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Abstract

Neutrino oscillations obviously lead to lepton family number violation. In the
case of li → ljγ, on which we focus in this work, this contribution is small.
But if the theory is supersymmetric and the seesaw mechanism is responsible for
generating the neutrino masses, there are additional contributions exceeding the
previous ones by orders of magnitude. Esp. the BR(µ → eγ) has been measured
well and is already constraining this scenario, but it is of course possible that
just this transition is suppressed somehow. So the goal of this work is to figure
out a lower bound of the BR(µ → eγ) given BR(τ → µγ) and BR(τ → eγ) in
complete generality supposing only that no miraculous cancellations take place.
Thus one can make predictions for the other BR if two BRs have been measured
and we get a tool to test the scenario.
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Figure 1: Feynman diagrams contributing to li → ljγ. The photon-line can be inserted
at each charged line. (a) The transition on the left hand side originates from the
neutrino-mixing. (b) In the right graph χ̃A denotes the neutralinos and charginos and
L̃i the lefthanded sleptons.

1 Introduction

While in the pure Standard Model the lepton family is (aside from tiny anomaly effects)
a conserved quantity, the measured neutrino oscillations already show that it is not
(look at fig. 1(a)). If we calculate the BR(li → ljγ)in an effective low energy theory
adding only a left handed neutrino mass term to the Lagrangian of the Standard Model,

we get a violation suppressed by
(

neutrino mass
cut-off mass

)2
, which yields e.g. to BR(µ → eγ)<

10−50. This is still far from the present experimental bounds.
On the other hand it is clear that this effective theory has to be extended for higher

energies, introducing new degrees of freedom and potentially new sources of lepton
flavour violation. Thus there is effort in experiments improving the bounds in this
sector. The improvements of the experiments are collected in fig. 2.

One of the currently most favored extensions to include the neutrino masses to
the Standard Model is the so called seesaw mechanism, because it not only provides
neutrino masses and mixings, but is also able to explain the smallness of the masses.
Additionally it is a very natural expansion, since the Lagrangian contains all possible
renormalizable terms with the new degrees of freedom of the right handed neutrinos,
i.e. the kinetic term, the Yukawa coupling as well as a majorana mass term.

Unfortunately the so called hierarchy problem, i.e. the dependence of the Higgs
mass on the mass of the heaviest particle in the theory, becomes acute: The seesaw
model just predicts such a particle, namely the righthanded neutrino, what makes it
difficult to explain, why the Higgs mass is so small. Another problem to the Standard
Model is coming from astronomy: There has to be some dark matter, which does not
originate from any of the known particles. Both flaws are solved in the SUSY, and
SUSY furthermore predicts the unification of gauge couplings and seems to make the
inclusion of gravity into the theory more feasible. All in all there are good reasons to
assume that SUSY exists. The most conservative assumption for a SUSY model is the
MSSM, which does not allow for neutrino masses. Fortunately it doesn’t spoil any of
the benefits of SUSY to combine it with the seesaw, so the theory MSSM + seesaw is
viable and it will be the framework of this work.

To be honest there is a further assumption underlying this work. If SUSY was
broken in an arbitrary way, this would imply flavour mixing and CP violation of an
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Figure 2: Upper bounds for lepton family violation [1]

BR bound
µ → eγ 1.2 10−11

τ → µγ 6.8 10−8

τ → eγ 1.1 10−7

Figure 3: cf. [3]

order already seriously restricted by experiment. So it is expected that the SUSY
breaking mechanism is flavour-blind, i.e. all of the squark and slepton squared mass
matrices are proportional to the unit matrix, the trilinear couplings are proportional
to the corresponding Yukawa couplings and all of the soft breaking terms are real in a
certain basis (see e.g.[2]). Of course all of these restrictions hold only at the mass scale
MX, where SUSY breaking is imposed, and are altered by the renormalization group
equations (RG). In the next chapter we will clarify all this in a more formal way.

Now we are ready to jump into the topic. The main idea is the following:
Because of SUSY there are also the partners of the leptons called sleptons. They

can induce flavour violation via fig. 1(b) analogue to 1(a). On the one hand the
neutrino mixing amplitude is proportional to Yν

TM−1Yν, where Yν is the the neutrino
Yukawa coupling and M is the majorana mass matrix, which can be chosen diagonal
(cf. eq. (6)). Because we know that the mixing takes place between all families there are
at least two different off-diagonal non-vanishing entries in Yν

TM−1Yν. The slepton
mixing instead is proportional to m2

L
, which is constrained to be diagonal at MX, but

gets off-diagonal terms due to the RGs (cf. chapter 3) (t denotes the logarithm of
different mass scales):

d(m2

L
)ij

dt
∝

1

16π2

(

Yν
†Yν

)

ij
i 6= j (1)

Without miraculous cancellations we expect that also at least two entries of Yν
†Yν are

non vanishing.
This flavour violating process is of course not suppressed by the smallness of the

neutrino masses, so the experimental bounds are already interesting. As you can see
in fig. 3 the bound on BR(µ → eγ) is much more restricting than on BR(τ → µγ) and
BR(τ → eγ). So the most conservative assumption to avoid these restrictions is to
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have
(

Yν
†Yν(MX)

)

12
=

(

Yν
†Yν(MX)

)

21
≈ 0 (2)

Of course there is no known reason for that. But if there is a reason, then at the MX

scale, where new physics enters.
The majorana scale M naturally should be much larger than the electroweak scale

but below MX. Because loops containing the righthanded neutrinos are suppressed
below M , the parts of the RGs prop. to M and Yν contribute only between M and
MX. In this area the following RG applies (cf. chapter 3):

d
(

Yν
†Yν

)

ij

dt
∝

(

Yν
†Yν

)2

ij
i 6= j (3)

As you can see from the latter formula together with eq. (2) as a limiting case, we
expect for every scale below MX an inequality like

(

Yν
†Yν

)

12
> const.

(

Yν
†Yν

)

13

(

Yν
†Yν

)

32
(4)

With eq. (1) this can be written in terms of branching ratios:

BR(µ → eγ) > const. BR(τ → eγ)BR(τ → µγ) (5)

Where the constant is to be estimated in this paper.

2 Choice of the basis, MI

Before we start lets first have a look to the superpotential in the SUSY + seesaw
theory:

W = Wnon−leptonic − ec
R

T
i YeijLj · Hd −

1

2
νc

R
T
i Mijν

c
Rj + νc

R
T
i YνijLj · Hu (6)

The matrix Ye is arbitrary, but can be taken diagonal with positive, real entries if one
chooses the appropriate basis of eR and L. M is the majorana mass matrix of order
M . Because it has to be symmetric, it can also be taken for diagonal in a fixed basis
of νR.

As a little supplement to the introduction lets first take this basis at the majorana
scale and write down the effective superpotential, where the νR are integrated out:

Weff = Wnon−leptonic − ec
R

TYeL · Hd +
1

2
(YνL · Hu)

T M−1 (YνL · Hu) (7)

Because M will not run below the majorana scale any more (cf. chapter 3), this relation
is right also at low energies.

If we use this basis instead at MX the only non diagonal matrices in the flavour
sector are Yν and the corresponding trilinears Aν . This will be our starting point for
the running of all of the parameters.
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At low energies we will make use of the so called mass insertion approximation [4].
The basis is here chosen such that the charged lepton propagators are flavour diagonal
and the gauge couplings too. Then the slepton mass matrices m2 and the trilinear
terms A can’t be diagonal too, and the flavour mixing can be expressed in a series of
insertions of these. Just in order to clear the notation a part of the SUSY soft breaking
Lagrangian follows:

−Lsoft =
(

m2

L

)

ij
L̄iLj +

(

m2

e

)

ij
ēRieRj +

(

Aeije
c
RiH1Lj + h.c.

)

+ etc. (8)

3 One loop RG-evolution

The goal is of course to have a prediction at low energies, i.e. at the electroweak scale
and below. The one-loop RGs are e.g. given in the appendix of [5]. Because we are
engaged in lepton flavour mixing, only the RGs, which drive off-diagonal terms are
of interest. Those (namely Yν, Aν) contribute only between MX and M . In the
leading-log approximation we find for the parameters of low energy:

(Ye)ij ≃
−1

16π2
Ye(Yν

+Yν)ij log
MX

M
(

m2

L

)

ij
≃

−1

8π2
(m2

L
+ m2

ν + m2
Hu

+ A2
ν)(Yν

+Yν)ij log
MX

M
(

m2

e

)

ij
≃ 0

(Ae)ij ≃
−1

16π2
(Aν + Ae)Ye(Yν

+Yν)ij log
MX

M
(9)

where i 6= j, Aν = AνYν , Ae = AeYe and all parameters on the right hand sides are
meant to be at the MX scale, whereas on the left hand side they’re meant to be at low
energies. The off-diagonal part of Ye leads to a redefinition of the basis, corresponding
to additional off-diagonal terms in the soft terms. But the effect is small esp. for the
case i, j = 1, 2, where our study is most susceptible.

Ae is suppressed by the lepton mass, but because a chirality flip is necessary to emit
a on-shell photon anyway, it could also be relevant. Nevertheless we will not consider
this case further in this work.

In principle the running of Aν is just as relevant as the running of Yν for the mixing
within the off-diagonal entries. But as the RGs have the same form and sign we will
use only the RG of Yν for the sake of simplicity.

Yν
+Yν ≃

(

const.Yν
+Yν +

−3

8π2
(Yν

+Yν)
2
)

log
MX

M
(10)

4 BR(µ → eγ) in the one MI approximation under

the most conservative assumption

As we have already explained in the introduction, the measurement of BR(µ → eγ) is
most restricting. So in order to get this BR minimal we make the most conservative
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assumption for Yν
+Yν , namely eq. (2) as a limiting case. We will see soon, that this

leads to the desired small BR(µ → eγ).
Due to the RG running a 21-term and an analogue 12-term is induced at M (cf.

eq. (10)):

(

Yν
+Yν

)

21
≃

−3

8π2
(Yν

+Yν)23(Yν
+Yν)31 log

MX

M
(11)

Inserting this into eq. (9) and adding a factor 1
2
, because the differential RG for m2

L
is

now linear in the logarithm, we get:

(

m2

L

)

21
≃

3

2(8π2)2
(m2

L
+ m2

ν + m2
Hu

+ A2
ν)(Yν

+Yν)23(Yν
+Yν)31

(

log
MX

M

)2

(12)

This is already of order 1
(16π2)2

and thus comparable with a two loop calculation. We
will show in chapter 5, that the two loop correction doesn’t dominate. The 31- and 32
entry remain unchanged in leading order.

In the MI language the BR(li → ljγ) is a result of a transition like in fig. 1(b). It
is given by the approximate expression

BR(li → ljγ) ∼
α3

G2
F

|m2

Lij|
2

m8
S

tan2β BR(li → ljνiν̄j) (13)

where α is the electromagnetic fine-structure constant, GF is the Fermi coupling con-
stant, mS is a typical SUSY scale and tanβ is the ratio of the VEVs of Hu and Hd.
This formula as well as the longish exact one are referred to in the appendix.

Putting together eqs. (9), (12) and the latter one, we can substitute the Yν . As-
suming that all soft masses are about mS and remembering that we had considered a
limiting case, the desired result is:

BR(µ → eγ) >∼
9

64

m4
SG2

F

α3 tan2β

BR(τ → µγ)BR(τ → eγ)

BR(τ→µντ ν̄µ)BR(τ→eντ ν̄e)
(14)

For future convenience lets call this factor C = 9
64

= 0.14. It should be noticed that
the BR is independent of the mass scales MX and M .

Putting in some numbers, e.g. mS = 250 GeV and tanβ = 3 this reduces to
BR(µ → eγ) >∼ 6 · 105 BR(τ → µγ) BR(τ → eγ). Comparing this with fig. 3 this
result together with the experimental bound on BR(µ → eγ) would forbid that both
BR(τ → µγ) and BR(τ → eγ) are just at the corner.

If we want to use the correct formula (cf. the appendix) we have to insert some
more sophisticated numbers, because there differences of soft masses appear in the
denominator. You can look them up in fig. 4.

Trying now to solve this one MI approximation in one loop leading log approxima-
tion one gets a quadratic polynomial in tanβ. Because the factor of the quadratic term
is about 2 orders of magnitude bigger than the others, we neglect them. The result is
exactly of the form of eq. (13), but with an overall factor of ≈ 0.8. We are again able
to easily substitute the Yν and get C = 0.14/0.8 = 0.18, a slightly different result.
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Figure 4: Choice of the values in the correct formulae of the one MI
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Figure 5: Transition µ → eγ via two mass insertions

5 Corrections from 2 MI and two loop RGs

The L̃2 → L̃1 vertex is in our study only emerging from the RGs. So one could ask,
if a two mass insertion (see fig. 5) leads to a comparable ore even much bigger BR.
The formula for the 2MI you can also find following the explanations in the appendix.
Apart from the even longer expressions the procedure is the same, but it yields to:

BR(µ → eγ) ≈ 0.16
α3

G2
F

|m2

L23m
2

L31|
2

m12
S

tan2β (15)

Or in other words, using again eqs. (9), (12) we can again bring it in the form of
eq. (13):

BR(µ → eγ) ≈ 0.16
4(m2

L
+ m2

ν + m2
Hu

+ A2
ν)

2

9m4
S

α3

G2
F

|m2

L21|
2

m8
S

tan2β (16)

Inserting that all masses are about mS and using the 1 MI approximation for the other
BRs we get C2MI ≈ 0.14 · 0.16 · 64

9
/0.82 = 0.25. This is of the same order than in the 1

MI case.
The last thing we should check, is if the effect due to the second order RG of (m2

L
)21

is comparable to the first order RG inserted the first order RG of Yν. Rules to get the
second order RGs for our SUSY + seesaw case can be found in [7]. Here we give only
the part driving a nonzero 21 entry:

d(m2

L
)

dt
= 1.order +

1

(16π2)2
×

[

− (Yν
+Yν)

2(8m2

L
+ 8m2

ν + 8m2
Hu

+ 16A2
ν) + (17)

+terms ∝ g’s + something ·Yν
+Yν + diagonal terms

]

This can be compared more easily with eq. (12) in the form

(

m2

L

)

21,2 .order
=

4

2(8π2)2
(m2

L
+ m2

ν + m2
Hu

+ 2A2
ν)(Yν

+Yν)23(Yν
+Yν)31 log

MX

M

≈
5

3

(

log
MX

M

)−1
(

m2

L

)

21,1 .order
(18)
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what is also a remarkable result and cannot be neglected if M is not much smaller than
MX.

Appendix

The BR(li → ljγ) has been studied in the MI approximation in generality in [6]. In
order to clarify our calculation, we will point on the used formulas:

• In chapter 5 of [6] there is our eq. (13).

• There is also the correct formula

BR(li → ljγ) =
48π3α

G2
F

|Aij
L |

2BR(li → ljνiν̄j) (19)

We consider only AL, because the flavour violation inside the loop takes in our
considerations only place between lefthanded sfermions and so the chirality flip
has to be in the external legs. Thus it has to be at the incoming external leg,
because otherwise the amplitude would be smaller by the ratio of the masses.

• To get the 1MI we inserted in the formula above
(

Aij
L

)

SU (2 )
and

(

Aij
L

)

U (1 )
from

chapter 6.1, where ∆LL corresponds to m2

L
.

• For the 2MI instead the formulas are given in chapter 6.4. Here the relevant ones
are (A21

L2)SU (2 ) and (A21
L2)U (1 )
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