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Ultra short pulses (the order of a few fs) pulses allow time-resolved studies at the 
timescale of atom movement. These observations had never been available  for a few 
years in the optical range. At FLASH these measurements are possible even in the soft 
X-Ray range, thanks to the effort of various scientists, working in different areas. One 
of these areas is the measurement of the pulselength of the optical laser used for 
some of the pump probe experiments carried out at FLASH.   
 
During my stay here at DESY I worked most of the time at FLASH’s laser hutch in the 
experimental area. I spent my time there setting up an autocorrelator that was 
supposed to be broken down, since there was no real signal coming out of it.  After 
reading the manual, I could get a general understanding of what  an autocorrelation 
function (ACF) is  and a good understanding of the  internal setup of this device. In 
addition I could get a very good ACF is from this machine. The next step was to design 
a remote control so one could use this machine without being inside  the laser hutch. 
It has been a rather complicated thing because of the little troubles that arise before 
even being able to communicate with this device. The people that sold this device to 
DESY did not help us, and their manual has enormous omissions when explaining how 
to communicate with the autocorrelator via a PC. By a trial/error procedure I was 
able to communicate with this device and afterwards I started to write the real 
program that controlled this machine. I wrote it in LabView as it is standard in the 
group I was working in. This was a very educating time, as  I was  completely new to 
this programming environment.  Finally we made some improved measurements using 
the program I made in LabView, but unfortunately it seems that either this 
autocorrelator is no reliable for such precise measurements ( below tenths of 
femtoseconds), because its measurements vary in the order of 10-20 fs even with the 
same conditions. 
 
 
Why an Autocorrelator? 
 
In the measurement of ultra short laser pulses (lengths in the order of femtoseconds) 
the usual electronics   become too slow to make any real time measurement. So the 
experimentalists have to come up with a way to measure such kind of laser pulses. 
One of the most popular ideas so far is the use of an autocorrelator, using short light 
pulses to measure short  laser pulses.  This is not just obstinacy, since the usual time 
response of the electronics, even in optical arrangements such as photodiodes, is of 
the order of  20 picoseconds 
 
The SHG crystal is used in this field because it is a nonresonant process of electronic 
origin, so the nonlinear response from the  crystal is  fast enough  to measure  pulses 



of  few times 10-15s, let’s remember that 10-15s is the Bohr’s  period of a valence  
electron. 
 
The design for the autocorrelator, regardless of the  rather peculiar name,is quiet 
simple. It consists of a Michelson interferometer combined with a second harmonic 
generator (SHG) crystal in the place where the usual detector should go. 

 
 

 
 
Figure 1 
 
IM – Input Mirror                         FM –  Focus Mirror 
IA – Input Aperture                      C -   SHG-Crystal 
CW- Control Window                    A -  Aperture 
BS  - Beam Splitter                      Fi  - Filter 
SH  - Shutter                               Det  -  Detector 



 
The displacement of the scanning retro reflector is measured, and  along with the 
settings for the scan range and the intensity of the light emitted by the SHG crystal,  
they are fed to the machine electronics to calculate the autocorrelation function. 
 
The autocorrelation function, the measuring conditions and the calculated parameters 
(such as the full width at half maximum FHWM) can be retrieved by a PC. 
Nevertheless correct alignment can online be made at the optical unit’s box.  This is 
essential to get a  good signal out of the autocorrelator, since a trial error procedure 
varying the angle of the  crystal ( it varies the  optical axis’s orientation), the beam 
distance and the focus distance is the only way of maximizing the signal strength. As  
a side product of this knowledge acquiring process  I made a “Checklist” for the 
future users of this device, in order  to make it easier and faster for them to  use the 
autocorrelator. 
 
 
What does an autocorrelation function measures? 
 

The term autocorrelation is used when doing a cross correlation of a signal with itself. 
The cross-correlation function between two arbitrary functions f and g is defined as 
follows: 

      ,                             (1) 
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where the integral is over the appropriate values of t, and f* stands for the complex 
conjugate of f. 

The cross-correlation is similar in nature to the convolution of two functions. Whereas 
convolution involves reversing a signal, then shifting it and multiplying by another 
signal, correlation only involves shifting it and multiplying (no reversing). 

In an autocorrelation, since it is the cross-correlation of a signal with itself, there will 
always be a peak at a lag of zero. 

For example, consider two real valued functions f and g that differ only by a shift 
along the x-axis. One can calculate the cross-correlation to figure out how much g 
must be shifted along the x-axis to make it identical to f. The formula essentially 
slides the g function along the x-axis, calculating the integral for each possible 
amount of sliding. When the functions match, the value of the cross-correlation is 
maximized. The reason for this is that when positive peaks are aligned, they 
contribute to making the integral larger. Even , when negative peaks (negative areas) 
align, they also make a positive contribution to the integral because the product of 
two negative numbers is positive. 

http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Autocorrelation


With complex valued functions f and g, taking the conjugate of f ensures that aligned 
lumps (or aligned troughs) with imaginary components will contribute positively to the 
integral. 

At the crystal the two beams interfere producing the second harmonic ( this is why it 
is necessary the SHG  crystal), but  due  to the different paths this procedure will vary 
its intensity. The real electric field on the detector, is the resulting interference 
between E1 and E2 this is 
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And the intensity at this point is given by the electric field squared averaged over one 
light period T 
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 The actual signal  recorded at the output of the interferometer is the intensity, Ĩ, 

averaged over the response time τres  of the scan. In the case of ultrashort pulses τres  

is several orders of magnitude bigger than τp ( the pulse duration) and what is being  
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measured is the time integral                       . 
 

To a complex electric field E(t) corresponds an intensity autocorrelation function 
defined by:  
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The two parallel beams with a variable delay are generated, then focused into the  
second-harmonic-generation crystal. From (3) Only the beam propagating on the 
optical axis, proportional to the cross-product E(t)E(t − τ), is retained. This signal is 
then recorded by the  detector, which measures 



dttItIdttEtEIs ∫∫
∞

∞−

∞

∞−

−=−= )()()()()( 2 τττ
                          (5) 

IA(τ) is exactly the intensity autocorrelation given by (4) multiplied by a 
proportionality factor  in which we are not interested  for our measurements since the 
amplitude of a pulse  doesn’t change its FWHM.  

     The intensity autocorrelation width of a pulse is related to the intensity width. In  
our measurements a Gaussian time profile was assumed so , the autocorrelation width 
is          longer than the width of the intensity.  This measurement can be made in the 
controls unit of the autocorrelator using cursors to measure b, B and H (see figure 2). 
Due to the automatic scan control the complete width B is defined by the actually 
selected scan range. Therefore the autocorrelation FWHM is calculated as: 

B
ScanrangebFWHM ×

=                                                                                       (6) 

To get the real pulse duration, as stated above, one has to correct the ACF width with 
a form factor depending on the pulse shape.   

 

 

 

 

 

 

 

 

Figure 2 

Since I was working on the remote controls for this machine and to get a more 
reproducible measurement, I managed to save the ACF to a file and then fit it 
assuming a Gaussian profile with  Origin 7.5 . The laser we used for these trial 
measurements has the following  expected characteristics (each pulse): 

 

http://en.wikipedia.org/wiki/Gaussian_function


Pulse energy  ~  1 nJ 

Pulse time length  ~  70 fs FWHM 

Pulse spectralwidth  ~  20 nm FWHM  
 

      Central wavelength   = 800 nm 
       
       Repetition rate= 108MHz 

 
Due  to  the optical crystal (pockels cell) the spectralwidth as well as the central 
wavelength have a variation of 5 nm. 
 

Results 
 
With aid of the Origin, I could fit the ACF to a Gaussian and  assuming that the pulse 
was a   Gaussian  of the form 
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where A is the  amplitude, x0 is where the pulse is centered and σ is the standard 
deviation. The relationship between FWHM and σ is : 
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 Since this is only the ACF FWHM (the intensity autocorrelation) in arbitrary units, we 
still need to scale it then divide by 2  to get the pulse time- length . 
 
In short, if we call τ the pulse length we have: 
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With this information I got the following graph for the intensity ACF: 
 
 
   
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 
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Using  the   fitting made  by Origin and  applying  (9), I calculated the following pulse 
duration for  this laser. 
 
Pulse length ( “broad”  laser pulse) = 343.3 +  1.0 fs 

       
Afterwards we repeated the measurement   without some of the optics that 
“elongated” the leaser pulse, this way we used a more “pure” laser pulse which was 
indeed much shorter than the first one ( see figure 4). 
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Figure 4 
 
 This time the laser pulse’s time length was: 
 
 
Pulse length (“narrow” laser pulse) = 63.2 +  0.3 fs  
 
As it can be seen from the graphs the assumption of the  pulse’s shape has been quite  
good. It would have been nice to get some other  data or  make a statistical study of 
the measured pulse length but the time  at the laser  hutch was limited,  so these 
other improvements should  be made in the future. 
 
In this two results  I  am  writing the fitting uncertainty, although the  systematic 
error  reported  by the autocorrelator’s manufacturer is  of 1 fs  in this Scanrange. 
 In the last measurements we saved many ACF functions to a file, which provided me  
with sufficient data to make a statistical analysis of the reported laser pulse duration. 
And I obtained the following results: 
 
Pulse length  (rms):  63.35 fs 
Standard deviation:   0.49  fs 
Averaged pulse length: 63.38   fs 
 
 



Anyhow, the systematical error of 1 fs  so we can be  very confident that this results 
reflect the actual pulse length of the  laser. 
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