarization comes to equilibrium
at a value given by the formula of Derbenev and Kondratenko and of Mane
[11, 12]. Further details on this formalism can be found in [4, 5].

However, if we are just interested in spin diffusion it would be useful to
have a kind of spin—orbit FP equation which would allow non—equilibrium
spin—orbit systems to be studied.

We now show how to obtain such an equation following the traditional
route based on Gaussian white noise in analogy with the description of orbital
motion. From now on we will treat S as a classical spin vector. This account
will be very brief but more details can be found in [13, 4].
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2 Spin—orbit transport with radiation

We model the photon emission as a Gaussian white noise process overlaid onto
smooth radiation damping. Then the orbital phase space density W, evolves
according to a FP equation:

8Worb
0s

= 'CFP,orb Worb ) (1)
where the orbital FP operator £ ., accounts for “Hamiltonian” flow, damp-
ing and noise and contains zeroth, first and second derivatives w.r.t. the com-
ponents of «@. The detailed form for £, ., can be found in [6, 7, 8] but is
not important for the argument that follows. After a few damping times W,
approaches an equilibrium form.

The analogue of Eq. (1) for spin will be an equation for the polariza-
tion density P = 2/h S where § is the spin angular momentum density
per particle. In terms of the local polarization, ]%OC(U; s), at (i;s) we have
73(6, 5) = ﬁloc(a; 5) Worb(ﬁ; 5)'

We now introduce the joint spin—orbit density W (i, §; s). This contains
a factor 8(h/2 — |S]) accounting for the fact that we are describing processes
for which |S| = 7/2. We normalise W to unity: [du &S W (4, S s) = 1.
Moreover [ d®S W (4, §; $) = Worb(@; s). The polarization density can now be
written as

—

P@Q:%/ngw@&Q. (2)

The polarization of the whole beam as measured by a polarimeter at azimuth
sis [du 75(17; s).

Since here, spin is a spectator, being only indirectly affected by the radia-
tion through the orbital motion, the FP equation for the combined orbit and
spin density 1s

—
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where 6§W is the gradient of W w.r.t. the three components of spin.
Using Eq. (3) we can write
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and then by Eq. (2) we obtain

O o, PGNP, (5)

Os FP,orb

This is the equation of the Fokker—Planck type for spin that we have been
seeking. We call Eq. (5) a “Bloch” equation following the usage for equations
of this general form in the nuclear magnetic resonance literature. Concrete
examples of this equation for simple exactly solvable models can be found in

[14].

3 Discussion and conclusion

The derivation of the Bloch equation for P given here is independent of the

source of noise and damping and as soon as we have the £, for a process we

can write down the corresponding Bloch equation for P. The Bloch equation
1s valid far from spin—orbit equilibrium and it is linear in P. 1t is also universal
in that 1t does not explicitly contain the orbital density Wo,y,.

The corresponding evolution equation for ]310C can be found by putting the
relation P = ﬁloc Worb into Eq. (5) and using Eq. (1) but it is complicated and
it 1s not universal since it contains Wy, So to extract ﬁoc one should first
solve Egs. (1) and (b) separately and then use the relation Ploe = 75/Worb.

The first FP-like treatment of spin motion in storage rings was given in
[15]. This was a semiclassical calculation of the effect of synchrotron radiation
on the evolution of the spin—orbit density operator, p = %(porb +é ~€), where
& is the spin operator, popp, is the density operator of the orbital motion and
where the operator 5, which encodes information about the polarization, is
equivalent to P. The resulting evolution equation for the Weyl transform of é'
contains terms equivalent to those on the r.h.s. of Eq. (5), which are due to
pure spin diffusion, together with terms due to the ST effect. There are also the
“cross terms”. So starting with Eq. (5) one could, using physical intuition, add
in the ST terms by hand. But the cross terms would be missed. So to obtain
a complete description of spin motion a full quantum mechanical, or at least
semiclassical, treatment of combined spin and orbital motion is unavoidable.
Our work is a classical reconstruction of the pure noise and damping part of
Eq. (2) in [15] and it helps to illuminate the meaning of the latter. Since the
evolution equation for the orbital phase space density in [15] is the usual FP
equation, one sees that the calculation in [15] provides a physical justification
for using Gaussian white noise models for orbital motion.
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