
Summer Student Work: Accounting on

Grid-Computing

Walter Bender

Supervisors: Yves Kemp/Andreas Gellrich/Christoph Wissing

September 18, 2007

Abstract

The task of this work was to develop a graphical tool for accounting
the usage of the Grid at DESY.

Contents

1 Introduction to the GRID 2
1.1 How it worked basically . 2
1.2 Personal Research . 2

2 General Accounting 2

3 APEL accounting 3
3.1 Processing . 3
3.2 Publishing . 4
3.3 Extensions for APEL . 4

4 DIMT Accounting 4
4.1 Database . 5
4.2 Web-interface . 6
4.3 Implementation . 6
4.4 Reports of DIMT . 7
4.5 Analysis per User-Role . 7
4.6 Analysis per Virtual Organization 8

5 Technicalities 9
5.1 dimt . 9
5.2 mon0-updater . 9
5.3 mysql . 9

1

1 Introduction to the GRID

In the last years there was a growing need for computing and storage resources
in high energy physics. So there was the decision to build up a distributed
network for computer-resources called Grid. It is a global network of clusters
all over the world and a modern way to use computing resources. The whole
physics community can send jobs to the grid network and let them calculate
on the sites that support Grid-Computing. In the end the result gets back the
to sender. There is also the possibility to save data on the grid. This data
St accessible throw the jobs sent to the grid. All resources and the users are
organized in Virtual Organizations(VO). On the one hand there are experiments
like cms,atlas,hone,zeus etc.. But there is also the possibility to get a special
role for a Grid-User (for example to do software-installation or do Monte-Carlo-
productions with special privileges).

1.1 How it worked basically

Once the a job is edited at the User Interface, one can add a .jdl1 - file and send
it to the Grid. In dependence of your Virtual Organization your job arrives at
the Resource Broker(RB). The RB knows the status of all the sites, that might
process your job and send it to the queue of a Computing Element(CE). When a
job arrives at the CE, a Batch Server looks at the available Worker Nodes(WN)
and runs it on a WN in dependence of the owner of the job2. All look of this
work is done by the glite software-middleware.

1.2 Personal Research

For me as a summer student it was a great thing to get in contact with the grid
and build up my own jobs and let them run on the grid. Apart from this it
was possible to get a deeper understanding of Computing Elements, the Batch
System and the Worker Nodes.

2 General Accounting

Essential one of the efforts is to monitor the usage of the grid. This information is
essential for debugging and management of resources. One part is the accounting
of jobs that were executed on the grid-cluster. Each job has entities like owner,
workernode, starttime, stoptime and a lot of more. All executed jobs gets
accounted in a database. At the local database there is the possibility to account
the data per Virtual Organization(VO), per role in the grid or even per user.
This information can be used for billing the grid-usage in future times or also
be used for controlling the fair-share. (fair-share means the control which user
gets what resources in dependence of his VO. Maui is a tool to realize it).
Another thing is the representation for international competition. All sites
want to achieve high loads and less failures. There are websites that collect the
accounting data and offer possibilities to compare different clusters. Accounting
is a way to evaluate the performance of the Grid resources.

1Job Description Language
2fair-share

2

3 APEL accounting

The DESY Grid infrastructure is operated in the context of the EU-Project
EGEE3, so accounting at DESY is done via APEL4. It uses three types of log-
files. They are all located on CE. On the one hand there are the general log-files
of the Computing Elements located at /var/log/messages. They announce the
point in time when a mapping from a Grid-User-Certificate to the local Unix-
Account is made. All the detailed informations about the format and the actual
Grid-User-Certificate are stored in the Gatekeeper-Logs. At least APEL uses
the logs of PBS-Batch-System, which contains all relevant informations about
the processed job. If you don’t want to loose Information, you have to save the
log-files daily. At DESY this is done by an cronjob that saves on a Network-
File-System. The APEL Database uses three tables on its database to store all
this informations. There is one database for each CE. After processing, APEL
combines the tables to a new table one called LcgRecords before the data gets
published to the R-GMA-Service5, which is one central of EGEE.

Figure 1: APEL - scheme

3.1 Processing

Processing means the import of the LOG-Files to tables and store them in the
database. The relevant tables are EventRecords, GkRecords, MessageRecords.

3Enabling Grids for E-SciencE
4http : //goc.grid.sinica.edu.tw/gocwiki/ApelHome
5http : //www3.egee.cesga.es/gridsite/accounting/CESGA/egee view.html

3

3.2 Publishing

Publishing means to connect the tables to generate LcgRecords and publish the
data to the R-GMA-Service

3.3 Extensions for APEL

Besides APEL is a tool that is used on the most sites for accounting, there is
a lack of a graphical interface to analyze the data and a lack of data-fields like
the time when the job went into the queue or the even the exit-status of an job.
A new tool can close the gap to do local accounting in an advanced and easier
way !

4 DIMT Accounting

DIMT is an acronym for DESY Interactive Monitoring Tool. DIMT was pro-
grammed during the summer student programme. To get in contact with a
new programming language python6 has been chosen to develop the software
and root7 is used to display the data as charts and to contact the mysql8-
database. To build up an user interface I used web.py9 and cheetah10 to build
up an dynamic server site web-application. The main task of the software is
to visualize the duration of executed jobs, when it was send to the queue, how
long it has been in the queue - all in dependence of the Virtual Organization
and/or the specific User-Role. It is also possible to get information which orga-
nization/institute or even user used the DESY Grid resource how often and on
which level of CPU demand. DIMT searches throw the database interactively
and gives back the result as a table, a bitmap (pie, chart) and as a .root-file for
further analysis.

Figure 2: used packets
6http://www.python.org/
7http://root.cern.ch/
8http://www.mysql.com/
9http://webpy.org/

10http://www.cheetahtemplate.org/

4

To get the extra functionalities like additional info’s about jobs, DIMT needs
an extra database that is generated by an additional script. The script searched
through the APEL database and uses the PBS-LOGS for additional informa-
tions. It will be executed every night with a cron job.

Figure 3: working scheme

4.1 Database

The Accounting database scheme has an additional field for the Queue, ExitSta-
tus or QueueTimeEpoch etc.. The table is needed to to additional accounting
and to try out fairsharing.

RecordIdentity varchar(255)
BatchSystem varchar(10)
ExecutingSite varchar(50)
ExecutingCE varchar(50)
LocalJobID varchar(50)
LCGUserDN varchar(100)
LocalGroupID varchar(50)
LocalUserID varchar(50)
LCGUserVO varchar(50)
LocalWN varchar(50)
Queue varchar(50)
ExitStatus int(11)
ElapsedTimeSeconds int(11)
BaseCpuTimeSeconds int(11)
QueueTimeEpoch int(11)
StartTimeEpoch int(11)
StopTimeEpoch int(11)
MemoryReal int(11)
MemoryVirtual int(11)
SpecIntWN int(11)
ResourceListCPU int(11)
ResourceListWALL int(11)
InsertDate timestamp
APELEventDate date
APELEventTime time
APELMeasurementDate date
APELMeasurementTime time

Table 1: database scheme

5

4.2 Web-interface

Figure 4: the web application

4.3 Implementation

The code-volume grows by time so that there is no complete code-design, but
in general I used a code-design to separate the datamodell of the jobs from the
an to display it in charts, pies and tables.

Figure 5: code pattern

6

4.4 Reports of DIMT

4.5 Analysis per User-Role

DIMT can be used to look at the durations of jobs done at DESY. In fig.6 you
can see the duration of jobs that have been executed on all CEs of DESY. It
stacks all the different roles to the total number of jobs with the given length.
(USR stand for User, SGM for Software manager and PRD for MC-Production).
As you can see, the jobs of software managers are only about one minute, while
in general the jobs of users and producers are much longer.

Figure 6: duration of jobs within one hour

If you choose a timescale of three days, look at fig.7, you can see other inter-
esting peaks. The first one is in about one hour. Toolkits from the VOs might
kill jobs that are running one day. An other peaks is at two days. Programs
that use the CPU all the time has a limit of 2 days until they get killed by the
PBS-Batch-System. All the other jobs that do not use the CPU so much and
are still running get killed at after three days.

7

Figure 7: duration of jobs within three days

4.6 Analysis per Virtual Organization

It is also possible to do analysis per Virtual Organization. In fig. 8 you can see
the duration of jobs displayed for the main important Experiments/VO. CMS
and ZEUS generally have jobs, that are longer than a few minutes, whereas the
ops group has only really short jobs with a duration of one minute.

Figure 8: duration of jobs within three days

If you you want to see at what daytime and/or date the most jobs has been

8

send to Grid, you can print the needed cputime of all jobs in a time interval. Fig.
8 shows us that in the first half of May ATLAS needed a lot of Grid-Resources.
HONE then needed a lot of resources in the second half of May after-wards.
Analysis can also done at the level of daytime.

Figure 9: cputime of sent job in may

5 Technicalities

A short reference of the work. All the programs(dimt,mysql,cron) run as a
daemon on grid-mon0.desy.de. All software-files for updating and running the
web-interface are saved on an file server located under /root/misc.

5.1 dimt

/root/misc/accounting-mon0/dimt/bin/dimt.sh is executed on grid-mon0. A
password is needed to access the web-interface.

5.2 mon0-updater

accounting-update-db.py [ce] [DAILY] will be executed daily to update the dimt
database

5.3 mysql

MYSQL was installed by yum. there is a database Accounting with the table
Jobs specified by tab. 1. There also the possibility to run SQL-Queries at
grid-db0.desy.de/phpMyAdmin/ like

SELECT ‘LocalUserID‘ , count(‘LocalUserID‘)
FROM ‘LcgRecords‘

9

WHERE ‘StartTimeEpoch‘ > UNIX_TIMESTAMP(’2007-07-01 00:00:00’)
GROUP BY ‘LocalUserID‘

on the APEL-Database. This command counts all the jobs with a given Lo-
calUserID and a StartTime after 2007-07-01.

10

