15.08.2013

Quantenzustände aus dem Nichts

Quantenmechanische Überlagerungszustände durch das Vakuum erzeugt

Forscher aus Heidelberg, Hamburg und Jena haben eine neue Methode demonstriert, um äußerst empfindliche Quantenzustände herzustellen, die in Zukunft große Bedeutung für die Realisierung von neuen Quantentechnologien erlangen könnten. Im Gegensatz zur alltäglichen Erfahrung können quantenmechanische Objekte gleichzeitig in mehreren Zuständen existieren. Solche Überlagerungszustände sind jedoch derartig empfindlich, dass sie schon durch die Wechselwirkung mit dem Vakuum, was aus quantenmechnanischer Sicht nicht leer ist, zerstört werden können. Den Forschern ist es nun gelungen, die Wechselwirkung mit dem Vakuum so zu manipulieren, dass das Vakuum diese Überlagerungszustände erzeugt und sogar stabilisiert anstatt sie zu zerstören. Dies eröffnet vielseitige Zukunftsperspektiven für Quantenoptik mit neuartigen Röntgen-Lichtquellen.

Detailansicht des Experiments. Die Probe mit den zwischen spiegelnden Schichten eingebetteten Eisenatomen wird im flachen Winkel mit Röntgenlicht bestrahlt und das reflektierte Licht gemessen.

Eine der überraschendsten Vorhersagen der Quantenmechanik ist es, dass sich ein Quantenobjekt in mehreren Zuständen gleichzeitig befinden kann. Eine derartige Überlagerung von Zuständen widerspricht der Alltagserfahrung, nach der jedes Objekt stets klar definierte Eigenschaften hat. Besonders deutlich wird dies in Erwin Schrödingers berühmtem Gedankenexperiment, in dem eine Katze nach den Regeln der Quantenmechanik gleichzeitig in den Zuständen ‚tot‘ und ‚lebendig‘ sein kann. Erst eine Messung entscheidet über das Schicksal der Katze. Trotz der scheinbar absurden Konsequenzen können derartige Überlagerungen mit Quantenobjekten erzeugt werden. Sie sind essentiell für viele Anwendungen der Quantenmechanik, wie z.B. zukünftige Quantencomputer.

Leider sind solche Überlagerungszustände jedoch sehr empfindlich, sodass sie nur in einem vollständig isolierten System überleben können. Doch selbst bei bester experimenteller Realisierung gibt es noch einen quantenmechanischen Störeffekt: Während das Vakuum aus klassischer Sicht leer ist, entstehen im quantenmechanischen Vakuum permanent Teilchen, die nach kürzester Zeit wieder verschwinden. Bereits die Wechselwirkung dieser unvermeidlichen Vakuumfluktuationen mit dem Überlagerungszustand genügt oft, um ihn zu zerstören. Ein viel versprechender Ausweg ist aus theoretischer Sicht bereits seit mehr als 40 Jahren bekannt. Damals wurde vorhergesagt, dass die Wechselwirkung mit dem Vakuum derart manipuliert werden kann, dass sie stattdessen die gewünschten Überlagerungszustände erzeugt. Leider ist dies jedoch an strenge Bedingungen geknüpft, was die experimentelle Ausnutzung bisher verhindert hat.

Theoretische Überlegungen von Kilian Heeg und Jörg Evers vom MPI für Kernphysik haben nun gezeigt, wie die strikten Bedingungen umgangen werden können. Hierzu ersannen sie zwei Tricks. Zum einen wird der Überlagerungszustand in Atomkernen realisiert, die von zwei Spiegeln umgeben sind. Dadurch lässt sich die Wechselwirkung mit den Teilchen aus dem Vakuum gezielt beeinflussen. Zum anderen betrachten die beiden Theoretiker eine große Zahl von Atomkernen zwischen den Spiegeln, sodass die auftretenden Mechanismen durch kollektive Effekte verstärkt werden. Die beiden Kniffe zusammen erlauben es, robuste Überlagerungen zwischen verschiedenen Anregungszuständen der Atomkerne entstehen zu lassen.

Hans-Christian Wille und Ralf Röhlsberger vom DESY leiteten ein Experiment, mit dem die Erzeugung der Überlagerungszustände durch das Vakuum in guter Übereinstimmung mit den Vorhersagen demonstriert werden konnte. Dazu betteten sie eine große Zahl von Eisenkernen als Schicht von 2,5 Millionstel Millimetern zwischen ähnlich dünne Schichten aus Palladium ein, die als Spiegel wirken. Die so präparierten Kerne wurden dann mit Röntgenstrahlen aus der Synchrotronquelle PETRA III bei DESY in Hamburg untersucht. Mit einem unter der Leitung von Ingo Uschmann und Gerhard Paulus (Uni Jena/Helmholtz-Institut Jena) entwickelten sogenannten Röntgenpolarimeter gelang es, das Signal mit bisher unerreichter Effizienz zu detektieren. Die Experimentatoren konnten die Wechselwirkung zwischen dem Vakuum und den Atomkernen durch ein zusätzlich angelegtes schwaches Magnetfeld erfolgreich kontrollieren.

Diese Methode eröffnet vielfältige Möglichkeiten für zukünftige Experimente: Die durch das Vakuum erzeugten Überlagerungszustände können systematisch untersucht und für Anwendungen ausgenutzt werden, denn das jetzt angewendete Schema ist nicht auf den Röntgenbereich beschränkt, sondern funktioniert prinzipiell auch mit sichtbarem Licht. So ergibt sich die Chance, die bisher theoretisch vorgeschlagenen Anwendungen zu realisieren, die von neuartigen Laser-Mechanismen bis hin zur Steigerung der Effizienz von Solarzellen reichen. Möglicherweise gelingt es auch, die Eigenschaften der Atomkerne dynamisch zu verändern. Gleichzeitig zeigt das jetzt erfolgreich durchgeführte Experiment, wie sich störungsfreie und vielseitig konfigurierbare quantenoptische Modellsysteme für Anwendungen mit harter Röntgenstrahlung verwirklichen lassen, was eine interessante Zukunftsperspektive für neuartige Röntgen-Lichtquellen wie den derzeit in Hamburg im Bau befindlichen European XFEL bietet.

 

Originalveröffentlichung

Vacuum-assisted generation and control of atomic coherences at x-ray energies, K.P. Heeg, H.-C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K.S. Schulze, B. Marx, T. Kämpfer, G.G. Paulus, R. Röhlsberger, J. Evers, Phys. Rev. Lett. 111, 073601 (2013), DOI: 10.1103/PhysRevLett.111.073601

Experimentelle Messdaten (schwarz) im Vergleich zu den theoretischen Vorhersagen (rot). Das Bild zeigt die von den Atomkernen reflektierte Lichtintensität als Funktion der Lichtenergie relativ zur Resonanzenergie. Das Röntgenlicht kann die Atomkerne in verschiedene Zustände anregen, die im Experiment jeweils zu einem Maximum in der gemessenen Lichtintensität führen. Die einzelnen Zustände liegen energetisch dicht beieinander, so dass man eigentlich erwarten würde, dass sich Beiträge der verschiedenen Zustände überlappen. Im Experiment beobachtet man jedoch, dass die Intensität zwischen einzelnen Maxima komplett verschwindet (blaue Bereiche). Die theoretische Analyse zeigt, dass ein derartiges Verhalten auf die vom Vakuum erzeugten Überlagerungszustände zurückzuführen ist. Die verschiedenen Anregungsmöglichkeiten in diesen Überlagerungszustand interferieren, was zum Verschwinden der Lichtintensität führt.