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We show how to onstrut an equation of the Fokker{Plank type for the spin

motion of eletrons in a storage ring.

1 Introdution and motivation

Relativisti eletrons irulating in a storage ring an beome spin polarized by

the emission of spin{ip synhrotron radiation. This is the so{alled Sokolov{

Ternov (ST) e�et [1℄.

In the absene of spin ip, spin motion for eletrons moving in eletri and

magneti �elds is desribed by the T{BMT equation [2, 3℄ d

~

S=ds =

~


 ^

~

S

where

~

S is the rest frame spin expetation value of the eletron and s is the

distane around the ring.

~


 depends on the eletri and magneti �elds, the

veloity and the energy. Thus

~


 is a funtion of s and the vetor ~u of the six

anonial phase spae oordinates [4, 5℄.

The stohasti element of photon emission together with the aompanying

damping determines the equilibrium phase spae density distribution and the

beam an be desribed by a Fokker{Plank (FP) equation. This is traditionally

derived by simulating the stohasti photon emission with Gaussian white noise

[6, 7, 8, 9℄. The same photon emission also imparts a stohasti element to

~


(~u; s) via its dependene on ~u and then, through the T-BMT equation, spin

di�usion (and thus depolarization) an our in the inhomogeneous �elds of

the ring [10, 4, 5℄. Thus synhrotron radiation an reate polarization but an

also lead to its destrution! In pratie the polarization omes to equilibrium

at a value given by the formula of Derbenev and Kondratenko and of Mane

[11, 12℄. Further details on this formalism an be found in [4, 5℄.

However, if we are just interested in spin di�usion it would be useful to

have a kind of spin{orbit FP equation whih would allow non{equilibrium

spin{orbit systems to be studied.

We now show how to obtain suh an equation following the traditional

route based on Gaussian white noise in analogy with the desription of orbital

motion. From now on we will treat

~

S as a lassial spin vetor. This aount

will be very brief but more details an be found in [13, 4℄.
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2 Spin{orbit transport with radiation

We model the photon emission as a Gaussian white noise proess overlaid onto

smooth radiation damping. Then the orbital phase spae density W

orb

evolves

aording to a FP equation:

�W

orb

�s

= L

FP;orb

W

orb

; (1)

where the orbital FP operator L

FP;orb

aounts for \Hamiltonian" ow, damp-

ing and noise and ontains zeroth, �rst and seond derivatives w.r.t. the om-

ponents of ~u. The detailed form for L

FP;orb

an be found in [6, 7, 8℄ but is

not important for the argument that follows. After a few damping times W

orb

approahes an equilibrium form.

The analogue of Eq. (1) for spin will be an equation for the polariza-

tion density

~

P = 2=�h

~

S where

~

S is the spin angular momentum density

per partile. In terms of the loal polarization,

~

P

lo

(~u; s), at (~u; s) we have

~

P(~u; s) =

~

P

lo

(~u; s) W

orb

(~u; s).

We now introdue the joint spin{orbit density W (~u;

~

S; s). This ontains

a fator Æ(�h=2 � j

~

Sj) aounting for the fat that we are desribing proesses

for whih j

~

Sj = �h=2. We normalise W to unity:

R

d

6

u d

3

S W (~u;

~

S; s) = 1.

Moreover

R

d

3

S W (~u;

~

S; s) = W

orb

(~u; s). The polarization density an now be

written as

~

P(~u; s) =

2

�h

Z

d

3

S

~

S W (~u;

~

S; s) : (2)

The polarization of the whole beam as measured by a polarimeter at azimuth

s is

R

d

6

u

~

P(~u; s).

Sine here, spin is a spetator, being only indiretly a�eted by the radia-

tion through the orbital motion, the FP equation for the ombined orbit and

spin density is

�W

�s

= L

FP;orb

W � (

~


 ^

~

S) � (

~

r

~

S

W ) (3)

where

~

r

~

S

W is the gradient of W w.r.t. the three omponents of spin.

Using Eq. (3) we an write

2

�h

Z

d

3

S

~

S

�W

�s

=

2

�h

Z

d

3

S

~

S

�

L

FP;orb

W � (

~


 ^

~

S) � (

~

r

~

S

W )

�

(4)
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and then by Eq. (2) we obtain

�

~

P

�s

= L

FP;orb

~

P +

~


 ^

~

P : (5)

This is the equation of the Fokker{Plank type for spin that we have been

seeking. We all Eq. (5) a \Bloh" equation following the usage for equations

of this general form in the nulear magneti resonane literature. Conrete

examples of this equation for simple exatly solvable models an be found in

[14℄.

3 Disussion and onlusion

The derivation of the Bloh equation for

~

P given here is independent of the

soure of noise and damping and as soon as we have the L

FP;orb

for a proess we

an write down the orresponding Bloh equation for

~

P. The Bloh equation

is valid far from spin{orbit equilibrium and it is linear in

~

P . It is also universal

in that it does not expliitly ontain the orbital density W

orb

.

The orresponding evolution equation for

~

P

lo

an be found by putting the

relation

~

P =

~

P

lo

W

orb

into Eq. (5) and using Eq. (1) but it is ompliated and

it is not universal sine it ontains W

orb

. So to extrat

~

P

lo

one should �rst

solve Eqs. (1) and (5) separately and then use the relation

~

P

lo

=

~

P=W

orb

.

The �rst FP{like treatment of spin motion in storage rings was given in

[15℄. This was a semilassial alulation of the e�et of synhrotron radiation

on the evolution of the spin{orbit density operator, � =

1

2

(�

orb

+ ~� �

~

�), where

~� is the spin operator, �

orb

is the density operator of the orbital motion and

where the operator

~

�, whih enodes information about the polarization, is

equivalent to

~

P . The resulting evolution equation for the Weyl transform of

~

�

ontains terms equivalent to those on the r.h.s. of Eq. (5), whih are due to

pure spin di�usion, together with terms due to the ST e�et. There are also the

\ross terms". So starting with Eq. (5) one ould, using physial intuition, add

in the ST terms by hand. But the ross terms would be missed. So to obtain

a omplete desription of spin motion a full quantum mehanial, or at least

semilassial, treatment of ombined spin and orbital motion is unavoidable.

Our work is a lassial reonstrution of the pure noise and damping part of

Eq. (2) in [15℄ and it helps to illuminate the meaning of the latter. Sine the

evolution equation for the orbital phase spae density in [15℄ is the usual FP

equation, one sees that the alulation in [15℄ provides a physial justi�ation

for using Gaussian white noise models for orbital motion.
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