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Abstract

During the Summer Student Program I worked in the String Theory Group under the supervision

of Yuji Okawa. For the first weeks of my stay I learned some basic concepts and methods of string

theory, such as conformal invariance, operator product expansions, the Virasoro algebra and vertex

operators. Then I went on to work on the specific problem of the rolling tachyon, in the framework of

string field theory. The report is divided in two main sections. The first one is a short introduction to

string field theory, a relatively intuitive formulation of string theory. The second one concentrates on

the solution of the equation of motion of the rolling tachyon and the understanding of its behaviour,

starting with a review of previous work on the subject and then outlining my own results. At the

end I give some conclusions and some ideas on which way could be taken in the future to study this

problem further.



1 Heuristic introduction to String Field Theory

Even though the formal description of string theory is very complicated, its conceptual understand-

ing can be easily carried out by using the concepts of fields and excitation modes of a string, in a

formulation that is called string field theory [1].

In particle mechanics, one starts with the description of a point particle that has a definite trajec-

tory in D space-time dimensions, through a D-vector Xµ(τ) which depends on a parameter τ such as

the proper time of the particle or its time coordinate in a fixed reference frame. Then one goes on to

describe particles by fields φ(xµ), Aν(xµ), Ψρ(xµ), etc. which take different values at every spacetime

point. Note here that the parameter τ has disappeared since there no longer exists a trajectory which

the particles follow.

In order to formulate string theory, one can start with the description of a one dimensional classical

object. This will also be represented by a D-vector Xµ(τ, σ), which will depend on a parameter τ

analog to that of the point particle, but also on σ, which parametrizes the string. This could be

regarded as an infinite number of point particles (one for each value of σ, with 0 ≤ σ ≤ L), with some

constraints that keep them together, and one could then promote each of these to a field φ(xµ(σ))

to get a description of the string as an infinite number of fields. The τ dependence of the fields has

again disappeared, but we still have the parameter σ, which could still represent, in a certain sense,

the longitudinal direction on the string. Now, just as a classical string can be described in the Fourier

space in terms of its excitation modes (instead of its spacetime vibrating amplitudes), we could also

describe the fields of strings through its Fourier modes. If we impose boundary conditions at the

ends of the string, these modes are infinite but discrete, and it turns out that the coefficient that

accompanies each mode is a particle-field analogous to those of normal field theory, and of course

independent of σ. That is, each excitation state of the string represents a type of particle, and the

knowledge of their behaviour implies the knowledge of the behaviour of the string.

With this description, string theory reduces to a field theory with infinitely many fields. However,

it is much more constrained than QFT, and the action of the string, and therefore the interactions

between the fields are completely determined by the background in which the string lives. The cal-

culations on string field theory are very complicated and the dynamics of the string are still not well

understood. One of the main challenges of the theory right now is solving the equations of motion

and understanding the dynamics of the string in spacetime.
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2 Solving the equation of motion for the rolling tachyon

The state of a string is written in string field theory in a 26 dimensional flat Minkowskian spacetime,

as an expansion of its vibrating modes as

Ψ =

∫

d26k

(2π)26

[

T (k)c1|0; k〉 + Aµ(k)αµ
−1c1|0; k〉 . . .

]

(2.1)

where the state |0; k〉 is the ground state with momentum kµ, and the α
µ
−1 and c1 are creation operators

of bosonic matter and fermionic ghosts respectively. The coefficients T (k), Aµ(k),... are the fields that

represent the different kind of particles:

T (k): Tachyon. Mass m2 < 0, spin 0

Aµ(k): Bosonic, massless, spin 1.

... higher spin fields.

We are interested in analyzing the time-dependence of a homogeneous string state, so for our

purposes, the only interesting variable will be x0 (or equivalently k0). Now, the easiest start point for

understanding the time dependence of the string is to analyze the tachyonic excitation mode T (x0)

which can be expanded as

T (x0) = ∓e
1√
α′ x

0

+

∞
∑

n=2

(∓)nβn e
1√
α′ nx0

. (2.2)

The top sign gives us the physical solution: the tachyon oscillates around the tachyon vacuum. Our

goal is to calculate the coefficients βn and analyze the behaviour of the solution for all times. This

was done in [2] and independently in [3] using the solution of the string motion in the Schnabl gauge.

The time dependence of the tachyon field they found is

T (x0) = ∓ e
1√
α′ x0

+ 0.15206 e
1√
α′ 2x0

∓ 2.148 · 10−3 e
1√
α′ 3x0

+ 2.619 · 10−6 e
1√
α′ 4x0

∓ 2.791 · 10−10 e
1√
α′ 5x0

+ 2.801 · 10−15 e
1√
α′ 6x0

∓ 2.729 · 10−21 e
1√
α′ 7x0

+ . . .

(2.3)

The rapidly decreasing behaviour of the coefficients suggests that the series is absolutely convergent,

and implies a wildly oscillatory motion of the tachyon, with ever growing amplitude, analogous to the

one found in [4] using level truncation (an approximation in which only the first excitation modes of

the string are taken into account, neglecting higher spin modes). This anomalous behaviour could be

due to a bad definition of the fields or a bad gauge fixing condition, and might be repaired with some

manipulations of the field, leading to the expected convergence of the tachyon to its ground state as

t → ∞. However, the solutions in [2] and [3] had to be calculated numerically, which makes such

manipulations complicated.

A further step towards the understanding of the behaviour of the tachyon was given in [5] by Y.

Okawa and M. Kiermaier. Using a different gauge, they found an analytic expression for the coefficients

βn of the solution of the equation of motion.
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3 Analytical solutions

The equation of motion of the string field Ψ(n) is written as

QBΨ(n) = −
n−1
∑

i=1

Ψ(n−i) ∗ Ψ(i) (3.1)

where ∗ indicates the star product of the fields (see [1]) and QB is the charge associated with the BRST

symmetry transformation. The solutions of this equation can be expanded in terms of the BPZ inner

products of the states |Ψ(n)〉 with the dual states of an orthonormal basis which expands the whole

Hilbert space of states 〈φ|. We will only study the tachyonic field, so we concentrate in those basis

vectors which single out this excitation mode from higher spin fields in (2.1) . With a correct choice

of the basis we can relate the coefficients βn of the expansion (2.2) with the BPZ inner products:

〈φ,Ψ(n) 〉 = βn. (3.2)

3.1 Left-handed solutions

One solution of the equation of motion (3.1) is given by

βn = 〈φ ,Ψ
(n)
L 〉

=
〈

f ◦ φ(0) cV (1)

∫ 2

1
dt1

∫ 3

t1

dt2

∫ 4

t2

dt3 . . .

∫ n

tn−2

dtn−1 V (t1)V (t2)V (t3) . . . V (tn−1)
〉

Wn

=
〈

f ◦ φ(0) cV (1)
n−1
∏

j=1

∫ j+1

tj−1

dtj V (tj)
〉

Wn

with t0 ≡ 1 .

(3.3)

Here f represents the conformal transformation used to express the BPZ inner product on the left

as an expectation value on the surface Wn (see figure 1). The explicit expression for f is

f(z) =
2

π
arctan z. (3.4)

The operators V (z) represent the exactly marginal deformations of the conformal field theory for

the string background. For the case of the rolling tachyon problem, these operators are

V (z) = e
1√
α′ x0(z)

. (3.5)

In order to extract the tachyonic field from this solution, the basis vectors we have to use are

related by the state-operator correspondence to

φ(z) = −c∂c e
−n√

α′ x0

(z). (3.6)
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Figure 1: Illustration of Ψ
(n)
L . The solid dot represents the cV insertion, and the circles represent the

V insertions. The integration region of tj is from tj−1 to j + 1.

These are tensor operators with weight n2 − 1 which transform under conformal transformations

z → f(z) as

f ◦ φ(z0) =
∣

∣

∣

∂f

∂z

∣

∣

∣

n2−1

z=z0

φ(f(z0)). (3.7)

The only thing that is left is to calculate the values of the coefficients βn from equation (3.3). For

this purpose it will be useful to make a new conformal transformation g(z) = tan ( πz
n+1 − α) which

maps the surface Wn to the whole upper half plane (UHP). In this step we have to take care of all of

the conformal transformation factors. The whole operator inside the expectation value is also a tensor

operator of weight n2 − 1, since the combinations cV (z) and dtV (z) are weightless. Therefore we can

write

βn = 〈φ ,Ψ
(n)
L 〉

=
〈

gf ◦ φ(0) cV (g(1))

∫ g(2)

g(1)
dt1

∫ g(3)

t1

dt2 . . .

∫ g(n)

tn−2

dtn−1 V (t1)V (t2) . . . V (tn−1)
〉

UHP

=
∣

∣

∣

∂g ◦ f

∂z

∣

∣

∣

n2−1

z=g(0)

〈

φ(g(0)) cV (g(1))

n−1
∏

j=1

∫ g(j+1)

tj−1

dtj V (tj)
〉

UHP
with t0 ≡ g(1) .

(3.8)
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We recall the following results, which are useful for the calculations

−〈c∂c(z1)c(z2)〉uhp = (z1 − z2)
2 (3.9)

〈e
−n√

α′ x0(z1)
e

1√
α′ x0(z2)〉uhp = (z1 − z2)

−2n (3.10)

〈e
−n√

α′ x0(z1)
e

1√
α′ x0(z2)

e
1√
α′ x0(z3)〉uhp = (z1 − z2)

−2n(z1 − z3)
−2n(z2 − z3)

2 (3.11)

Using these results in (3.8), and taking the limit α → π
2 to simplify the expression (the value of βn is

independent of α), we obtain

βn =
( 2

n + 1

)n2−1
∫ g(2)

t0

dt1

∫ g(3)

t1

dt2 . . .

∫ g(n)

tn−2

dtn−1

∏

0≤i<j<n

(ti − tj)
2

(3.12)

where we have defined t0 = g(1) = − cot π
n+1 . These integrals can be analytically claculated for any

n. The first few terms of this solution for the equation of motion of the rolling tachyon are

T (x0) = ∓ e
1√
α′ x0

+ 0.15206 e
1√
α′ 2x0

∓ 2.588 · 10−3 e
1√
α′ 3x0

+ 3.725 · 10−6 e
1√
α′ 4x0

∓ 3.569 · 10−10 e
1√
α′ 5x0

+ 1.851 · 10−15 e
1√
α′ 6x0

+ . . .

(3.13)

We can see that the strange oscillating behaviour of the tachyon appears again, but this time we have

an analytical calculation of the coefficients, and we will see in section 4 how to manipulate them and

try to find the expected solution. But first, there is another problem with the solution ΨL which has

to be solved.

3.2 Solutions satisfying the reality condition

Not all higher spin fields are real in ΨL. Of course this does not make sense in a theory which is to

represent physical entities, and the solution has to be modified. This was also done in [5] and their

result can be written as

Ψ =
1√
U

∗ ΨL ∗
√

U +
1√
U

∗ QB

√
U . (3.14)

Here U represents the gauge parameter which relates ΨL to its conjugate ΨR, which is itself another

solution for the equation of motion. It can be expanded in terms of the parameter λ, and its explicit

5



1 + λ2

2! + λ3

3! + . . .

Figure 2: Illustration of the expansion U = 1 + λ2 U (2) + λ3 U (3) + O(λ4).

expression takes the form

U = 1 +
∞
∑

n=2

λn U (n) ,

〈φ ,U (n) 〉 = 〈 f ◦ φ(0)V (n)(1, n) 〉Wn

=
1

n!

∫ n

1
dt1

∫ n

1
dt2 . . .

∫ n

1
dtn 〈 f ◦ φ(0)V (t1)V (t2) . . . V (tn) 〉Wn .

(3.15)

This is represented in figure 2. It is interesting by itself to study the behaviour of the tachyonic

modes of the state U , and this can be done in an analog manner as we did with ΨL. However, in this

case the operator insertions are different, so the basis states we have to use to single out these modes

now are

φ(z) = −1

2
c ∂c ∂2c e

−n√
α′ x0

(z). (3.16)

Taking into account that 〈c ∂c ∂2c (z)〉uhp = −2, and that the operator inside the expectation value

of (3.15) behaves this time as a n2 weighted tensor, we can use the same conformal transformation

and the same tricks as in last section to obtain

〈φ,U (n)〉 =
( 2

n + 1

)n2 1

n!
(g(n) − g(1))n

2

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

∏

1≤i<j≤n

(ti − tj)
2

(3.17)

This can again be easily calculated for any n. The first few values are represented in Table 1.

We can see that these values have the same behaviour as those of βn, but the integrals on (3.17)

are much simpler than those on (3.8). This is the main reason for their interest, it will be much easier

to manipulate the results of 〈φ,U (n)〉 than those of βn and those of the real solutions, and they are

expected to have the same behaviour.
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n 〈φ,U (n)〉

2 64
2187 ≈ 0.0292638

3 1
2160 ≈ 4.62963 · 10−4

4 7.72061 · 10−7

5 1.36673 · 10−10

Table 1: Numerical values of the tachyon profile coefficients for U (n)

Now we are ready to calculate explicitly the solutions (3.14) satisfying the reality condition. The

calculations are completely analog to those for ΨL, with the same conformal transformations, the same

conformal factors and the same basis states. However, first of all we have to expand 1√
U
∗ ΨL ∗

√
U

and 1√
U
∗ QB

√
U in terms of λ. Once we have done this we realise that the first correction to the

left-handed solution comes in the order O(λ4). The new solution takes now the form

T (x0) = ∓ e
1√
α′ x0

+ 0.15206 e
1√
α′ 2x0

∓ 2.588 · 10−3 e
1√
α′ 3x0

+ 4.6889 · 10−6 e
1√
α′ 4x0

∓ 9.089 · 10−10 e
1√
α′ 5x0

+ . . .

(3.18)

The behaviour of the solution is still wildly oscillating. Therefore we can analyze more deeply the

results 〈φ,ΨL〉 and 〈φ,U〉, which have a much easier expression, and expect them to behave as the

real solution. We will do this in the next section.

4 β-deformations

As we already mentioned, the behaviour of the tachyon motion in the form expressed by equations

(2.3), (3.13) and (3.18) exhibit a wild oscillation. However, we can manipulate these results by applying

what is called a β-deformation (see [6]), which is a kind of gauge transformation of the fields.

The effect of β-deformations can be seen as a transformation of the surfaces Wn, which takes every

point n on the boundary to the point 1
2 +(n− 1

2)eβ (except for the region [−1
2 , 1

2 ], that stays invariant).

Of course, the total surface is dilated and Wn goes to W1+neβ .

We will study the effects of such a transformation on the solution ΨL which has an easy analytical

expression. The coefficients βn (3.3) now depend on the factor β of the transformation. Our main

objective is to find a value of β for which this series shows a smooth behaviour, which could happen

if the perturbation theory breaks down for some time t.
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Figure 3: β dependence of the coefficients 〈φ ,Ψ
(n)
L (β) 〉 for n = 2, 3, 4, 5.

The expression for the coefficients of the series will now be (compare with (3.3)):

〈φ ,Ψ
(n)
L (β) 〉 =

〈

f ◦ φ(0) cV (t0)

n−1
∏

j=1

∫ 1

2
+(j+ 1

2
)eβ

tj−1

dtj V (tj)
〉

W
1+neβ

with t0 ≡ 1

2
+

1

2
eβ . (4.1)

This is computed in the same way as we did for βn, using now the conformal transformation

g(z) = tan
( πz

1 + neβ
− α

)

(4.2)

which takes the surface W1+neβ to the upper half plane. Again, taking the limit α → π
2 simplifies the

calculations. The final expression is

〈φ ,Ψ
(n)
L (β) 〉 =

( 2

1 + neβ

)n2−1
∫ g( 1

2
+ 3

2
eβ)

t0

dt1

∫ g( 1

2
+ 5

2
eβ)

t1

dt2 . . .

∫ g( 1

2
+ 2n−1

2
eβ)

tn−2

dtn−1

∏

0≤i<j<n

(ti − tj)
2

(4.3)

These integrals have been calculated for n = 2, 3, 4, 5 and their β-dependences have been plotted

on figure 3. However what is most important for us is the ratio of the coefficients of order n and n+1,

since it determines the behaviour of the series that describes the equation of motion of the tachyon.

If, for any β it is satisfied to all orders

〈φ ,Ψ
(n+1)
L (β) 〉

〈φ ,Ψ
(n)
L (β) 〉

≈ 〈φ ,Ψ
(n)
L (β) 〉

〈φ ,Ψ
(n−1)
L (β) 〉

→ (〈φ ,Ψ
(n)
L (β) 〉)2

〈φ ,Ψ
(n−1)
L (β) 〉〈φ ,Ψ

(n+1)
L (β) 〉

≈ 1 (4.4)
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(〈φ ,Ψ
(2)
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Figure 4: Ratios of the coefficients 〈φ ,Ψ
(n)
L (β) 〉 for n = 2, 3, 4, 5.

the series breaks down for some t, and the behaviour of the tachyon could change qualitatively.

Figure 4 shows the second quantity of equation ( 4.4) for the values of n represented in figure 3.

We can see that for β ≈ −2, this quantities are of order one, which was our main objective. It rests to

know if this situation is kept for higher values of n, and what is the motion of the string Ψ
(n)
L (β ≈ −2),

but this is left for future studies.

5 Conclusions

The motion of the tachyon, and therefore of the whole string remains totally mysterious to us. On one

hand boundary string field theory (BSFT) indicates that the tachyon should roll towards its ground

state and approach it as t → ∞. This is the behaviour that would be expected from a physical

viewpoint. However, BSFT is not as well defined as cubic open string field theory (CSFT), because its

formulation can only be carried out on a level truncated way. On the other hand CSFT is more well
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defined, in the sense that it includes all the vibrating modes in its formulation. But the description it

makes of the dynamics of the tachyon seems quite unphysical, with an oscillation with ever growing

amplitude. We have given in this report a first step towards what might be the solution of the problem:

a β-deformation that brings the solution series to break down. However, this method still has to be

further studied.
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