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Introduction and motivation 

 

Although the Standard Model satisfactorily describes most of the observable 

phenomena in elementary particles physics, several questions, important for our 

understanding of the Universe, remain unanswered. Among them the most striking 

unsolved problem in high energy physics is the phenomenon of generations. 

The gauge forces in the Standard Model do not discriminate fermions 

relating to different generations. Corresponding particles (quarks and gluons) 

belonging to the three generations are identical in almost all respects. And with it 

we do not know the origin of generations; what does stipulate their number (three)? 

How can we explain the present structure of hierarchies of fermions’ masses and 

mixing angles? We may expect that if we could find solution of this problem, we 

shall have a chance to understand hitherto unknown fundamental laws of the 

Universe and make new great discoveries. 

Another crucial problem is the origin of baryogenesis. Standard Model 

satisfies the necessary conditions for baryogenesis, which consist in the so-called 

Sakharov criteria. Baryon-number violating process are unsuppressed at high 

temperature, CP-violating interactions are present due to complex couplings in the 

quark sector, and non-equilibrium processes can occur during phase transitions 

driven by the expansion of the Universe. However, Standard Model can not 

explain on quantitative level the observed matter-antimatter asymmetry. And so it 

is obvious that we need new CP-violating phases or new mechanisms of CP-

violation. 

There are several more nontrivial questions in the theory of elementary 

particles concerned with flavor physics. But the problems mentioned above are 

enough to underscore that we must carry out the experimental measurements and 

theoretical predictions of the parameters of the Standard Model, such as the 

elements of the Cabibbo-Kobayashi-Maskawa matrix, as accurately as possible, 

since comparing precise theoretical and experimental results gives us a chance to 

find a hint to the physics beyond the Standard Model. 

However, the computational complexity of the SM, in particular QCD, is 

such that we can not do calculations with sufficient accuracy. A possible way out is 

to give a formulation of an effective theory which approximates QCD under 

certain conditions, and possesses all necessary phenomenological properties, 

allowing to perform simple calculations. One of such effective theories is the 

Heavy Quark Effective Theory, which corresponds to QCD in the limit of infinite 

(or very large) heavy quark mass. 

 

Structure of HQET 

 



 The main idea of the heavy quarks effective theory is as follows. Let us 

consider a heavy hadron, which contains a charm or a bottom quark, interacting 

with light constituents by the exchange of soft gluons. For such system we have an 

energy scale set by the heavy quark mass mQ. The soft gluons and the spectator 

quark have energies, which are represented by the other scale, namely  Λ
QCD . 

Hence, the dynamics of such a heavy quark system can be solved as a perturbation 

in  
Λ

QCD

mQ

ffffffffffffffff
<<1. Hence, as a first approximation we can suppose, that the heavy quark 

moves with the hadron’s velocity (so-called infinite mass limit) and there are no 

dynamical degrees of freedom. With this assumption, description of the heavy 

quark system becomes significantly simpler, and deviations of the behavior of real 

system from the ideal limiting case could be taken into account by the introduction 

of correction terms, inversely proportional to the powers of the heavy quark mass, 

in expressions of the physical observables. 

 Let us give a brief description of the HQET structure and it’s applications to 

the calculation of physical processes [1]. As we are not interested in the study of 

the physics of the processes that occur at energies above mQ, we may choose a 

cutoff Λ<mQ and separate fields of the theory into two terms, corresponding to the 

Fourier modes with high frequency ω>Λ (φH) and low frequency ω<Λ (φL): 

ϕ = ϕ
L

+ ϕ
H
A 

By the construction of this theory, all low-energy physical processes are described 

in φL-fields terms. So, we can use the standard apparatus of quantum field theory 

and obtain all necessary information from correlation functions of low-frequency 

fields: 
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is the generating functional of the theory. Here  S ϕ
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  is the action, 

D is the dimension of the space-time, and JL are the sources of light fields. 

The high-frequency fields may be integrated out in the functional integral of the 

system: 
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is called the “Wilsonian effective action”. 

We must note here, that although we do not consider heavy particles in our theory, 

pair creation of heavy quarks on the virtual level could not be excluded. So, the 



effective action of the theory becomes non-local on scales  ∆xµ ~
1

Λ
fffff , since the 

description of such virtual processes in terms of Feynman diagrams of effective 

theory is impossible (we do not have the corresponding analytical expressions for 

heavy-particles propagators). But we can expand this non-local action functional in 

terms of local operators composed of light fields. This technique is called Operator 

Product Expansion, and convergence of the series is provided by the small 

parameter  
E

Λ
fffff . 

 The result can be expressed in form: 
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The effective Lagrangian presents infinite sum over local operators Qi, multiplied 

by coupling constants gi, which are called the Wilson coefficients. It is quite 

difficult to work with an infinite number of operators, and so we need to simplify 

this object. The trick of “naive dimensional analysis” can help us. Denote by  

g
i

@ A
=@ γ

i
  the mass dimension of the effective coupling constants. And it can be 

written as: 

 g i = C i M
@ γ

i ,  

where Ci are dimensionless coefficients. Because there is only one fundamental 

scale in the HQET, we can expect that Ci=O(1). This assumption is named the 

hypothesis of naturalness. Let us assume for simplicity that observables are 

dimensionless. In this case, the quantitative contribution of each operator in OPE is 

expected to scale as 
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It is clear that only few operators whose couplings have  γ
i
≤ 0  are important to 

study physical processes, and the infinite series becomes a short sum. 

 Besides the general discussion, it is instructive to give the explicit 

expression of the Lagrangian of HQET [2]. Denote the quark spinor field as Q(x), 

and define the large and small component fields hv and Hv by 
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The effective Lagrangian is defined in these terms as: 
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where  D
^
?
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µ
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γ
µ
 is orthogonal to heavy quark velocity. 

 The first term here is the infinite mass limit of the QCD-Lagrangian, and the 

second term provides corrections that correspond to the finite mass of the heavy 

quark. Since there is an inverse differential operator in the second term, we can 

deal with the non-locality. OPE gives us: 
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α
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αβ is the gluon field strength tensor. 

The physical meaning of the two new operators at order  
1

mQ

ffffffffff  is quite simple. 
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is the gauge covariant extension of the kinetic energy, provided by the off-shell 

residual motion of heavy quark, and 
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describes the interaction of the heavy quark spin with the gluon field (chromo-

magnetic hyperfine interaction). 

 If we solve the equations of motion corresponding to the full non-local 

Lagrangian: 
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Finally, expansion for the full quark field is 
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 Now, when we know explicit expression for heavy quark field, we can 

calculate matrix elements of various observables; determine the cross-sections of 

decays and scatterings etc. 

 

Experimental results and perturbative calculations 

 

 Applications of the heavy quark effective theory are to be compared with the 

experimental measurements. The analytical expressions of decay rates can be 

written in terms of the operator product expansion through several coefficients, 

which are not determined within the framework of the HQET. So, we need to 

determine them from the experiment. In this aspect the B-meson rare and inclusive 

decays are very useful tools, because they are described by the HQET and allow 

one to find the values of CKM elements  V cb

L
L
L

M
M
M, V ub

L
L
L

M
M
M  and the heavy quark masses. 



 Let us consider the explicit expression for the semileptonic B decay width 

through order  
1

mQ
3

ffffffffff [3]: 
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The electroweak correction Aew  that corresponds to the ultraviolet renormalization 

of the Fermi interaction is known: 
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The quantities  A…
pert   correspond to the perturbative corrections. We can account 

for them by carrying out calculations within the framework of the perturbative 

QCD. We will not give here the corresponding computations. The quantities  

µ
π
2 ,µ

G

2 ,ρ
D

3
 and  ρ

LS

3   denote the expectation values of the kinetic, chromo-

magnetic, Darwin and spin-orbit operators respectively. An auxiliary scale  µ   is 

introduced to demark the border between the long- and short-distance dynamics in 

the OPE. Usually it is taken as  µt 1GeV A  

The leading non-perturbative corrections arise in order  
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controlled by the matrix elements  µ
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  of the kinetic and the 

chromomagnetic dimension-five operators, respectively 
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The Darwin and the spin-orbital LS terms  ρD
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 and  ρLS
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  appear from the 

dimension-six operators: 
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The term proportional  F q   denotes the effect of generic SU(3)-singlet four-

quark operators, other than Darwin operator, of the form  b
ffff

Γb q
ffff

Γq  with the sum 

over  q = u,d,s   and  Γ   including both color and Lorentz matrices. But their 

Wilson coefficients are O α s

` a

 , and we neglect these contributions. 

In addition, it is worth to pay attention to the  H c   term. One describes a 

possible effect of the tree-level expectation values of the four-quark operators with 

the charm field. Its analytical expression is: 
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The effect is quite small due to the sizeable charm quark mass. But it could not be 

negligible totally, so, one should take it into account. Knowledge of these non-

perturbative matrix elements allows one to determine the mass of the heavy quark 

[4]: 
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Here  Λ
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  is the residual energy difference between  M H
Q

  and  mQ   surviving in the 

infinite heavy quark mass limit. 

 Let us consider at some length details of the experimental measurements of 

the non-perturbative HQE parameters. In an experiment, the moments of an 

observable are defined in the general form as [5]: 
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where  
dΓ

dV

ffffffffff  is the spectrum in the variable  V   in the  B  rest frame,  n is the order 

of moment,  µ  is the shift from the center of the distribution and  Ecut   is a lower 

cut on the energy of a light particle produced in the decay (lepton or photon). 

 Several collaborations (CLEO, DELPHI, BELLE, BABAR, CDF) carried 

out the corresponding experiments with the semileptonic and inclusive B-decays 

and determined the partial branching fraction, the second and third central and non-

central moments of the lepton energy, the hadron mass (in the semileptonic  

Bu X c lν
l  decays), the photon energy (in the inclusive decay Bu X s γ  ) for the 

different values of the cuts on the lepton or photon energy.  

Having at hand these moments, as the next step we need to process the data 

and extract from them values of the heavy quark masses and the necessary matrix 

elements. In general quark masses and coupling constants depend on the scheme. 

In the literature, one encounters several such schemes: the so-called 1S, PS, pole,  

MS
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  and the kinetic schemes, expanding in  
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m
b   and  mc  . Data is analyzed by performing fits to the underlying theory. The fits 

in the various schemes are obtained by the minimization of the  χ2  function with 



several free parameters (these parameters present the desired values, their number 

is different in different schemes) [6]: 
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  are the measured moments,  X
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kinetic scheme predictions that depend on these free parameters. The covariance 

matrix is the sum of the experimental and theoretical error matrices. The minimum 

of this function in the space of the free parameters corresponds to the physical 

quantities of interest. 

 The main difference between two types of fit schemes consists in the use or 

not of the 
1
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ffffffff expansion. If we consider  Bu X c   transition, two heavy quarks 

emerge: the bottom and the charm. One can treat the c-quark as a heavy quark. 

This allows one to compute the  D
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 meson masses as an expansion in powers of 
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Their explicit expressions are quite involved and are given in Ref. [12]. 

 An alternative approach is to avoid using the 
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corrections. Moreover, this approach allows one to eliminate the poorly known 

non-local correlators [7]. With this procedure, one has in addition to seven free 

parameters: V
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 Also, the fit schemes differ due to the definition of the quark mass. We can 

define the quark mass through the pole of the corresponding full QCD-propagator, 

through relation with the meson masses, and we can use the formalism of the 

renormalization group to normalize the quark mass at a suitable scale.  Each of 

these schemes has its own virtues and shortcomings. But this question deserves 

special consideration and we will not take up this issue in this paper (see Ref. [7-

9]). 

 All collaborations obtained similar aggregate results, and here we produce, 

as an example, the results of the BELLE collaboration in the kinetic scheme [8]: 
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The corresponding graphical example of the analysis by the BELLE collaboration 

is presented in Fig.1 (Ref. [3]). 

 
 

Lattice calculations 

 

 Another way to determine the coefficients in the heavy quark expansion is 

their numerical calculations within the technique of the lattice QCD. It is an 

important tool for the analysis of the low-energy regime of the QCD, where the 

coupling constant is big and we can not use the perturbation approach. Because the 

limitation of computational resources exists, we need to resort to several 

approximations, such as finite lattice spacing, finite total spatial size of lattice, not 

very small quark mass, etc. 

One of the most useful approximations is the quenched approximation, in 

which the vacuum polarization by gluon and the quark-antiquark pair is not 

considered. It reduces the computational complexity by several orders of 

magnitude, but with it one also introduces sources of uncontrolled uncertainties. 

The lattice counterpart of the system, that contains the heavy quark, is described by 

the corresponding discrete action, a particular form of which is [4] 
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The kernel that describes the time evolution of heavy quark is given by 
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  is the chromo-magnetic field. The parameter  n  in the evolution kernel is a 

positive integer that is necessary to stabilize unphysical momentum modes. In the 

limit of vanishing lattice spacing the discrete action reduces to the standard 

continuum action: 
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 The parameters  m
Q

, c
B   appearing in the lattice action have to be matched 

onto their continuum counterparts using perturbation theory. The matching of the 

heavy quark mass may be done through the calculation of the hadron masses. They 

can be obtained from study of the asymptotic behavior of the two-point function: 
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for sufficiently large time separation. With the lattice discrete action we can obtain 

the binding energy E
sim . The interpolating operator J  is chosen such that it shares 

the same quantum numbers with the hadron of interest. For instead: 
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The smeared operator  J
S
` a

  is used at the source to enhance the overlap with 

the ground state. It is suitable to define this operator such that the heavy quark field 

is smeared according to an exponential form  e@ a A r b

  around the light quark field 

fixed at the origin. r  is a distance from the origin, and the parameters  a  and  b  

must be measured to specify the wave function of the interesting hadron. However, 

at present, the parameter c
B  is not available with the one-loop level of accuracy, 



and we may use only the tree-level value c
B

= 1. But final predictions for the 

values of the physical observables may be given in the static limit, which does not 

require the parameter cB . 

In one of the recent analyses the quenched approximation allows one to 

obtain the following results [4, 10]: 

 

V
cb

L
L
L

M
M
M= 40.8F 0.9
` a

B10
@ 3

,

m
b
= 4.74F 0.10
` a

GeV,

Λ
fffff

= 0.680.12

+ 0.02
GeV,

λ1a@µ
π
2 B

C
b c

=@ 0.45F 0.12
` a

GeV
2
A

  

The graphical example of the lattice data is given in Fig.2 and Fig.3 (Ref. [4]). 

 

 
The current computational power has made it possible to carry out the simulations 

beyond the quenched approximation for many important quantities. 

Since dynamical fermion simulations involve many inversions of the 

fermion matrix, it is harder to simulate the light quarks at their physical mass 

values. Therefore, an extrapolation in the light quark mass from feasible quark 

masses to the physical masses is necessary (the chiral extrapolation). These 

simulations are simplified by using the staggered fermions. With them there is an 

exact U(1) chiral symmetry and the massless limit is fixed. Of course, this method 

has several shortcomings. This question is considered in details in Ref. [11].  

Within this approach following results were obtained [11]: 

strong coupling constant α s M Z

b c

= 0.1175F 0.0015, 



the strange quark mass  ms 2 GeV
` a

= 78F 10 MeV , 

the bottom quark mass  mb

fffffffff
mb

fffffffffb c

= 4.21F 0.07 GeV , 

the form factor of semileptonic kaon decay  f
+

0
` a

= 0.961F 0.008, 

the kaon B parameter  B
K

2 GeV
` a

= 0.58F 0.04, 

the form factors of semileptonic D meson decays: 

 f
+

Du π
= 0.64F 3, f

+

Du K
= 0.73F 3 A 

 

They are in reasonable agreement with the phenomenological values and 

their quantities. 

 

Summary 

 

 In conclusion, the following should be mentioned. Use of the analytical 

methods of the heavy quarks effective theory allows one to obtain the several 

important parameters of the Standard Model such as V cb

L
L
L

M
M
M, V ub

L
L
L

M
M
M, mc , mb and some of 

the hadronic matrix elements. These methods have allowed to improve the 

precision in the knowledge of several fundamental parameters in the Nature. 

 At present, a number of hadronic matrix elements are determined for the 

moment analysis of the semileptonic and radiative B-decays. These matrix 

elements can eventually be calculated on the lattice; current lattice calculations are 

very promising but not yet precise enough. 
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