CALICE Calorimeter Resolutions

Prototypes in Testbeams from 2006-2012

Oskar Hartbrich 8th Annual Workshop "Physics at the Terascale" 02.12.2014

Energy Resolution in Calorimetry

Calorimetric energy resolution depends on particle energy:

Particle flow improves jet energy resolution

- Typical jet: ~60% (h/l)⁺, ~30% γ, ~10% h⁰
- Use best resolution detector for each particle in jet
- Needs high granularity to discern energy depositions from neutral and charged particles
- Always improves resolution above classic calorimetry
- Need unprecedented spatial resolution while maintaining competitive energy resolution

CALICE Collaboration

R&D of Particle Flow calorimeters for future linear collider experiments

60 groups/institutes, ~350 people

Different absorber and detection materials under investigation

- Sandwich calorimeter, very high granularity in X/Y/Z
- Multiple large scale prototypes built and tested at CERN, DESY and FNAL testbeam facilities

Silicon ECAL (SiECAL)

- Tungsten absorber
 - 30 layers (0.4X₀, 0.8X₀, 1.2X₀)
- Silicon PIN diode array
 - 1*1cm² cells
 - 9720 channels in total
- Linearity deviations <1%</p>
- Acceptable electron energy resolutic
 - 16.5% stochastic, 1.1% constant
 - Significantly worse than e.g. crystals
 - High spatial granularity enables PFA

[NIM A608, 372-383]

Scintillator Strip ECAL (ScECAL)

- Tungsten absorber
 - 30 layers, constant thickness
- Scintillator-SiPM readout
 - 10*45mm² scintillators, staggered by layer
 - 30 layers, 72 strips per layer \rightarrow 2160 cells
 - 16bit hit digitisation
- Linearity deviations <2%</p>
- Good electron energy resolution
 - 12.8% stochastic, 1.0% constant
 - Strip geometry requires separate reconstruction of hit positions for PFA

Published in: CAN-016c

Digital HCAL (DHCAL)

- Steel/Tungsten absorber
 - Up to 54 instrumented layers (incl. TCMT)
- RPC readout, single-threshold (digital)
 - 1*1cm² readout pads →500k channels!
- Pion energy resolution
 - Fe absorber: ~65% stochastic term <30GeV constant ~12% >30GeV
 - W absorber: clearly worse resolution, denser showers
- Most detailed hadron shower imaging yet

Semi-Digital HCAL (SDHCAL)

Steel absorber

- 48 layers instrumented
- > RPC readout, multi-threshold (2bit)
 - Readout ASIC already designed for ILC timings, power budget etc.

Binary mode resolution similar to DHCAL

- Similar flattening of resolution >30GeV
- Details and contributions to binary energy resolution to be clarified in simulations

Multi-threshold mode significantly improves resolutions

- Critically depends on exact threshold positions and monitoring
- Complex threshold weighting of hits

DES

Analog HCAL, Steel Absorber (Fe-AHCAL)

Steel absorber

Up to 38 layers instrumented

Scintillator-SiPM readout

- 30*30mm²-120*120mm² scintillator tiles
- 7608 tiles total
- Good agreement with MC
 - 57.6% stochastic, 1.6% constant term
- Software compensation greatly improves resolution
 - Identify EM subshowers using high granularity
 - ~45% stochastic, <2% constant term</p>
 - Proves cell size is correct to identify hadron shower substructure

Analog HCAL, Steel Absorber (Fe-AHCAL)

Steel absorber

Up to 38 layers instrumented

Scintillator-SiPM readout

- 30*30mm²-120*120mm² scintillator tiles
- 7608 tiles total
- Good agreement with MC
 - 57.6% stochastic, 1.6% constant term
- Software compensation greatly improves resolution
 - Identify EM subshowers using high granularity
 - ~45% stochastic, <2% constant term</p>
 - Proves cell size is correct to identify hadron shower substructure

Analog HCAL, Tungsten Absorber (W-AHCAL)

Tungsten absorber

- Longitudinal sampling in $\lambda_{h} \approx Fe$
- Longitudinal sampling in $X_0 \approx 3^*$ Fe
- Accidentally compensating calorimeter for energies >3GeV

Resolution agrees well with MC prediction

- ...when using _HP versions of physics list
- ~63% stochastic term, slightly worse than Fe
- TCMT not included in analysis
 - \rightarrow leakage, resoution levels off >50GeV
- EM resolution significantly worse than Fe absorber, smaller Moliere radius, longitudinal sampling

Analog HCAL, (Semi-)Digital Reconstruction

SiECAL + AHCAL + TCMT Calorimeter System

Full Calorimeter system

- SiECAL, AHCAL, Scitillator TCMT
- Pion resolution
- Different weighting methods:
- Constant weights
 - Optimise weights once from data or MC
 - 56% stochastic, 4.8% constant term
- Energy dependent weights
 - Complex iterative weighting procedure
 - Factor dependencies from data or MC
 - Effectively global software compensation
 - 45% stochastic, 2.8% constant
- > Any case: Pion resolution not degraded by ECAL

SiECAL + AHCAL + TCMT Calorimeter System

Full Calorimeter system

- SiECAL, AHCAL, Scitillator TCMT
- Pion resolution
- Different weighting methods:
- Constant weights
 - Optimise weights once from data or MC
 - 56% stochastic, 4.8% constant term
- Energy dependent weights
 - Complex iterative weighting procedure
 - Factor dependencies from data or MC
 - Effectively global software compensation
 - 45% stochastic, 2.8% constant
- > Any case: Pion resolution not degraded by ECAL

Summary and Outlook

Summary

- CALICE has developed and built multiple large scale highly granular calorimeter prototypes
- Prototypes have been tested at numerous testbeams around the world
- Resolution analyses and publication well progressed
- Performance is close to expectations and simulations

Outlook

- Scintillator calorimeter system performance under investigation
- Technical prototype development and testing well underway

ScECAL Linearity

[CAN-016c]

Oskar Hartbrich | CALICE Calorimeter Resolutions | 02.12.2014 | Page 16

AHCAL Linearity

DESY

SDHCAL Linearity

Oskar Hartbrich | CALICE Calorimeter Resolutions | 02.12.2014 | Page 19

Response Fit Procedure

"Standardised" mean extraction procedure:

- 1. Gaussian pre-fit
- 2. Novosibirsk fit within $\mu \pm 3\sigma$ of Gaussian ($\chi^2 < 3$)
- 3. Novosibirsk parameters for filling histogram randomly from 0 to 3σ
- 4. Mean & RMS of histogram

