Status of the CALICE Scintillator HCAL Engineering Prototype

Oskar Hartbrich
for the CALICE Collaboration
ECFA-LC 2013,
May 29th 2013
Overview

- AHCAL engineering prototype design and hardware
- LED calibration system update
- From single PCB to full prototype
 - Lab slab test
 - 2012 CERN layer
 - EM stack (and beyond)
- Other readout options
 - Tiles/SiPMs
 - HCAL/ECAL geometric options
- Conclusion/Outlook
AHCAL Physics Prototype

Not scalable to full detector → Build realistic prototype
The AHCAL Engineering Prototype

- 32 segments (16 in ϕ, 2 in z)
- 40 layers per half-octant
 - 3 slabs of 6 PCBs per layer
 - Millions of channels!
- Challenge: full electronics integration into layers
 - Readout, power, calibration etc.
 - Tight space between absorbers
 - No active cooling inside layers
Integrated electronics

- Layer built up of 18 **HCAL Base Unit** PCBs
 - extra thin PCBs (780um)
 - cutouts for ASICs
 - → only 5.4 mm thickness including 3mm tiles

- **SPIROC2b**: highly integrated ASIC for SiPM readout (developed by LLR, France)
 - Channel-wise bias adjustment
 - Channel-wise adjustable gain
 - ~1ns time stamping capability
 - Fully self triggered operation possible
 - Power pulsing → 25 µW/ch
LED Calibration System Update

- Integrated calibration system for SiPM gain calibration (1 LED per channel)
- Showed some spread in LED amplitudes and timing
 - Small change in circuit layout
 → Now much more homogenous output
 → Substantially decreases calibration time
- Used LED type is discontinued
 - Uni Wuppertal is testing new LEDs
 - First candidate identified
The road to a full prototype

Operation modes to be tested:

- Single boards in the lab
 - ✔️
- Single boards in testbeam
 - ✔️
- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2D extension)
- Multiple layers in one detector (3D extension)

Once operation is established, acquire more layers!
Full Slab Test

- Full slab assembled in lab
 - 6 serial HBUs
- Readout & calibration system tests
 (see talk by I. Polak in next session)
- Readout unhindered by 2.2m signal path
- 1D extension established

Photo: J. Kvasnicka, I. Polak

SPS from QMB (Prague)
CERN Layer (2x2)

- 2012 CERN hadron beam
- 4 HBUs, 576 channels
- Fully autotriggered, low rates
 → threshold setup very important
- Using common threshold is easiest:
 - Tile light yield equalised by bias setup
 - SiPM gain equalised by preamplifier setup
 → equalised MIP response
 → common threshold applicable
- Worked out well
 → 2D extension established

- See next talk by Shaojun Lu
 - Adding 1 time dimension
Towards a small HBU stack

- Intermediate goal: small stack for DESY electron beam
 - System tests, performance validation
 - Mechanics test
 - Flexible test bench for tile/SiPM options

- 4 HBUs available from CERN beam last year
 - 1 extra board commissioned from available tiles
 - 8 new PCBs available (Uni HH, DESY)
 → 5 HBUs usable right now, up to ~10 by end of year

- Air stack for cosmics/MIP calibration
- ILD absorber prototype (Fe) for EM showers
New DAQ System

- DAQ used until this point not capable of synchronous multi-layer readout
- New developments based on redesigns of common CALICE DAQ hardware
 - DIF (NIU/Fermilab), new revision 2012
 - LDA, CCC (UK groups) redesigned by Uni Mainz
 - Based on new FPGA/SoC (Xilinx Zynq)
 - Now very flexible, powerful processing on board
 - Still compatible to CALICE DAQ
- Stepwise adaptation from USB data transfer to full HDMI
 - First stage: data via USB, fast signals (clock, triggers) via HDMI through CCC
 - White paper with development stages is available.
 - Conceptually close to CALICE DAQ designs
- Electronics & software 100% compatible to scintillator ECAL (Shinshu, Japan)
New DAQ System

- First DAQ stage is implemented
- PC software still Labview based
 - 50% rewritten
 - Now fully multi threaded → True parallel readout
- Data readout completely functional
- Very stable operation (72h+ runs)
- Faster than ever (~factor 7)
- Next step: establish parallel data path through LDA for testing
Cosmics stack

- Air stack for cosmic muons
 - External trigger validation by coincident scintillator paddles
 - Running on only 4 boards
 - First test with real particles
 - Very low rates (underground lab)
 → challenging threshold setup

- Long runs (whole weekends)
- No DAQ crashes
 - Software stability proven
DESY Testbeam

- MIP calibration in air stack
 - 3GeV e⁺
 - Crosscheck previous MIP calibration
 - New layer uncalibrated yet

- Energy scans in Fe stack
 - Capture some EM showers
 - First calorimetric results from HBUs

- Achievable resolution is limited by only 5 layers
 - Can add more layers as they come
 - Electronics available for 12 layers
DESY testbeam results

- Synchronous MIP calibration through several layers
- 3D extension readout established

![Histo Chip 141 Channel 15](image1)

![Histo Chip 133 Channel 15](image2)

![Histo Chip 137 Channel 15](image3)

![Histo Chip 129 Channel 15](image4)
Flexible electronics

- AHCAL electronics are designed for operation in a full-scale collider detector
- ...but up to now, many parameters are not fully finalized
 - SiPM placement (side or top of tile)
 - Tile design (WLS vs. direct coupling)
 - SiPM type
 - Geometry (tile/strip)

- Electronics are very flexible!
 → Proceed with integration and sensor optimisation in parallel
Surface mount HBU

- Mount SiPM on PCB, not in the tile (G. Blazey et al., NIM A605 (2009) 277, F. Abu-Ajamieh et al. NIM A659 (2011) 348)

- No gap between tiles
 - One “megatile” per HBU

- Concave cavity in tiles improves uniformity

- 2 surface mount HBUs produced
 - To be equipped with tiles
Direct coupling tiles

- WLS fibre has two tasks:
 - shift wavelength to sensitive range of SiPM
 - improve light yield uniformity within a tile
- new SiPMs are sensitive in blue-UV range
- optimised tile design allows good uniformity without WLS

ITEP

Uni Hamburg

- Two different types:
 - ITEP: injection moulding, easily producible in large quantities
 - Uni Hamburg: machining
- Good uniformity of both types
 - Uni Hamburg type slightly better
Other Geometries: Strip Scintillator ECAL

- ECAL option: needs finer granularity than HCAL
 - 45 * 5 mm² strips instead of 30 * 30 mm² tiles
 - 4 times larger channel density than HCAL
 - Alternating orientation horizontal / vertical

- SciECAL uses Hamamatsu MPPCs as SiPMs
 - 1600 pixels on 1 * 1 mm²
 - Gain: a few 10^5
 - Bias voltage ~70 V
- HBU design scaled down to Scintillator strip ECAL dimensions
- Two PCB designs needed for different orientations
 - Vertical orientation already produced and tested
 - Horizontal orientation in design, needs minor changes in connectors
ECAL & HCAL geometries

- Different geometry PCBs also supported and explored
 - EBU: 20*20mm tiles
 - EBU: 15*15mm tiles
 - HBU: 90*10mm strips
Summary

- Very versatile electronics provide effective testbench for different tile/SiPM concepts
- Multilayer DAQ based on CALICE DAQ hardware
 - Fast, stable operation so far
- First HBU stack setup commissioned
 - Small scale system test

Outlook

- Testbeam with 5+ layers ongoing
 - More layers to be added during the year → parasitic data taking
- Next step in DAQ development
 - Full HDMI readout
- Plan to be prepared once hadron beams return in 2014