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Abstract

As a summer student in the DESY Theory Group, I studied the
SU(2)-WZNW-model and the method of quantising it. This report
summarises what I learned regarding this. The classical SU(2)-WZNW-
model is formulated in the context of string theory, and the concept
of conformal symmetry is introduced as a requirement for any such
theory. By performing canonical quantisation, the current algebra of
the model is found to be composed of two commuting Kac-Moody
algebras. From these, we use the Sugawara construction to show that
the model must possess quantum conformal symmetry and finally, the
Hilbert space of the model is determined.
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1 Introduction

My project this summer has been to learn how, using symmetry principles,
the SU(2)-WZNW-model is quantised. The model, whose conformal invari-
ance was first shown by Witten in 1984[1], is a simple example of a conformal
field theory in a curved background, and so is relevant to the study of string
theory.

This report summarises the classical theory (sections 2-3) and details the
quantisation procedure (sections 4-5), including explicit calculations showing
the symmetry properties of the quantised theory and the structure of the
resulting Hilbert space.

2 Classical Conformal Field Theory

Before introducing the model itself, it is helpful to first understand the
motivation for studying it.

2.1 String Theory

A topic of huge current interest in theoretical particle physics is string the-
ory, which is based upon the assumption that the fundamental constituents
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of matter are not point-like but are one-dimensional objects (strings). Con-
sider a closed string propagating in a background M which is parameterised
by co-ordinates Xµ, as shown below in Figure 1.

Figure 1: The string world-sheet.

This string will sweep out a two-dimensional world-sheet Σ in space-time
which we can parameterise using the spatial and temporal co-ordinates (σ, τ).
As in particle theory, the propagation of a string is determined by extremising
its action, yielding equations of motion for Xµ (σ, τ) - the map between pa-
rameter space and space-time. For a closed string, we require these functions
to be periodic in σ:

Xµ (σ + 2π, τ) = Xµ (σ, τ) . (2.1)

The action of a point particle is proportional to the invariant length of its
world-line and so the action of the string is taken to be simply proportional to
the invariant area of its world-sheet. A convenient form of the string action
is

S [X] =
1

4πl2s

∫
Σ

d2x (Gµν (X) +Bµν (X)) ∂+X
µ∂−X

ν , (2.2)

where we have reparameterised the world-sheet in terms of light-cone co-
ordinates

x± = τ ± σ, (2.3)

∂± =
1

2
(∂τ ± ∂σ) . (2.4)
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Gµν (X) and Bµν (X) are the symmetric and anti-symmetric metric tensors
of M , and ls is the string length.

The choice of co-ordinates (x+, x−) is made here for convenience but it is
crucial to note that a physically sensible theory must give the same results
using any world-sheet parameterisation we choose. This property, which is
required also of any proposed two-dimensional quantum field theory such as
string theory, is called conformal symmetry and has very important conse-
quences. For example, conformal invariance of the quantised string action
constrains the possible forms of Gµν (X) and Bµν (X) - leading to a general-
isation of the Einstein equation.

2.2 Conformal Symmetry

Classical conformal symmetry is defined as invariance under reparameter-
isations of the light-cone co-ordinates

x+ → f (x+) ≡ x′+, (2.5)

x− → f (x−) ≡ x′−. (2.6)

Recalling that σ are periodic, the co-ordinates f (x±) must also be peri-
odic. Consider the co-ordinate transformation X (x+, x−)→ X (f (x+) , x−).
Because of the σ periodicity, the reparameterisation function must satisfy
f (x+ + 2π) = f (x+) + 2π. Therefore the set of possible reparameterised
co-ordinates are the smooth, monotonous functions f (x+) given by

f (σ) =

{
f (σ) for 0 ≤ f (σ) < 2π,

f (σ)− 2π for f (σ) ≥ 2π,
(2.7)

and similarly for f (x−). These are simply the elements of the group of
diffeomorphisms of the unit circle, Diff(S1) - the conformal symmetry group
of the closed string.

An infinitesimal conformal transformation can be expressed as

f (x+) = x+ + εη (x+) , (2.8)

where η (x+ + 2π) = η (x+). The corresponding change in Xµ (x+, x−) is

δηX
µ (x+, x−) = η (x+) ∂+X

µ (x+, x−) . (2.9)
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Using the periodicity requirement to expand η (x+) as a Fourier series

η (x+) =
∞∑

n=−∞

einx+ηn, (2.10)

we can define the generators of the Lie group

δnX
µ (x+, x−) ≡ −ieinx+∂+X

µ (x+) , (2.11)

and calculate their infinite-dimensional Lie algebra

[δn, δm] = (n−m) δn+m. (2.12)

This is the algebra of classical conformal symmetry. A field theory with
this symmetry is called a conformal field theory. In the case of quantised
theories, an analogous quantum conformal symmetry is required to ensure
the theory is independent of the co-ordinate choice. We will see in section
4.3 that the corresponding quantum algebra is the Virasoro algebra, which
differs from (2.12) by a central extension term.

3 The Classical SU(2)-WZNW-Model

The WZNW (Wess-Zumino-Novikov-Witten) model is an example of a
conformal field theory on a Lie group manifold, and so is a model of a closed
string moving in a curved background.

3.1 The SU(2) Lie Group Manifold

Suppose we choose the background M to be the 3-sphere S3. We can label
each point in M with the hyperspherical co-ordinates (ψ, θ, φ), where

x0 = cosψ,

x1 = cosφ sin θ sinψ,

x2 = sinφ sin θ sinψ,

x3 = cos θ sinψ,

(3.1)

and ψ ∈ [0, 2π], θ, φ ∈ [0, π]. The metric of this space is

ds2 ≡ Gµν (X) dxµdxν = κα′
(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

))
, (3.2)

where α′ ∝ l2s . We note here that the limit κ → ∞ corresponds to taking
the limit ls → 0 in the string action (2.2), and hence in this limit the strings
become point particles.
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Defining

~v = ψ

sin θ sinφ
sin θ cosφ

cos θ

 (3.3)

allows us to represent each point in M as a 2x2 unitary matrix

g = exp (i~v.~σ) =

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
, (3.4)

where σi are the Pauli matrices.

The elements comprising the space S3 are then clearly isomorphic to the
elements of the well-known SU(2) Lie group and so S3 is the Lie group
manifold associated with SU(2).

From now on we will be studying the WZNW model defined on this back-
ground but it should be noted that the results can be generalised to more
general Lie group manifolds.

3.2 Equations of Motion

The equations of motion can be derived from the action in the usual way[1]:

∂−
{

(∂+g) g−1
}

= 0, (3.5)

∂+

{
g−1∂−g

}
= 0. (3.6)

The general solution of these is separable in x±

g (x+, x−) = gL (x+)AgR (x−) , (3.7)

where A is a constant 2x2 matrix. To ensure 2π-periodicity of the solutions,
A must satisfy

A = NLANR, (3.8)

where
gL (x+ + 2π) = gL (x+)NL,

gR (x− − 2π) = NRg (x−) .
(3.9)

The theory exhibits two dynamic symmetries (operations which map the
set of solutions to themselves), which will be crucial when we come to quantise
it. Firstly, it has conformal symmetry - invariance under the mapping

g → gL (f+ (x+))AgR (f− (x−)) , (3.10)

as can be seen from (3.5) and (3.6).
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Secondly, it is invariant under the action of the SU(2) loop group, ŜU(2):

g → hL (x+) gh−1
R (x−) , (3.11)

where hL,R are elements of SU(2) satisfying hL,R (x+ + 2π) = hL,R (x+).

We have already encountered the generators of conformal symmetry in

section 2.2. An infinitesimal element of ŜU(2) can be written as

hL (x+) = 1 + εη (x+) , (3.12)

where we can expand η (x+):

η (x+) =
3∑
b=1

∞∑
m=−∞

ηbme
imx+τ b. (3.13)

where τa = σa

2
are half the Pauli matrices. Thus we can define the group’s

generators
δbm ≡ −ieimx+τ b, (3.14)

and their Lie algebra [
δan, δ

b
m

]
= −F abcδcn+m, (3.15)

where F abc = iεabc, and εabc is the completely antisymmetric Levi-Civita
tensor.

As was the case with conformal symmetry, the quantised SU(2)-WZNW-
model will retain a quantum loop group symmetry, whose Lie algebra differs
from (3.15) by a central extension. These two symmetries will turn out to
be intricately linked in the quantised model.

3.3 The Hamiltonian Formalism

From the equations of motion (3.5) and (3.6) we can define ‘momenta’

K (x+) ≡ (∂+g) g−1, (3.16)

K̄ (x−) ≡ g−1∂−g. (3.17)

These are not the usual canonical momenta but are useful quantities which
are momenta-like (they contain ġ terms) and are functions of a single variable.
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We can again use periodicity conditions to expand K (x+) and K̄ (x−) as
Fourier series, this time in terms of the Pauli matrices σa:

K (x+) = Ka (x+) τa, (3.18)

where

Ka (x+) =
∞∑

n=−∞

einx+Ka
n, (3.19)

and similarly for K̄ (x−).

To quantise the SU(2)-WZNW-model we will need to know the Poisson
brackets of the co-ordinates and the Fourier modes of the momenta. These
are[1]:

−i
{
Ka
n, K

b
m

}
= fabcKc

n+m + n
β

2
δabδn+m,0, (3.20)

−i
{
K̄a
n, K̄

b
m

}
= fabcK̄c

n+m + n
β

2
δabδn+m,0, (3.21)

−i {Ka
n, g (x+, x−)} = einx+τag (x+, x−) , (3.22)

−i
{
K̄a
n, g (x+, x−)

}
= einx−g (x+, x−) τa, (3.23)

{gmm̄, gm′m̄′} = 0, (3.24)

where fabc are related to the structure factors F abc defined previously, as we
shall see.

4 Quantisation of the Model

4.1 Canonical Quantisation

The first step in quantising the theory is to elevate the dynamical variables

to operators g → ĝ (x+, x−), Ka
n → ~Ĵan and K̄a

n → ˆ̄Jan, and to calculate
their commutation relations from the Poisson brackets (3.20)-(3.24) in the

standard way. Defining Ĵan ≡ 1
~K̂

a
n and ˆ̄Jan ≡ 1

~
ˆ̄Ka
n, this yields:[

Ĵna , Ĵ
m
b

]
= fabcĴ cn+m + n

κ

2
δn+m,0δ

ab, (4.1)[
ˆ̄Jna ,

ˆ̄Jmb

]
= fabc ˆ̄J cn+m + n

κ

2
δn+m,0δ

ab, (4.2)[
Ĵna , ĝ (x+, x−)

]
= einx+τaĝ (x+, x−) , (4.3)
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[
ˆ̄Jna , ĝ (x+, x−)

]
= einx− ĝ (x+, x−) τa, (4.4)

[ĝmm̄ (σ) , ĝm′m̄′ (σ
′)] = 0, (4.5)

where κ ≡ β
~ .

The operators Ĵna and ˆ̄Jna are generalisations of the creation and annihila-
tion operators for flat-space closed strings (see, for example, [4]) to curved
backgrounds. Their algebras (4.1) and (4.2), named the current algebras, are
a pair of commuting Kac-Moody algebras.

Any operator in the theory can be constructed from these three basic
constituents and hence from these commutation relations we could proceed
to calculate the algebra of all operators in the theory.

4.2 Quantum Loop Group Symmetry

The current algebras (4.1) and (4.2) bear a striking resemblance to the
Lie algebra of classical loop group symmetry (3.15), but with an additional

central extension term. Thus we identify the operators Ĵan and ˆ̄Jan as the
generators of quantum loop group symmetry. Comparing these relations also
suggests that the factors fabc = −F abc. This can be shown more formally by
using the second pair of commutators (4.3) and (4.4):

ei(m+n)x+fabcτ cĝ =
[[
Ĵam, Ĵ

b
n

]
, ĝ
]

=
[[
Ĵan, ĝ

]
, Ĵ bm

]
+
[
Ĵan,
[
Ĵ bm, ĝ

]]
= einx+

[
τaĝ, Ĵ bm

]
+ eimx+

[
Ĵan, τ

bĝ
]

= −ei(m+n)x+
[
τa, τ b

]
ĝ

= −ei(m+n)x+F abcτ cĝ.

(4.6)

Thus we can identify fabc = −iεabc.

We can use the requirement of loop group symmetry to identify a quantum
analogue to the relation

∂+g = K (x+) g. (4.7)

The naive approach would be simply to preserve the form of (4.7), letting
K (x+)→ Ĵ (x+), but as always when quantising a system, there is freedom
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to choose the ordering of a product of two operators to ensure we obtain
physically sensible results. In this case, we define the normal-ordered product

: Ĵ (x+) ĝ : ≡
∑
m<0

e−imx+ Ĵ bmτ
bĝ +

∑
m>0

e−imx+τ bĝĴ bm +
1

2

(
Ĵ b0τ

bĝ + τ bĝĴ b0

)
,

(4.8)
and the relation

−i∂+ĝ ≡
2

(κ+ h∨)
: Ĵ (x+) ĝ : , (4.9)

where h∨ is a constant ’quantum correction’.

Although it is not intuitively obvious why this is the correct form, it is
in fact covariant under the action of Ĵan and so possesses the quantum loop
group symmetry required.

Proof. We begin by calculating:[
Ĵan, : Ĵ (x+) ĝ :

]
=
∑
m<0

e−imx+fabcĴ cn+mτ
bĝ +

∑
m>0

e−imx+fabcτ bĝĴ cn+m

+
1

2
fabc

(
Ĵ bnτ

bĝ + τ bĝĴ bn

)
+ einx+ : Ĵ b (x+) τ bτaĝ :

+ einx+n
κ

2
δabτ bĝ.

The first three terms resemble the normal-ordered product : Ĵ (x+) ĝ : and
we rewrite them in terms of it to give:[

Ĵan, : Ĵ (x+) ĝ :
]

= einx+fabcτ b : Ĵ c (x+) ĝ : + einx+nfabcτ bτ cĝ

+ einx+ : Ĵ b (x+) τ bτaĝ : + einx+n
κ

2
δabτ bĝ.

Finally, we use the SU(2) algebra
[
τa, τ b

]
= −fabcτ c and the subsidiary

relation fabcτ bτ c = −1
2
fabcf bcdτ d to give:[

Ĵan, : Ĵ (x+) ĝ :
]

= einx+τa
(

: Ĵ (x+) ĝ : +
n

2

(
κ− fabcf bcdδad

)
ĝ
)
. (4.10)

Making the identification

h∨δad ≡ fabcf cbd, (4.11)

implies h∨ = 2 (since fabc = −iεabc) and gives[
Ĵan,

2

(κ+ h∨)
: Ĵ (x+) ĝ :

]
= einx+τa

(
2

(κ+ h∨)
: Ĵ (x+) ĝ : + nĝ

)
. (4.12)
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Using (4.3) we can calculate[
Ĵan,−i∂+ĝ

]
= einx+τa (n− i∂+) ĝ, (4.13)

and hence we see that[
Ĵan,−i∂+ĝ −

2

(κ+ h∨)
: Ĵ (x+) ĝ :

]
= einx+τa

(
−i∂+ĝ −

2

(κ+ h∨)
: Ĵ (x+) ĝ :

)
,

(4.14)
which vanishes given (4.9).

There also exists the analogous relation[
ˆ̄Jan,−i∂−ĝ −

2

(κ+ h∨)
: ĝ ˆ̄J (x−) :

]
= 0, (4.15)

given that

−i∂−ĝ ≡
2

(κ+ h∨)
: ĝ ˆ̄J (x−) : , (4.16)

where

: ĝ ˆ̄J (x−) : ≡
∑
m<0

e−imx− ˆ̄J bmĝτ
b +

∑
m>0

e−imx− ĝ ˆ̄J bmτ
b +

1

2

(
ˆ̄J b0 ĝτ

b + ĝ ˆ̄J b0τ
b
)
.

(4.17)

Additionally, it is simple to prove that[
ˆ̄Jan,−i∂+ĝ −

2

(κ+ h∨)
: Ĵ (x+) ĝ :

]
= 0, (4.18)

and [
Ĵan,−i∂−ĝ −

2

(κ+ h∨)
: ĝĴ (x−) :

]
= 0, (4.19)

and thus it is clear that the chosen normal orderings and quantum correction
h∨ lead to definitions of ∂+ĝ and ∂−ĝ which are covariant under the action

of the loop group symmetry generators Ĵan and ˆ̄Jan. These definitions in fact
fully define the dynamics of the quantum model.
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4.3 Quantum Conformal Symmetry: The Sugawara
Construction

One of the most remarkable features of the WZNW-model is that having
established the presence of quantum loop group symmetry, this necessitates
that the theory also possesses quantum conformal symmetry, and so is inde-
pendent of the co-ordinates used to parameterise the world-sheet. We show
this using the Sugawara construction which is based on the Virasoro opera-
tors L̂n:

L̂n ≡
1

(κ+ h∨)

∞∑
k=−∞

Ĵa−kĴ
a
k+n, n 6= 0, (4.20)

L̂0 ≡
1

(κ+ h∨)

(
Ĵa0 Ĵ

a
0 + 2

∑
k>0

Ĵa−kĴ
a
k

)
. (4.21)

In string theory, these correspond to the Fourier modes of the string’s stress-
energy tensor.

To demonstrate that these generate quantum conformal symmetry, we be-
gin by showing that [

L̂n, Ĵ
a
m

]
= −mĴam+n. (4.22)

Proof. To ensure all of our operator products are well-defined (i.e. normal-
ordered), we initially consider the related operator

χ̂n,ε ≡
∑
k

Ĵa−kĴ
a
k+nζ (kε) , (4.23)

where

ζ (x) ≡

{
1, |x| ≤ 1

0, |x| > 1
. (4.24)

Using the commutators (4.1) and (4.3) gives[
Ĵam, χ̂n,ε

]
=
∑
k

fabcĴ cm−kĴ
b
k+nζ (kε) +

∑
k

fabcĴ b−kĴ
c
k+n+mζ (kε)

+
1

2
mĴam+nκζ (mε) +

1

2
mĴam+nκζ ((n+m) ε) .

We cannot take the limit ε→ 0 as the first two terms are not normal-ordered.
Using the standard definition

: ĴanĴ
b
m : =

{
ĴanĴ

b
m, m ≥ n

Ĵ bmĴ
a
n, m < n

, (4.25)
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we can normal-order the first two terms to give[
Ĵam, χ̂n,ε

]
= fabcζ (kε)

∑
k

(
: Ĵ cm−kĴ

b
k+n : +: Ĵ b−kĴ

c
k+n+m :

)

+

 ∑
k<m−n

2

−
∑

k<−m+n
2

 fabcf bcdζ (kε) Ĵdn+m

+
1

2
mĴan+mκ (ζ (mε) + ζ ((n+m) ε)) .

Now, on taking the limit ε→ 0 (and shifting k → k−m in the second term),
the first pair of terms vanish due to the antisymmetry of fabc leaving[

Ĵam, χ̂n

]
= (κ+ h∨)mĴan+m, (4.26)

where we have used the definition of h∨ (4.11). Thus we obtain the result[
L̂n, Ĵ

a
m

]
= −mĴan+m. (4.27)

With this result we can now show that that the Virasoro operators obey[
L̂n, L̂m

]
= (n−m) L̂n+m +

Cκ
12
n
(
n2 − 1

)
δn+m,0, (4.28)

where

Cκ =
3κ

κ+ 2
. (4.29)

This Virasoro algebra is equivalent to the classical conformal symmetry al-
gebra (2.12) except for the central extension term, and is the algebra of
quantum conformal symmetry.

Proof. Using the commutator derived above, we obtain[
L̂n, χ̂m,ε

]
=
∑
k

(
kĴan−kĴ

a
k+m − (k +m) Ĵa−kĴ

a
k+n+m

)
ζ (kε) , (4.30)

where we again use τ̂m,ε until the terms are normal-ordered. Performing this
normal ordering gives[
L̂n, χ̂m,ε

]
= ζ (kε)

∑
k

(
k : Ĵan−kĴ

a
k+m : − (k +m) : Ĵa−kĴ

a
k+m+n :

)

+
κ

2
ζ (kε) δn+m,0δ

aa

 ∑
k<n−m

2

k (n− k) +
∑

k<−n+m
2

k (k +m)

 ,
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and taking the limit ε → 0 (as well as shifting k → k + n in the first term)
gives[

L̂n, χ̂m

]
=

∞∑
k=−∞

(n−m) : Ĵa−kĴ
a
k+n+m : +

3κ

2

n−1∑
k=0

k (n− k) . (4.31)

Using the definition of L̂n and the identities

n∑
k=0

k =
1

2
n (n+ 1) , (4.32)

n∑
k=0

k2 =
1

6
n (n+ 1) (2n+ 1) , (4.33)

we obtain[
L̂n, L̂m

]
= (n−m) L̂n+m +

3κ

12 (κ+ 2)
n
(
n2 − 1

)
δn+m,0. (4.34)

The appearance of the central extension terms in the symmetry algebras of
the quantised theory is related to the fact that in a quantum theory, the most
general combination of two transformations with transformation parameters
(λ, λ′) is

UλUλ′ = eiη(λ,λ′)Uλ.λ′ , (4.35)

since the introduction of an overall phase factor does affect the resulting
physics. To illustrate this, consider the expectation value of some operator
Â: 〈

Â
〉

=
〈
ψ
∣∣∣Â∣∣∣ψ〉 . (4.36)

The change in this expectation value due to some infinitesimal transformation
generated by the operator Ĵn is

δn

〈
Â
〉

=
〈
ψ
∣∣∣[Ĵn, Â]∣∣∣ψ〉 . (4.37)

If we apply two transformations, the difference in
〈
Â
〉

will depend on the

order we apply the transformations:

[δn, δm]
〈
Â
〉

=
〈
ψ
∣∣∣[[Ĵn, Ĵm] , Â]∣∣∣ψ〉 , (4.38)

but since a complex number central extension term commutes with all
〈
Â
〉

,

we see that its presence in the quantum algebra does not affect the transfor-
mation properties - it is just a generalisation of the classical algebra.
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Having established the presence of quantum conformal symmetry, it is
useful for later to calculate one final commutator:[

L̂n, ĝ
]

= einx+ (−i∂+ + ∆κn) ĝ, (4.39)

where

∆κ =
3

4 (κ+ 2)
. (4.40)

Proof. Again, we begin by considering the commutator

[χ̂n,ε, ĝ] = einx+ζ (kε)
∑
k

(
einx+ Ĵa−kτ

aĝ + e−i(k+n)x+τaĝĴak+n

)
, (4.41)

and normal order the right-hand side as in (4.8) to produce

[χ̂n,ε, ĝ] = einx+ζ (kε)

(
2: Ĵ (x+) ĝ : +

(∑
k<0

−
∑
k<−n

)
3

4
ĝ

)
, (4.42)

recalling that τaτa = 3
4
. Now, taking the limit ε→ 0 and using (4.9):

[χ̂n, ĝ] = einx+

(
−i (κ+ 2) ∂+ĝ +

3n

4
ĝ

)
. (4.43)

Finally, divide through by (κ+ 2) to obtain[
L̂n, ĝ

]
= einx+

(
−i∂+ +

3n

4 (κ+ 2)

)
ĝ. (4.44)

This shows that ĝ is a Virasoro primary field with conformal dimension
∆κ, i.e. it transforms under reparameterisations as

ĝ (x+, x−)→ (f ′ (x+))
∆κ ĝ (f (x+) , x−) . (4.45)

To summarise, we have constructed from Ĵan the Virasoro operators L̂n
which are the generators of quantum conformal symmetry. These obey the
relations [

L̂n, Ĵ
a
m

]
= −mĴam+n, (4.46)[

L̂n, L̂m

]
= (n−m) L̂n+m +

κ

4 (κ+ 2)
n
(
n2 − 1

)
δn+m,0, (4.47)[

L̂n, ĝ
]

= einx+

(
−i∂+ +

3n

4 (κ+ 2)

)
ĝ. (4.48)
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4.4 The Hamiltonian

We can also define the Virasoro operators corresponding to reparameteri-
sations of the x− co-ordinate:

ˆ̄Ln ≡
1

(κ+ hv)

∞∑
k=−∞

ˆ̄Ja−k
ˆ̄Jak+n, n 6= 0, (4.49)

ˆ̄L0 ≡
1

(κ+ hv)

(
ˆ̄Ja0

ˆ̄Ja0 + 2
∑
k>0

ˆ̄Ja−k
ˆ̄Jak

)
. (4.50)

Their commutation relations can derived in a similar way as above:[
ˆ̄Ln,

ˆ̄Jam

]
= −m ˆ̄Jam+n, (4.51)[

ˆ̄Ln,
ˆ̄Lm

]
= (n−m) ˆ̄Ln+m +

κ

4 (κ+ 2)
n
(
n2 − 1

)
δn+m,0, (4.52)[

ˆ̄Ln, ĝ
]

= einx−
(
−i∂− +

3n

4 (κ+ 2)

)
ĝ. (4.53)

If we now consider the operator Ĥ ≡ L̂0 + ˆ̄L0, we obtain the commutator[
L̂0 + ˆ̄L0, ĝ (x+, x−)

]
= − i (∂+ + ∂−) ĝ (x+, x−)

− i∂τ ĝ (σ, τ) .
(4.54)

This relation demonstrates that Ĥ generates the time-evolution of the system
and so we identify Ĥ as the Hamiltonian of the SU(2)-WZNW-model.

5 The Hilbert Space

Having established the system’s Hamiltonian, we are now in a position to
consider the Hilbert space H of the theory. Using the Virasoro algebra and
some simple physical principles, we will be able to identify the Hilbert space
and hence solve the theory.

5.1 Two Initial Requirements

To begin, we make two assumptions regarding the properties of the Hilbert
space. Firstly, it should be a unitary representation of the algebra of Ĵan and
ˆ̄Jan. For a finite transformation Ug = eiαK , this would mean that

(Ug)
† = (Ug)

−1 , (5.1)
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and hence the Lie algebra generators satisfy K† = K. In our case, this
corresponds to (

Ĵan

)†
= Ĵa−n, (5.2)

and similarly (
ˆ̄Jan

)†
= ˆ̄Ja−n, (5.3)

where we are working in the standard Pauli matrix basis a = 1, 2, 3. If we use
the basis α = +,−, 3 where σ± = σ1 ± iσ2, then the unitarity requirement
becomes (

Ĵ+
n

)†
= Ĵ−−n, (5.4)

and (
Ĵ3
n

)†
= Ĵ3

−n, (5.5)

with identical relations for the ˆ̄Jαn operators.

The motivation for the unitarity requirement is illustrated by noting that

it implies that the operators Ĵa (x+) and ˆ̄Ja (x−) are Hermitian:(
Ĵa (x+)

)†
= Ĵa (x+) , (5.6)

and (
ˆ̄Ja (x−)

)†
= ˆ̄Ja (x−) , (5.7)

as we would expect for the quantum mechanical operators corresponding to
the observables Ka (x+) and K̄a (x−).

In the α = +,−, 3 basis, the corresponding expressions are(
ˆ̄J+ (x+)

)†
= ˆ̄J− (x+) , (5.8)

and (
ˆ̄J3 (x+)

)†
= ˆ̄J3 (x+) , (5.9)

with identical expressions for ˆ̄Jα (x−).

The second constraint we impose on the Hilbert space is the familiar re-
quirement that the Hamiltonian Ĥ must be bounded from below, so that the
ground state has finite energy.
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5.2 The Hilbert Space Basis

To begin our identification of a basis for H, we require the commutator[
Ĥ, Ĵan

]
= −nĴan, (5.10)

which follows trivially from (4.22) and (4.47). Consider now |E〉, an eigen-
state of the Hamiltonian with energy E. Then it follows from (5.10) that Ĵan
is also an eigenstate of the Hamiltonian, with energy E − n:

ĤĴan |E〉 = (E − n) Ĵan |E〉 . (5.11)

Thus we identify Ĵan as raising operators for n < 0 and lowering operators for
n > 0.

Since Ĥ must be bounded from below, there must exist a ground state,
denoted by vectors |ψ0〉, which is annihilated by all lowering operators:

Ĵan |ψ0〉 = 0, for n > 0. (5.12)

Recalling (4.1), we note that[
Ĵa0 , Ĵ

b
n

]
= fabcĴ cn, (5.13)

and hence the vectors |ψ0〉 are common eigenstates of the operators Ĵan and
Ĵa0 . The operators Ĵa0 obey the SU(2) algebra and thus we take as the ground
state vectors |ψo〉 the well-known unitary representations of SU(2) ejm, where
j = 0, 1

2
, 1 . . ., m = −j, . . . , j, and

Ĵ+
0 e

j
m =

√
(j +m+ 1) (j −m)ejm+1, (5.14)

Ĵ−0 e
j
m =

√
(j −m+ 1) (j +m)ejm−1, (5.15)

Ĵ3
0e

j
m = mejm. (5.16)

From these ground states we can generate excited states using the raising
operators and so a possible generating set for H is the set of vectors of the
form ∏

r

(
Ĵ+
−r

)kr∏
s

(
Ĵ3
−s

)ls∏
t

(
Ĵ−−t

)mt
ejm. (5.17)

We denote the space with this basis Mj,κ, which is a representation of ŜU(2).
Figure 2 overleaf shows schematically the vectors of Mj,κ:
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Figure 2: Schematic representation of Mj,κ.

It may appear that we have now succeeded in identifying H but this is not
the case. Consider the vector nj ≡ Ĵ+

−1e
j
j:

‖Nj‖2 =
〈
Ĵ+
−1e

j
j|Ĵ+
−1e

j
j

〉
=
〈
ejj|Ĵ−1 Ĵ+

−1|e
j
j

〉
=
〈
ejj|
[
Ĵ−1 , Ĵ

+
−1

]
|ejj
〉

=
〈
ejj| − 2Ĵ3

0 + κ|ejj
〉

= κ− 2j.

(5.18)

Hence, in the case κ ≤ 2j, there exist vectors of zero and negative norm -
the space Mj,κ is clearly not unitary for all j. This is due to the central
extension term in the commutator (4.1).

5.3 Removing the Null Vectors

A null-vector, such as Nj above, is defined by the property

ĴanNj = 0, ∀n > 0, ∀a = 1, 2, 3, (5.19)
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where Nj 6= ejm. The null-vectors generate a subrepresentation Nj,κ within
Mj,κ, shown schematically in Figure 3, spanned by the basis∏

r

(
Ĵ+
−r

)kr∏
s

(
Ĵ3
−s

)ls∏
t

(
Ĵ−−t

)mt
Nj. (5.20)

Figure 3: Schematic representation of Nj,κ.

Hence the presence of these null vectors violates both the unitarity and the
irreducibility of Mj,κ.

Thus we define the representation

Vj,κ ≡Mj,κ/Nj,κ, (5.21)

which is irreducible.

Proof. Suppose Vj,κ is reducible and hence there exists a subrepresentation

Wj,κ ( Vj,κ such that ĴanWj,κ ⊂ Wj,κ. Denote the lowest energy states of

this by W0
j,κ ⊂Wj,κ. For n > 0, Ĵanω0 = 0 ∀ω0 ∈W0

j,κ. However, since Vj,κ

contains no zero-norm states, ω0 = 0 and thus Wj,κ = ∅.

We saw previously in (5.18) that the condition j ≤ κ
2

is necessary for
unitarity. This is also a sufficient condition for unitarity[2] and hence Vj,κ is
unitary if and only if j ≤ κ

2
. This is completely different from the familiar

representation theory of angular momentum where j is not bounded from
above.
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Recalling that for each operator Ĵan, there is a corresponding operator ˆ̄Jan,
we can write the Hilbert space H as a subspace of the direct product of two
independent spaces:

H ⊂
κ
2⊕

j,j̄=0, 1
2
...

Vj,κ ⊗Vj̄,κ. (5.22)

5.4 Periodicity Requirements

Until now, H has been constructed so that it is a unitary and irreducible
representation of the symmetry algebra. However, we have not yet introduced
the very basic periodicity constraint required of a closed string:

g (σ + 2π, τ) = g (σ, τ) . (5.23)

The quantum mechanical equivalent of this requirement is that the matrix
elements of ĝ must all be periodic in σ:

〈ψ2 |ĝ (σ + 2π, τ)|ψ1〉 = 〈ψ2 |ĝ (σ, τ)|ψ1〉 . (5.24)

Hence we must attempt to the matrix elements corresponding to all possible
states ψ1 and ψ2.

We begin by considering the elementary matrix elements〈
EJ2
M2
|ĝ (x+, x−)|EJ1

M1

〉
, (5.25)

where EJ
M = ejm ⊗ e

j̄
m̄ are the basis vectors, and the labels M = (m, m̄) and

J = (j, j̄) each denote a pair of values.

Firstly, note that for each fixed (x+, x−), the 2x2 matrix ĝ ∈ V 1
2
⊗ V 1

2
.

We can therefore use the Wigner-Eckart Theorem (see, for example, [3]) for
such tensor operators, which states that

〈
EJ2
M2
|ĝmm̄ (x+, x−)|EJ1

M1

〉
∝ C

(
j2

1
2

j1

m2 m m1

)
C

(
j̄2

1
2

j̄1

m̄2 m̄ m̄1

)
×D (J2, J1|x+, x−)

(5.26)

where the indices m, m̄ = ±1
2
. The C symbols are the familiar Clebsch-

Gordan coefficients, and D is an unknown function of J1 and J2 but not of
M1 or M2.

21



To enforce periodicity requirements, we must know the specific dependence
of D on (x+, x−). From the definition of the basis vectors,〈

EJ2
M2

∣∣∣ĝmm̄ (x+, x−) L̂0

∣∣∣EJ1
M1

〉
= ∆j1

〈
EJ2
M2
|ĝmm̄ (x+, x−)|EJ1

M1

〉
, (5.27)

where

∆j1 ≡
1

κ+ 2
j1 (j1 + 1) , (5.28)

since ejm is an eigenvector of the Casimir operator J2
0 with eigenvalue j (j + 1).

Alternatively, we can can calculate this matrix element using commutation
relation (4.39):〈

EJ2
M2

∣∣∣ĝmm̄ (x+, x−) L̂0

∣∣∣EJ1
M1

〉
= −

〈
EJ2
M2

∣∣∣[L̂0, ĝmm̄

]∣∣∣EJ1
M1

〉
+
〈
L̂0E

J2
M2
|ĝmm̄|EJ1

M1

〉
= (i∂+ + ∆j2)

〈
EJ2
M2
|ĝmm̄|EJ1

M1

〉
.

(5.29)

Comparison of (5.27) and (5.29) yields

i∂+

〈
EJ2
M2
|ĝmm̄ (x+, x−)|EJ1

M1

〉
= (∆j1 −∆j2)

〈
EJ2
M2
|ĝmm̄ (x+, x−)|EJ1

M1

〉
,

(5.30)
and so 〈

EJ2
M2
|ĝmm̄ (x+, x−)|EJ1

M1

〉
∝ ei(∆j2

−∆j1)x+ . (5.31)

Performing a similar analysis for ˆ̄L0 yields〈
EJ2
M2
|ĝmm̄ (x+, x−)|EJ1

M1

〉
= ei(∆j2

−∆j1)x+ei(∆j̄2
−∆j̄1)x−

× C
(
j2

1
2

j1

m2 m m1

)
C

(
j̄2

1
2

j̄1

m̄2 m̄ m̄1

)
×D′ (J2, J1) .

(5.32)

The Clebsch-Gordan coefficient C

(
j2

1
2

j1

m2 m m1

)
is non-zero only if j2 =

j1 ± 1
2

and m1 +m = m2, in which case ∆j1 −∆j2 = ±1
κ+2

(
j1 + 1

2

)
. Thus the

only non-zero elementary matrix elements are〈
E
J1± 1

2
M2

|ĝmm̄ (x+, x−)|EJ1
M1

〉
= e

iτ
κ+2

(j1+j̄1+1)e
iσ
κ+2

(j1−j̄1)

× C
(
j1 ± 1

2
1
2

j1

m1 +m m m1

)
C

(
j̄1 ± 1

2
1
2

j̄1

m̄1 + m̄ m̄ m̄1

)
×D′ (J1) .

(5.33)
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Having established the form of the elementary matrix elements, it is clear
that for the periodicity requirement (5.24) to hold, we must further restrict
the Hilbert space H such that j1 = j̄1. This couples the left-moving x+

modes to the right-moving x− modes on the string in a way such that ĝ (σ, τ)
is periodic.

This restriction implies that all matrix elements, not just those of the form
(5.25), have the required periodicity. The matrix elements of any excited
state can be calculated from the elementary ones using just the commutation
relations of section 4.1. This is best illustrated using a simple example:〈

EJ2
M2
|ĝ| Ĵa−nE

J1
M1

〉
= −

〈
EJ2
M2

∣∣∣[Ĵa−n, ĝ]∣∣∣EJ1
M1

〉
+

〈(
Ĵa−n

)†
EJ2
M2
|ĝ|EJ1

M1

〉
= −e−inx+τa

〈
EJ2
M2
|ĝ|EJ1

M1

〉
+
〈(
Ĵan

)
EJ2
M2
|ĝ|EJ1

M1

〉
= −e−inx+τa

〈
EJ2
M2
|ĝ|EJ1

M1

〉
,

(5.34)

since Ĵan annihilate the ground state vectors ejm. This is an example of the

‘Wigner-Eckart Theorem for ŜU(2)’.

5.5 Summary

We have seen that the Hilbert space H can be written

H ⊂
κ
2⊕

j=0, 1
2
...

Vj,κ ⊗Vj,κ, (5.35)

and that all of the matrix elements of ĝ can be calculated from〈
E
J1± 1

2
M2

|ĝmm̄ (x+, x−)|EJ1
M1

〉
= e

±iτ
κ+2

(2j1+1) × C
(
j1 ± 1

2
1
2

j1

m1 +m m m1

)
× C

(
j̄1 ± 1

2
1
2

j̄1

m̄1 + m̄ m̄ m̄1

)
×D± (j1) .

(5.36)

To solve the theory, all we now require is the explicit form of the function
D± (j1). Now that we have enforced all symmetry and periodicity require-
ments on the model, we can work with the results obtained so far to calculate
these functions.
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The only commutator arising from canonical quantisation that we have yet
to use is

[ĝ (σ) , ĝ (σ′)] = 0. (5.37)

Although I did not have time to study the details of the calculation during the
summer student program, it is possible to use the the previous result (5.36)
along with (4.9) and (5.37) to obtain a differential equation for D± (j1), which
has a solution in terms of hypergeometric functions. This allows us to write
the explicit form of any of the matrix elements in the Hilbert space, and so
completes our study of it.

6 Conclusion

This report has detailed how the classical SU(2)-WZNW-model is quan-
tised by requiring the resulting theory to exhibit loop group symmetry, con-
formal symmetry and periodicity. Following canonical quantisation, the pres-
ence of the symmetries was explicitly shown - in particular we learned that
due to the presence of quantum loop group symmetry, the theory must also
exhibit conformal invariance. By applying some simple, physically-sensible
constraints, the Hilbert space of the theory was then determined.

Although the motivation for studying it was mainly due to its applications
in string theory, this specific WZNW-model is clearly an unrealistic theory
for our universe - it is a theory of a three dimensional space-time for a
start! It should also be noted that we have restricted our study to the
closed bosonic string and so the SU(2)-WZNW-model cannot be a theory of
fermions. However, it has proved a very useful introduction to the general
WZNW-model, which can be defined over various Lie group manifolds. The
most physically interesting ones are naturally those corresponding to four or
more space-time dimensions.

As a final remark, the WZNW-model provides no prediction at all of how
the space-time background arises (as we would expect any fundamental the-
ory such as string theory to do), but instead this information must be inserted
initially by hand.
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