

A high granularity calorimeter for a future linear collider

Oskar Hartbrich for the CALICE Collaboration

LC Forum 2013, October 10th 2013

Universität Hamburg

BERGISCHE UNIVERSITÄT WUPPERTAL

Overview

- Goals of calorimetry at a future linear collider
 - Particle Flow Algorithms
 - The CALICE Collaboration
- The CALICE AHCAL physics prototype
- Technical prototype
 Mechanical integration

 - Electronic integration
 - Tile options
 - Automation/Industrialisation
- Summary
- Outlook/future plans

Calorimetry at a future linear collider

- Design goal: differentiate full hadronic
 W and Z decays from jet energy reconstruction
- Needs jet energy resolution $\sigma(E_{jet})/E_{jet} \approx 3-4\%$ for $E_{jet}=40-500$ GeV
- Classic hadronic calorimeter: σ(E_{jet})/E_{jet} ≈ 60%/√E(GeV) → σ(E_{jet})/E_{jet} ≈ 10% for E_{jet} = 50 GeV
- ILD approach: Particle Flow Algorithms

Particle Flow Algorithm

- Momentum resolution in trackers is orders of magnitude better than energy resolution in calorimeters
- Idea: Use detector with best resolution for each particle in a jet
 - Ideally only neutral particles are measured in calorimeter (27% photons, 10% neutral hadrons)
- Problem: confusion from overlapping showers
 - Needs very high calorimeter granularity
 - → Imaging calorimetry
- Total performance always improved by PFA
 - E_{iet} <100GeV governed by calo resolution</p>
 - E_{jet}>100GeV governed by confusion

CALICE Collaboration

- CALICE: CAlorimeters for a LInear Collider Experiment
- International effort to explore different options for ILC calorimeters
- Electromagnetic Calorimeters (ECAL):
 - W absorbers
 - Readout options:
 - Silicon (5*5mm² pads)
 - Scintillator (5*45mm² strips)
- Hadronic Calorimeters (HCAL):
 - Fe absorbers (W under consideration for higher energy collider)
 - Readout options:
 - Gaseous (1*1cm²)
 - RPCs, GEMs (1-2 bit digitization)
 - Scintillator (3*3cm²)
 - 12bit digitization

AHCAL Readout Technology

CALICE Analog Hadronic CALorimeter (AHCAL)

- Scintillator tiles:
 - Plastic scintillator material, 3*3cm²
 - Fiber enhances homogeneity of response
 - Wavelength shift to increase SiPM efficiency
- Silicon Photomultiplier (SiPM):
 - Multi pixel array of Geiger-mode photodiodes
 - Single photons can fire pixels
 - Smaller, cheaper, lower bias voltage at similar gains compared to PMTs aouainoo
 - Non-linear, gain is temperature dependent
 - Calibration required
 - \rightarrow Single photon spectra
 - \rightarrow Saturation curves

Amplitude

AHCAL Contributors

CALICE AHCAL

 1m³ physics prototype used in different testbeams 2006-2012

AHCAL Performance

- Performance of concept validated with prototype
- Various published results

Geant 4 validation

18 GeV

The AHCAL Engineering Prototype

32 segments (16 in ϕ , 2 in z)

- 40 layers per half-octant
- 3 *slabs* of 6 PCBs per layer
- 8 Million channels! 50000 boards (HBU)!
- Challenge: Integration
 - Mechanics
 - Electronics
 - Tiles
 - Automation

Mechanical Integration

Mechanical Integration – Absorbers

Full layer test stack

- 4 layers of ILD HCAL absorber
 - Largest plates in ILD stack
 - Full layer dimensions (6*3 HBUs)
- Heat dissipation and power pulsing

Half octant test stack

- 1/6 HCAL segment (1 HBU depth)
 - 2pcs available, stackable
- Current and future testbeam setups
- Integration of infrastructure
 - Power supplies
 - Cooling systems
- Stress tests (earthquake safety!)

Mechanical Integration – Active Layers

- Minimal space between absorbers
 - 2.4mm for full electronics
 - No cooling inside absorbers
- Needs very thin connectors
 - Power lines: ~3 Amps!

Electronic Integration

Electronic Integration - HBU

HCAL Base Unit (HBU)

- 4 ASICs, 144 channels per PCB
 - SPIROC chip family by Omega, France
 - Full digitisation on chip
 - <1ns time stamping</p>
 - Power pulsing
 - Separate developments for analog part by Uni Heidelberg: KlauS ASIC
- One Central Interface Board (CIB) per layer
 - Power board
 - Calibration and trigger controller
 - DAQ interface
- 5 HBUs equipped and calibrated in DESY electron beam
 - 8 fresh HBUs to be equipped with tiles

Electronic Integration - Calibration Systems

Uni Wuppertal

- Single LED per tile
 - Minimal material per channel
 - Covers full amplitude range from single photons to SiPM saturation
- Integrated on current HBUs

Institute of Physics Prague

- Single LED on external board
- Light distribution via notched plastic fiber
- Excellent pulse shape and stability

Data Acquisition System (DAQ)

- DAQ developments based on redesigns of common CALICE DAQ hardware
 - DAQ interface (DIF): NIU/Fermilab
 - Fast signal distribution (CCC), Data aggregation (LDA): Redesigned by Uni Mainz (based on work of UK groups)
- Started from single layer system, now stepwise development to full scale
 - Already very fast and stable operation
- Conceptually close to CALICE DAQ designs
 - Will be able to integrate other CALICE detectors

Single HBUs to Full Slab

- Single HBUs extensively operated and in lab and DESY testbeam
- Full length ILD slab, 2*2 layer assembled and operated
- Power pulsing tests on full slab ongoing

Photo: J. Kvasnicka, I. Polak

Timing behaviour characterised on 2*2 layer

Multilayer Test Beam

- Operation of 5 synchronous layers
 - Fully self-triggered
 - Airstack for MIP calibration
 - ILD absorber for first calorimetric data
 - All mechanics already in ILD format!
- More to come soon!

Tile Developments

Fiberless Tiles

- Machined dimple around SiPM enables uniform response without fiber
 - MPI Munich: first concepts, machined
 - ITEP: injection molded fiberless tiles
 - UHH: improved shape for easier machining

UHH tile development:

- Machined tiles, individually wrapped
 - Reduced inter-tile crosstalk
- New commercial SiPM (KETEK)
 - 2300 pixels (up from ~800)
 - Less saturation effects
 - Greatly reduced dark rates
 - Lower device by device variation (gain, bias, etc.)

UHH Tiles

- First batch of 12 tiles assembled and characterised
 - High quality MIP spectra (Sr90 source)
 - Good homogeneity of response across tile

- Material for 1200 tiles available (8 HBUs)
- First beam tests on HBU boards starting soon
- Process already designed for mass production
 - Lasercut reflective foil
 - Automated tile wrapping

NIU Megatile

- NIU concept: Surface mounted SiPMs
 - SiPMs mounted on top of tile
 - Concave dimple in tile for uniformity
- Megatile scintillator
 - 18*18cm² divided into 3*3cm² cells
 - Optical isolation by white epoxy
- Easy assembly
 - SiPMs assembled like standard components
 - Scintillator is equipped in larger pieces
- Modified HBU designed and produced at DESY
 - First calibration spectra obtained by NIU

Scintillator Strip ECAL

- Scintillator ECAL concept (Uni Shinshu, Kyushu, Tokyo, Japan)
 - 45*5mm² scintillator strips
 - SiPM readout at end of each strip
 - Layers with alternating strip orientation
- Mounted on HBU redesigned for strip geometry (EBU)
 - PCB scaled down to ¼ size
 - Identical connection to interface boards, DAQ
- Fully operational in lab and testbeams
 - \rightarrow HBUs (EBUs) operating in each major region!

Automation/Industrialisation

Mass Tile Characterisation

- Studies for automated mass tile characterisation by Uni Heidelberg
- Goal: Simultaneous full characterisation of 12 tiles at once, 216 tiles per run
- Readout by KlauS ASIC
- System commissioning and test runs with first 12 UHH tiles

UNIVERSITÄT HEIDELBERG

Mass Tile Assembly

Studies by Uni Mainz:

- Mechanical connection tile ↔ HBU
 - Detailed study of glueing tiles to HBU as an alternative to alignment pins
- ♦ Electric connection tile ↔ HBU
 - Soldering SiPMs to the HBU is fastest with commercial wave soldering
 - Needs to be reflected in PCB design

Summary and Outlook

Summary

- The CALICE collaboration develops calorimeters for a future linear collider
- The AHCAL is a scintillator-SiPM based concept for a hadronic calorimeter
 - Physics performance has been proven in various testbeam campaigns
- Now we are developing a prototype that is scalable to a full detector
 - Mechanical integration within ILD constraints is well advanced
 - The first multilayer setups have recently been tested in the DESY beams
- Various options for scintillator tiles under development
 - Focus on scalability of production and assembly
- Studies on automated assembly and commissioning are underway

Outlook

Short term:

- Assemble >10 HBUs for first calorimetric data
 - EM performance in DESY beam
 - 4 weeks beam time end of 2012

Medium term:

- Timed hadron shower imaging
 - ~10 single HBU layers (interaction finder)
 - ~2 full (2*2 HBUs) layers
 - Similar to T3B, but full layers

Long term:

- Full 1m3 technical prototype
 - ~40 full layers
 - Demonstrate full integration, production automation

Thanks to the many people of whom I borrowed slides and material! (and this template)