URL: https://www.desy.de/aktuelles/news_suche/index_ger.html
Breadcrumb Navigation
DESY News: Fahndung nach der Chemie des Lebens
News-Suche
Meldungen vom Forschungszentrum DESY
Fahndung nach der Chemie des Lebens
Auf der Suche nach dem Ursprung des Lebens hat ein Forschungsteam mit Hilfe von DESYs Röntgenlichtquelle PETRA III einen alternativen Pfad aufgezeigt, wie das typische Muster des Erbgutmoleküls DNS entstanden sein könnte: Seine charakteristischen Basenpaare können sich demnach auf rein thermischem Weg durch Erhitzen ohne Wasser oder andere Lösungsmittel zusammenfinden. Das Team unter Leitung von Ivan Halasz vom Ruđer-Bošković-Forschungsinstitut in Zagreb und Ernest Meštrović von der Pharmafirma Xellia stellt seine Beobachtungen im Fachblatt „Chemical Communications“ vor.

Aus dem Gemisch der vier Nukleinbasen entstanden bei etwa 100 Grad Celsius A:T-Paare und bei 200 Grad Celsius G:C-Paare. Bild: Ruđer-Bošković-Institut, Ivan Halasz
Unser Erbgut ist in der DNS als lange Abfolge von vier Buchstaben gespeichert, die von den Nukleinbasen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) gebildet werden. Der genetische Code ist in zwei langen, komplementären Strängen abgelegt, die sich in der bekannten Doppelhelix-Struktur umeinanderwinden. In der DNS-Doppelhelix steht jeder Nukleinbase ihr komplementärer Partner im jeweils anderen Strang gegenüber: Adenin bildet ein Paar mit Thymin und Cytosin mit Guanin.
„In der DNS kommen nur spezifische Kombinationen vor, und wenn die Nukleinbasen isoliert werden, mögen sie überhaupt nicht mehr aneinander binden. Wieso hat die Natur also gerade diese Basenpaare ausgewählt?“, erläutert Stolar. Nach der Aufklärung der Doppelhelix-Strukur der DNS durch James Watson und Francis Crick 1953 versuchten sich zahlreiche Experimente an der Paarbildung der Nukleinbasen, allerdings mit überraschend geringem Erfolg bei präbiotisch plausiblen Bedingungen.

Mahlbecher mit Nukleinbasenpulver und Mahlkugeln. Bild: Ruđer-Bošković-Institut, Tomislav Stolar
Im Labor versuchten die Wissenschaftlerinnen und Wissenschaftler zunächst, Nukleinbasenpaare durch mechanisches Mahlen herzustellen. Dazu füllten sie je zwei Nukleinbasen als Pulver in einen Mahlbecher, in dem zwei Stahlkugeln als Mahlwerkzeuge dienten. Zum Mahlen wird der Becher dann auf kontrollierte Weise geschüttelt. Dabei entstanden A:T-Paare, die auch in früheren Experimenten anderer Forscher bereits beobachtet worden waren. Das reine Mahlen führte allerdings nicht zur Bildung von G:C-Paaren.
In einem zweiten Schritt erhitzten die Forscherinnen und Forscher die gemahlenen Cytosin- und Guanin-Pulver. „Tatsächlich konnten wir bei etwa 200 Grad Celsius die Entstehung von Cytosin-Guanin-Paaren beobachten“, berichtet Stolar. Um zu testen, ob die Basen unter thermischen Bedingungen nur so aneinander binden, wie es von der DNS bekannt ist, wiederholte das Team die Versuche mit Gemischen aus drei und vier Nukleinbasen an der Messstation P02.1 von DESYs Röntgenlichtquelle PETRA III, wo sich die detaillierte molekulare Struktur der Gemische beobachten ließ. Auf diese Weise konnte das Team verfolgen, ob und welche neuen Verbindungen sich während des Erhitzens bildeten.

„Unsere Ergebnisse zeigen eine mögliche alternative Route, wie die molekularen Erkennungsmuster entstanden sein könnten, die wir in der DNS beobachten“, ergänzt Stolar. „Die Bedingungen des Experiments sind für die junge Erde nicht unrealistisch, die eine heiße, brodelnde Hexenküche mit Vulkanen, Erdbeben, Meteoriteneinschlägen und allen möglichen weiteren Ereignissen war. Unsere Resultate eröffnen viele neue Wege für die Suche nach dem chemischen Ursprung des Lebens.“ Das Team will diese Route mit Folgeexperimenten an der Messstation P02.1 erkunden, die bereits in Planung sind.
Originalveröffentlichung:
DNA-specific selectivity in pairing of model nucleobases in the solid state; Tomislav Stolar, Stipe Lukin, Martin Etter, Maša Rajić Linarić, Krunoslav Užarević, Ernest Meštrović and Ivan Halasz; „Chemical Communications“, 2020; DOI: 10.1039/D0CC03491F