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1 Introdution1.1 ATLAS - an IntrodutionThe Large Hadron Collider (LHC) is urrently approahing ompletion at CERN, Geneva Switzerland.The aelerator is designed to ollide protons with entre-of-mass energies of up to 14 TeV. This highenergy together with the LHC's enormous luminosity will be exploited to answer some of the mostfundamental questions of partile physis and hek long-antiipated extensions of the Standard Modelof partile physis. The First ollisions are sheduled for mid 2008.In order to study the ollisions, four experiments are urrently under onstrution: ATLAS, CMS,ALICE and LHCb. ATLAS and CMS are designed as general purpose detetors, while ALICE andLHCb are experiments dediated to heavy ion physis and b-physis respetively [1℄.ATLAS (�A Toridial LHC-ApparatuS�) is loated about 100 m underground and has a length of about
40 m and a diameter of 22 m. The detetor, shown in �g 1.1, inludes [2℄:

• An inner detetor omposed of a semi-ondutor pixel and strip detetors for aurate measure-ments of the harge partile trajetories and a straw-tube detetor giving many hits per trakand independent eletron identi�ation using transition rate. A thin superonduting solenoidoil provides a 2 T magneti �eld for the inner detetor.
• A alorimeter with a inner ylinder using lead LAr tehnology followed at large radius values byan iron-sintillator tile alorimeter providing good jet energy resolution and omplete overagefor measuring the missing transverse energy.
• A high preision stand-alone muon spetrometer surrounding the alorimeter and a superon-duting air-ore torroidal magnet system whih provides the magneti �eld.1.2 ATLAS LAr CalorimeterThe ATLAS eletromagneti alorimeter (�g 1.2) is a lead-liquid argon sampling alorimeter withaordion shaped absorbers and eletrodes [3℄. Liquid argon tehnology has been hosen beauseof its intrinsi linear behaviour as funtion of the deposited energy, stability of the response andradiation tolerane. The eletromagneti alorimeter is divided into a barrel part (EMB) overing

Figure 1.1: A virtual reality image of ATLAS detetor.



2 Introdution

BARREL ENDCAP

WHEEL
OUTER

INNER
I N N E R   D E T E C T O R

B = 2 T

warm wall
Al cryostat

Al cryostat
walls

warm
(isogrid)
cold wall
Al cryostat

cold
Presampler

superconducting
solenoid coil

scintillatorID services+cables

fe
ed

th
ro

ug
h

1 m

2 m 4 m

Pb(1.5mm) Pb(1.1mm)
2.10cm/X0 2.65cm/X0

Pb(1.7mm)

Pb(2.2mm)

=0
.8

=1.375
=1.475

=1.68 =1.8

=2.5

=3.2

η

η η η η

η

ηFigure 1.2: A longitudinal view of a quadrant of the EM alorimeter.approximately |η| < 1.5 and two end-aps (EMEC) overing 1.4 < η < 3.21. The alorimeter has aylindrial symmetry with a longitudinal segmentation along the radius of the ylinder and transversesegmentation along the pseudorapidity η.In order to perform angular measurements and disriminate partiles, the alorimeter has a �ne-grainedposition-sensitive struture. This is realized by segmenting the �rst longitudinal sampling into narrowells of size ∆η × ∆φ ∼ 0.003 × 0.1 in the barrel and ∆η × ∆φ ∼ 0.003 ÷ 0.006 × 0.1 in the end-ap.

1In the following, the beam diretion de�nes the z axis and the xy plane is transverse to the beam diretion. Theazimuthal angle φ is measured around the beam axis and the polar angle θ is the angle from the beam axis; thepseudorapidity is de�ned as η = − ln[tan(θ/2)]



2 Fast simulation2.1 Parameterization of the eletromagneti shower in the ATLASalorimeterThe ATLAS detetor simulation is based on GEANT4 [4℄. GEANT4 simulates detetor e�ets onphysis events using a detailed mirosopi desription of the interations between partiles and matter.It is very aurate but the omputing time needed for suh kind of simulations at LHC energies aneasily beome prohibitive. For physis analysis a large number of simulated events may have to beprodued and a full simulation approah is not viable.In partiular the simulation of eletromagneti showers in alorimeters is expeted to aount for aonsiderable amount of the total simulation time. Using parameterizations of eletromagneti showersan speed up the simulations onsiderably, and tuned parameterisation allow to maintain the preisionof the full simulation.Currently two fast parameterisations are used in ATLAS LAr alorimeter. The �rst uses probabilitydensity funtions to desribe the shower at high energy. The seond is alled �Frozen Shower� (FS )and uses shower templates to desribe showers below 1 GeV. Furthermore, at very low energy (below
10 MeV) a �Killing� proess is used to speed up the simulation depositing all the energy of the partilein a single spot.2.2 Frozen ShowerThe FS parameterisation is based on the idea of using subshower templates aording to the kindof the beginning partile, its energy and its diretion. These templates are stored in libraries whihontain a thousand subshowers for eah energy bin and η bin. There are ten energy bins1, from 1 MeVto 1 GeV, and twenty-�ve η bins, from the barrel η values to the �rst FCAL module values2.Originally the Frozen Shower parameterisation was designed to use only one library ontaining sub-showers generated by eletrons. Currently also a library ontaining subshowers generated by photonsis being studied to improve the auray of the shower desription and the omputing time.The FS parameterisation starts when an eletron (or a photon if the photons library is used) is produedwith an energy below 1 GeV. At this time a FS template is used to desribe the shower developmentuntil all the energy is deposited. The thousand templates for eah η and energy bin are used one afterthe other when similar partiles are produed.2.3 Frozen Shower analysisThe �rst part of this work onsisted in testing the full simulation and the Frozen Shower approahwith di�erent partiles in various onditions for EMB and EMEC.The shower shapes and the energy distributions in the di�erent samplings are studied for many partileswith di�erent η and initial energy values. This analysis led to the identi�ation of some problematiplots in whih FS shows some deviation from the full simulation. These observations are olletedin the appendix A.2. However, most plots show a good agreement between FS and full simulateddata and a remarkable improvement in omputing time using FS. For instane, the plots in �g 2.1show the distributions of the total deposited energy and the omputing time for e−,π+, π0 and µ−.For these plots a thousand events were generated for eah partile through the use of the full and1The default energy bins in FS libs are 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 MeV2The default η bins in FS libs are: 0.1, 0.3, 0.5, 0.81, 0.83, 1.1, 1.3 in the barrel; 1.62, 1.78, 1.82, 1.98, 2.02, 2.08, 2.12,

2.28, 2.32, 2.4, 2.6, 2.78, 2.82, 3.15 in the EMEC and 3.2, 3.7, 4.2, 4.7 in the FCAL1
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Figure 2.1: Cpu loks and deposited energy distributions for full simulation and FS. All the partiles weregenerated with initial energy of 64 GeV and for η = 0.25. The full simulation data are plotted usinghistograms, the FS data using dots.the Frozen Shower simulation. The �Deposited_energy� plot on�rms the expeted behaviors: muonsinterat weakly with the alorimeter, π+ have a broad pro�le and eletrons with π0 have the samedistributions, as π0 is expeted to deay shortly in two photons.Subsequently the di�erenes between the di�erent Frozen Shower simulations are analysed: eventssimulated with the eletron libraries (FS1 ) and with both eletrons and phothons libraries (FS3 ) areompared. The most important quantities in this study are the energy distribution and the averagetime to elaborate an event. In order to hek the shower pro�le two further quantities are used: ∆φand ∆η. These variables are de�ned as:
∆φ = Rxy

∑
i Ei(φi − φ0)

Etot

∆η = Rxy

∑
i Ei(ηi − η0)

Etotwhere φ0 and η0 are φ and η of the initial partile and the sum is above all the hits produed in thealorimeter. In the LAr alorimeter Rxy is approximately 1.5 m.The distrubutions of these quantities for eletron at high (64 GeV) and low energy (5 GeV) are shownrespetively in �g 2.2 and in �g 2.3. In these plots the FS1 and FS3 performanes are ompared withthe full simulation, with and without killing proes. The purpose of this analysis was to analyse thelevel of agreement between full simulation and the di�erent fast simulations, taking into aount theomputing time. The following table sums up the average value of time, deposited energy and numberof hits per event:



2.3 Frozen Shower analysis 5
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Figure 2.2: Simulations of eletrons with initial energy of 64 GeV for η = 0.25 for GEANT4 and FS, with andwithout killing.
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Figure 2.3: Simulations of eletrons with initial energy of 5 GeV for η = 0.25 for GEANT4 and FS, with andwithout killing.



6 Fast simulation64 Gev time Deposited Energy number oh hitsfull 12.023 +- 0.012 10524.7 583FS1 0.674 +- 0.009 10422.1 327FS1, kill(false) 0.692 +- 0.009 10396.3 267FS3 0.507 +- 0.009 10575.2 270FS3, kill(false) 0.503 +- 0.008 10585.8 2225 Gev time Deposited Energy number of hitsfull 1.180 +- 0.005 749.6 158FS1 0.302 +- 0.005 726.7 120FS1, kill(false) 0.307 +- 0.006 724.3 88FS3 0.266 +- 0.004 748.0 115FS3, kill(false) 0.270 +- 0.004 752.1 91These data show that all the simulations have relatively similar energy, ∆η and ∆φ distributions. Ingeneral the use of the photon library improves the omputing time by roughly 25% for high energyeletrons and by 12% for low energy eletrons. It also in�uenes the mean value of the depositedenergy. With killing the average time is generally improved by few perents. It is also interesting toobserve the approximately linear relationship between time and the number of hits.



3 Optimisation of the Frozen Shower Libraries3.1 Libraries FeaturesThe Frozen Shower libraries are haraterised by the kind of the initial partile, its energy and itsdiretion. In a library a thousand templates are stored for eah energy bin and η bin. A template is aolletion of hits generated by the interation between partiles and liquid argon. Every hit is de�nedas a three dimensional point with a peuliar energy value.A template is reated from the hits distribution of a full simulated event. In the full simulated eventall hits with a spatial separation smaller than a de�ned distane, alled max radius, are merged andreplaed by a new point at the enter of energy. This proess is repeated until the smallest distaneexeeds max radius. In addition, only the hits with the highest energy values are kept to reatea template. For this purpose, the hits are sorted in energy and only those are saved whih haveombined energy exeeding 95% of the initial shower energy. The di�erent steps are shown in �g 3.1.
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Figure 3.1: An example of hits merged to reate a template. The original hits are blak, the merged hits are redand the merged and stored hits are blue.Dereasing the number of hits an speed up the simulations onsiderably, without sari�ing the energydistibution preision. Currently the default value of max radius is 5 mm1, and the typial library sizeis ∽ 50 MB.3.2 The Merging AlgorithmThe omputing time needed to generate a library with the default algorithm grows at a rate orre-sponding to the ube of the number of the merged hits. The number of merged hits is proportional tothe energy of the initial partile and of the max radius value. Therefore generating libraries with a high1The defualt Rmax = 5 mm is equals to the size of the strips in the �rst sampling expressed in η units
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Figure 3.4: Eletrons simulated with initial energy of 64 GeV for η = 0.25 using libraries with max radiusvalues from 1 mm to 44.7 mm
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Figure 3.6: Eletrons simulated with initial energy of 64 GeV for η = 0.25 using the default eletrons libraryand the new library with the 2000 MeV energy bin



4 Summary
• The FS approah was tested for the most ommon partiles with di�erent initial onditions(energy, η, EMB and EMEC. . . ).
• The improvement of the lustering algorithm speeds up the the FS libraries generation so newkind of studies are now viable.
• The luster distane analysis on�rmed the possibility to inrease the max radius in order tooptimize the merging radius (EMB and EMEC); other studies are neessary to de�ne the bestvalue.
• For the �rst time higher energy libraries were studied! Investigate higher energy libraries ouldbe an important possibility to speed up further the simulation.Further studies may inlude ombinations of high energy bin and high merging radius values suh thatsimulation time beomes redued and size is not inreased.



A AppendixA.1 Number of hits vs timemerging radius number of hits average time library size1 296.094 0.7301 17210 274.324 0.6976 7725 266.946 0.6918 51100 257.118 0.6908 28400 246.374 0.6908 15700 240.161 0.6747 121000 223.93 0.6686 101500 229.109 0.6821 8.42000 223.930 0.6822 7.410000 197.483 0.6852 4.2
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Fit parameters:
• all the points (f(x) = a + bx):

a = 0.58 ± 0.03
b = 0.0004 ± 0.0001

• only the points with number_of_hits > 240 (f1(x) = a1 + b1x):
a1 = 0.47 ± 0.04
b1 = 0.0008 ± 0.0002



14 AppendixA.2 PlotsFigure A.1: e−, E = 64 GeV, η = 0.25, full, fs1, fs1 no killing, fs3, fs3 no killing.
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A.2 Plots 15Figure A.2: Blue: µ−, E = 64 GeV, η = 0.25, full, fs1, fs3. Blak: µ−, E = 64 GeV, η = 2, full, fs1, fs3
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16 Appendix
Figure A.3: Blue: π+, E = 64 GeV, η = 0.25, full, fs1, fs3. Blak: π+, E = 64 GeV, η = 2, full, fs1, fs3
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A.2 Plots 17Figure A.4: Blue: π+, E = 5 GeV, η = 0.25, full, fs1, fs3. Blak: π+, E = 5 GeV, η = 2, full, fs1, fs3
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