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Abstract

Dynamic light scattering (DLS) is one of the most popular methods for
studying colloidal suspensions. This method allows measuring the size of
particles, the viscosity or many other characteristics of colloidal solutions
(static factor, hydrodynamic functions).

In this work we investigate by means of DLS the dynamic and static
behavior of PMMA (poly methyl metacrylate) and Poly-NIPA (poly N-
isopropyl-acryl amid) aqua solutions with di�erent volume fractions. We
also study the properties of thermo sensitive Poly-NIPA particles.
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1 Scattering theory

1.1 Colloidal solutions

A colloidal solution consists out of particles with sizes between 1 and 1000
nm, that are solved in a proper solvent. In our experiment we use the poly-
mers PMMA (poly methyl metacrylate) and Poly-NIPA (poly N-isopropyl-acryl
amid) in a aqueous dispersion.

PMMA

PMMA is produced by polymerization of the monomer methyl methacrylat.
During this process di�erent parameters can be tuned to determine the length
of the chains. By using crosslinking molecules these chains create a network.
Due to the polymerization in emulsion and the hydrophobic character of the
PMMA-polymer-backbone these molecules form a shape that is pretty much a
sphere, in order to minimize the surface that is in contact with water. Ionized
sulfate-groups are connected to the surface and due to this �surface-charges� the
whole molecule acts like a big ion, interacting with his neighbor atoms.

polyNIPA

Is similar to PMMA. It's build up out of the the monomers isopropylachry-
lamid which are connected in a radically polymerization. It's crosslinked by
N-methylenbisacrylamid and forms spheres of predictable sizes with charged
surfaces.

The very special feature about pNIPA is the change of the spheres size with
temperature. pNIPA is a thermosensitive polymeric material and accordingly it
has a transition temperature, in our case at 30◦ and 35◦C in aqueous solutions.
Below this temperature the pNIPA absorbs a lot of water in its network and thus
the e�ective radius of the particles grows. For higher temperatures the particles
show a more or less constant radius. This process of growing and shrinking is
reversible. In a lucky combination of particle-size and concentration it is possible
to reach a liquid-glass phase transition in a moderate temperature-range of 10◦

to 30◦ C.

Glass transition

The theory that describes the dynamic behavior of colloidal particles in high
diluted systems is sophisticated and makes good predictions for our experiments.
For the glassy-phase however there is no such fully developed theory available.
The glass transition temperature is the temperature below which the physical
properties of the system vary in a manner, similar to those of a solid phase
(glassy phase) and above which the system behaves like a liquid. In easy words
one can describe the glassy phase of a colloidal system as a phase in that the
particle feel each other, respective the interactions between them start to have
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Figure 1: Liquid and glassy phase

in�uence on the single particles behavior. There are two commonly known ways
to reach a glass transition in a colloidal system.

• One method is to concentrate a sample, by what you have more parti-
cles per volume and consequently smaller distances between the particles,
resulting in stronger interactions.

• The more comfortable method requires very special systems, for example
thermo sensitive polymeers, such as the pNIPA-particles - dispersed in
water, as we are using. By tuning the temperature we can change the
individual particles size. Thus the mean distance between the particles
e�ectively shrinks. When the particles start to feel their neighbors they try
to arrange in a mode of minimal energy (see �gure 1). This can cause very
regularly, crystal like structures with the according scattering-behavior.

1.2 Scattering in general

When a visible photon (laserbeam) hits a target it's electrons are accelerated
by the electrical �eld of the EM-wave. As long as we are dealing with photon-
energies� binding-Energy (true for visible light) the accelerated electron works
as a hertz'dipole and emits a secondary wave with the same wavelength as the
stimulating primary-wave. (works for weakly bound that means weakly damped
electrons as for example valence-electrons). As we are analyzing samples with
more than one electron the secondary waves interfere, resulting in a scattering
pattern.

In scattering you are sensitive to structures with a size that is in the same
regime as the used wavelength. That means for a optical laser you can analyse
electon-density di�erences (structures) in the nm regime, as for example caused
by colloidals solved in a solvent.

1.3 Formalism

In a scattering experiment the incoming beam is scattered from a sample. The
outgoing beam can be analyzed in terms of the angle, the energy and the inten-
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sity.

Figure 2: Setup of a scattering experiment.

For the wavevector of the incident beam ~ki, the wavevector of the scattered
beam ~kf and θ being the scattering angle the wavevector transfer ~q can be
derived by

~q = ~kf − ~ki =
4πn

λ
sin

θ

2
(1)

where n is the refractive index for the sample. As one can see from the formula
a change in q (for a �xed wavelength) is caused by changing the angle.

1.4 Intensity and Scattering Pattern

The intensity can be used to determine Interactions between the particles in the
sample.

I(q) ∼ F (q)2 ∗ S(q) (2)

Where I(q)is the absolute square of the so called 'Scattering Amplitude',
F (q) is the 'Form factor' and S(q) is the 'Structure factor'.

1.4.1 Formfactor

The Form factor is the Fourier-transform of the scattering particles shape and
therefore provides information on their structure.

F (q) =
∫

V

ei~q~r/~′
ρ(r′)d3r′ (3)

For a single electron resting in the origin of our coordinate system the
electron-density is descriped by
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ρ(r′) =
∫

V

e− ∗ δ(r′)d3r′ (4)

Integrating over the delta function results in F (q) = 1 and we gain Ruther-
ford scattering.

With an optical laser we are sensitive to electron density di�erences in the
10-100 nm-regime. This allows us to analyze the shape of the colloidals. For a
homogeneous sperical particle (see �g. 3)1 F (q) can be derived as

F (q)2 ∼ [
sin(qr)− qr cos(qr)

(qr)3
]2. (5)

Figure 3: Theoretical form factor for spherical particles with radius 600 nm and
λ=633 nm.

1.4.2 Structure factor

Diluted case

For higly diluted samples (no correlations between particles) the structure factor
S(q) = 1. The colloidal particles move driven by the thermal �uctuations of the
solvent and undergo Brownian motion. The mobility of the particles is µ = 1/f ,
where f = 6πηrH is the friction coe�cient, rHthe hydrodynamic radius2and η
the viscosity of the suspending medium. For highly diluted samples rH = r is a
valid relation.

Using the Stokes-Einstein-Relation D = µkBT we obtain:

D0 =
kBT

6πηr
(6)

The other way around, knowing D0 we can calculate the radius of the solved
particles.

1As we will see later, this is exactly the pattern we will get for our colloidals
2(eq. Stokes Radius) is the radius of a imaginary hard sphere that di�uses with the same

velocity as the considered particle
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Concentrated solutions

For concentrated systems, where particle-interactions are not neglectable any-
more, the structure factor deviates from 1.

A strong interaction would for example cause the particles to form some kind
of regularly structure. This would e�ect a much di�erent scattering pattern,
due to the fact that regularly structures create the basic requirement for Bragg-
re�ection. In this case S(q) will display a maximum at q(Max). This value is
related to the mean interparticle spacing3 via

d =
2π

q(Max)
(7)

The exact functional form of S(q) will depend on the nature of the interac-
tions described by the interaction potential.

1.5 Photon correlation spectroscopy (PCS) in colloidal
dispersions

In addition to (eq.2) the scattered intensity is described by a sum over all (j)
scattering particles

I(q, t) = |E(q, t)|2 = [
∑

j

aj(q)ei~q ~rj(t)]2 (8)

where aj is the scattering amplitude, E(q, t) is the superposition of the �elds
that are instantaneously scattered at the moving particles at the position ~rj(t).
Due to thermic energy colloidal particels perform brownian motion. Measure-
ments of the temporal intensity �uctuations can reveal informations on the
underlying dynamics of the sample.

In PCS (as well as XPCS) the measured intensity can be correlated with
it's timeshifted identity by a 'digital autocorrelator' to produce the normalized
intensity correlationfunction g2(see �gure 4), de�ned as

g2(q, τ) =
〈I(q, 0) ∗ I(q, τ)〉

〈I(q)2〉
(9)

where the brackets 〈〉 denote an time averaging.
Under the conditions that:

• the spacing volume V contains a large number of particles;

• the spatial correlation range of the particles is much smaller than V 1/3;

• the particles can di�use throughout the suspension.;

• the �eld E(q, t) is a zero-mean complex Gaussian random variable.

3Distance between centers of particles
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Figure 4: Example for an Intensity-autocorrelation function.

We can express the normalized intensity correlation function g2(q, τ) in terms
of the normalized intermediate scattering function f(q, τ) by using the Siegert
relation

g2(q, τ) = 1 + β(q2)
〈E∗(q, 0) · E(q, τ)〉2

〈I(q)〉2
= 1 + β(q)[f(q, τ)]2 (10)

where β(q) = g2(q, 0)−1, depends on the coherence properties of the beam. For
incoherent radiation, β(q) = 0 and g2(q, τ) = 1,∀τ . The normalized intermedi-
ate scattering function for N identical particles can be written as:

f(q, τ) =
1

S(q)
1
N

N∑
i=1

N∑
j=1

〈eiq(ri(0)−rj(τ)〉 (11)

where S(q) is the static structure factor.
In the presence of particle interaction one usually analyzes f(q, τ) in terms

of a cumulant expression

f(q, τ) = e−Γ1(q)τ+Γ2(q)τ
2−Γ3(q)τ

3... (12)

where Γ1(q) = Γ(q) is the �rst cumulant. The initial desay of f(q, τ) de-
scribes the e�ective short-time4 di�usion coe�cient D(q) of the colloidal sus-
pension according to:

lim
τ→0

−d ln f(q, τ)
dτ

= Γ(q) = D(q) · q2. (13)

The short-time behavior of the normalized intermediate scattering function
f(q, τ) is

f(q, τ) = e−Γ(q)τ = e−D(q)·q2·τ. (14)

Thus, from equation (10) and (18) we obtain

4the time, which a particle needs to move over a distance about its own size
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gs(q, τ)− 1 ∝ e−2Γ(q)τ (15)

It can be shown that the short time di�usion coe�cient D(q) is given by

D(q) =
D0 ·H(q)

S(q)
(16)

where D0 is the Stokes-Einstein di�usion constant (see eq.6), introducing the
contribution from the colloid solvent interaction. The static factor S(q) consid-
ers the contribution from direct colloid-colloid interactions, the hydrodynamic
function H(q) describes indirect particle interactions, mediated by the �uid.

1.6 Temperature dependence of viscosity

During our experiment we want to determine motion and interaction of solved
particles. Therefore we have to consider the change in viscosity of water that
comes along with di�erent temperatures. According to a paper by 'Preston M.
Kampmeyer'5 the viscosity of water can be described by

η(T ) = a · exp(b + c ∗ (T/1000) + d ∗ (T/1000)2 + e ∗ (T/1000)3), (17)

where η is the viscosity and T the temperature in Kelvin. a,b,c,d and e are
�tting parameters we can �nd by performing a χ2 minimization-Fit, using a
dataset found on the internet.

5Journal of Applied Physics, Vol 23, Number 1, January 1952 - �The Temperature Depen-
dence of Viscosity for Water and Mercury�
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2 Experiment

2.1 Experimental setup

The light source is a 633nm HeNe-Laser. In most of the cases it is necessary to
decrease the laser-intensity. For that purpose there are two wheels with distinct
absorbers which the laser has to pass. For later calibration the beam is splitted
and the intensity is measured by a diode. Now the beam is focused into the
sample and di�racted. By using a detector that is mounted onto a goniometer
we can analyze the scattering pattern within a range of θ = 30◦ to θ = 150◦.
Since we need a very high time-resolution (<10−6sec) we are using a hardware
autocorrelator that works with a time resolution of 15 ns. Software-based anal-
ysis would be far to slow for our purpose.
The sample is mounted into a temperature-chamber. A chiller is used to de�ne
the temperature in the chamber a range of roughly 5◦ to 60◦ C. The aberra-
tion from the setpoint of temperature increases with temperature. At 50◦C we
measure an aberration from setpoint to real temperature of about 1,5◦C via a
calibrated thermometer.

Figure 5: Picture of the experiment

2.2 Viscosity correction

We use a dataset found on the internet 6 to calculate the viscosity correction.
We obtain the following parameters and thus we reach a very good interpolation
of the dataset (see �g. 6).

a = 18.7mpas · s, b = −106.1, c = 154.2K−1, d = −35.5K−2, e = 1K−3

6http://www.thermexcel.com/english/tables/eau_atm.htm
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Figure 6: Temperature dependence of viscosity of liquid water

2.3 Temperature correction

As mentioned before the temperature measured at the chiller is not equal to the
temperature in the sample holder. This has di�erent reasons. The two most
contributing factors are the relatively long and not isolated hoses that lead from
the chiller to the sample-holder and the sample-holder itself. It's made of metal
and due to a metals very good heat-conductivity there is a continuously heat-
loss that is proportional to the temperature di�erence between the inside and
the outside of the chamber. The room-temperature is regulated to about 23◦C.

Up from now mentioning of temperature will always refer to the ones mea-
sured at the sample position.
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Figure 7: Di�erence between measured temperatures at the chiller and the
sample holder

3 PMMA

3.1 PMMA diluted sample

The PMMA particles we are analyzing are solved in water and predicted to have
a size of about 60n m. We take a series of autocorrelation functions from θ= 40◦

to θ=150◦ in 1◦ steps. The following procedure was automatized by a MatLab-
Program in order to determine some characteristics of the sample, such as the
'particle radius', the 'di�usion constant' and the 'hydrodynamic function'.

3.1.1 Autocorrelation function

As mentioned before for a diluted sample we can use an exponential decay, see
equation (15), to describe the behavior of the autocorrelation function very well.
Γ is our �tting parameter and for this sample we get �gure (8). Obviously the
�t is a very good interpolation for the measured data.

3.1.2 Di�usion constant

According to equation (13) Γ shows a quadratic dependence on q, where this
time D0 is the �tting parameter for our �t.

Obviously the q2-dependency is not perfectly ful�lled (see �gure 10). The
most reasonable explanation is, that the particle interaction is not totaly ne-
glectable due to a insu�cient dilution.
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Figure 8: Autocorrelation function for diluted PMMA, Γ = 1274s−1

Figure 9: Logscale presentation of Γ-Fit for conditions equal to �gure (8) for 5
q-values (q = 1, 1.4, 1.8, 2.2, 2.6 ∗ 107m−1)

Figure 10: q2 dependence of Γ in diluted case PMMA. The solid line represents
Γ = q2.

3.1.3 Determination of radius

From equation (6) we can calculate the radius of our particles to 66.9 nm

±5nm. This is very close to the predicted radius of 60 nm. Thus we can say,
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that this method seems to deliver satisfying results.

3.1.4 Intensity and Form factor

With knowledge about the particles radius it's possible to calculate the theo-
retical formfactor of our particles after eq.(5). According to equation (2) for
diluted samples, S = 1, the scattered intensity should show the same behavior
as the formfactor squared, if plotted against q. This is done in �gure 11

Figure 11: Theoretical form factor for a spherical particle of size r=66 nm
compared with the real measured intensity.

Obviously this is not the case in our sample. The theoretical prediction and
the measured intensity have the same shape, but di�er in their slope. Reasons
could be a insu�cient dilution and the according interparticle correlation.

3.2 PMMA concentrated sample

This time we analyze the same sample as before but in a higher concentrated
version, so we can directly compare diluted and concentrated samples and �gure
out the e�ects the increasing interactions have on the scattering behavior. As
one can see the relation given by equation (13) is not valid anymore. For small
q-values there is a strong deviation from the ideal q2 trend (see �g. 13)

3.2.1 Intensity

In comparison with the intensity for the diluted sample there is a clear peak
at q = 1.4 · 107m−1 in the concentrated one (see �g.(14)). This peak is due to
interparticle correlations.

3.2.2 Static structure factor

The static structure factor S(q) is extracted from the data by dividing the
measured intensity I(q) for the concentrated sample by the measured intensity
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Figure 12: Autocorrelation function for concentrated PMMA, Γ = 1274s−1

Figure 13: q2 dependence of Γ in concentrated case PMMA. The solid line
represents Γ = q2.

Figure 14: Static intensity for diluted and concentrated PMMA sample
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for the diluted sample. S(q) = I(q)conc

I(q)dil
. The resulting structure factor is shown

in �gure 15(a). The peak position of the static structure factor qmax = 1, 4 ·
107m−1 is related to the mean interparticle spacing d by d ≈ 2π

qmax
(see eq. 7).

The calculated mean interparticle spacing is roughly 450 nm. As we know for
the diluted case (eq. 13) is a valid relation. However the concentrated case can
not be treated with the diluted theory. D(q) is considerably smaller, than D0

and not longer a constant in q. In order to quantify the deviation from the
diluted case the ratio D0/D(q) is computed and displayed in �gure 15(b) and
compared with the static structure factor S(q). The behavior of the normalized
inverse di�usion coe�cient D0/D(q) mimics the behavior of S(q). In ideal case
there is a pronounced maximum in this case indicating that the dynamics is
slowed down and reaches a minimum for wavevector transfers corresponding to
the peak of the structure factor. This e�ect is most pronounced for the higher
concentrations. Any deviations of D0/D(q) from the static structure factor S(Q)
is an indication for the presence of indirect, hydrodynamic interactions. As you
can see in �gure 15(d) there are deviations of the normalized inverse di�usion
coe�cient D0/D(q) from the static structure factor S(Q) for the whole q-range.
This clearly shows that hydrodynamic interactions are present and in�uence the
dynamics.

3.2.3 Hydrodynamic interactions

The hydrodynamic behavior of the studied system can be quanti�ed in the
short-time limit, by rewrite the hydrodynamic functions H(q), using eq.(16) to
obtain

H(q) = S(q) · D(q)
D0

(18)

Figure 15(c) shows the hydrodynamic function H(q) for the PMMA concen-
trated sample. As can be seen, H(q) < 1 for all wavevector transfers q, thus
showing that the hydrodynamic e�ects play role of an additional friction force.
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(a) Structure factor (b) D0/D

(c) Hydrodynamic function (d) D0/D and the structure factor

Figure 15:

4 pNIPA - in 3 concentrations

• pNIPA 1by1 - is a concentrated sample, prepared by mixing 50 % vol.
poly-NIPA particles and 50 % vol. distilled water.

• pNIPA 1by8 - is a sample, prepared by mixing 20 % vol. poly-NIPA
particles and 80 %vol. distilled water.

• pNIPA 1by100 - is our diluted sample. It consists of 1 part pNIPA-particles
dispersed in 100 parts distilled water.

4.1 Static Analysis

During analyzing the data it became obvious that the most interesting processes
happened in at temperatures of about 20◦C. For our samples this was the critical
temperature region for the glass transition to happen. The transfer into glassy
phase is accompanied by a complete change in the dynamic, as well as in the
static behavior.
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1by1-sample

With decreasing temperature our 1by1 sample became more and more opaque.
The absorbtion for visible light became too strong, to obtain any useful static
data. For small scattering angles the laser beam has to pass a much longer dis-
tance within the sample (see �g. 16), due to that more absorbtion occurs and
the scattering pattern goes under in the comparable strong e�ect of absorbtion.

Figure 16: Absorption in sample has in�uence on the scattered intensity.

1by8-sample

Absorbtion comes into account in the 1by8 sample too, but its e�ect is weak
compared to the one the structure factor has. As can be seen in �gure 17
the scattered intensities are very di�erent for the high and low temperature.
This can be explained by the growing of the particles, accompanied by a self
ordering, resulting in a partially regularly structure that causes Bragg-peaks in
the measured intensities.

4.2 Particle radius

As before for PMMA we determine the radii of our particles in the solution via
Γ-Fit → D0-Fit →equation(6). We obtain a curve of radius vs. temperature
which is very similar to known literature. This method is obvious very sensitive
to e�ects caused by insu�cient dilution. Figure 18 demonstrates that, for the
1by8 sample we gain radii that are a factor 1.5 to 2 bigger than in the diluted
case. For the 1by1-sample we do not even try to determine the radius because
several e�ects come into account we want to discuss now.
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(a) Scattered intensity for 28◦ - Ab-
sorbtion takes e�ect, intensity is de-
creased for small angles.

(b) Scattered Intensity for 15◦ - Struc-
ture factor causes a peak due to the or-
dering in the system.

Figure 17: Scattered Intensity for 1by8 and 1by100-sample at temperature 15◦C
and 28◦C.

Figure 18: Temperature dependence of radius

4.3 Discussion of dynamic behavior (1)

At about 20◦C and below we could notice strong changes in the dynamic be-
havior of our 1by1-sample. The exponential decay does not describe the auto-
correlationfunction correctly anymore, as can be seen from �gure 19. For high
temperatures (Fig.19(a)) there is a noticeable deviation from the exponential
decay (see eq.15). However for temperatures far below the glass transition tem-
perature, in our case 10◦C the autocorrelation function can not be described by
an exponential decay at all (see �gure 19(c)).
Some Authors discuss the possibility to describe the behavior of the autocorre-
lation function by a 'Stretched exponential decay', such as
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gs(q, τ)− 1 ∝ e−2Γ(q)τb

(19)

Indeed this leads to a much better �t for high temperatures, as can be seen
in �gure 19(b).

4.4 Discussion of dynamic behavior (2)

As mentioned before a phase-transition can not only be reached by temperature
change, but also by changing the concentration of particles within a system.
Figure 20 demonstrates this in a very convincing way. For the 1by100-sample
the exponential decay works very well. With increasing concentration the �t
describes the curve less good and �nally for the 1by1-sample not at all. An
o�set is visible, that is due to no more moving, crystalized areas in the sample.

The reason why this o�set was not visible in �gure 19(c) at an even lower
temperature is due to the experimental procedure. The measurements for 20(c)
have been taken separately, with a fast decrease of temperature from 35◦ to
15◦C. In contrast to that the measurement for �gure 20(c) was part of a series
of measurements with a very slow, stepwise decrease of temperature from 30◦

to 15◦C. This can (and obvious has) in�uence on the crystallization behavior
of our sample. Because our setup is probing only a very small part of the sam-
ple there is another aspect, why the two measurements di�er. The process of
crystallization happens randomly. Therefor orientation, size and place of the
crystalized areas are unpredictable and results not exactly reproducible.

4.5 Discussion of dynamic behavior (3)

Now we want to have a closer look at the temperature dependent behavior of the
autocorrelation functions for our 1by1-sample. In �gure 21 we have plotted the
normalized autocorrelation functions for temperatures from 11◦ to 28◦C for the
1by1-sample. We splitted the temperature range into two plots because there
is a very signi�cant change in behavior towards 20◦C.
In �gure 21(a) the temperatures higher than 20◦C are plotted and the autocor-
relation functions arrange in a very ordered way. With decreasing temperature
τ0 becomes bigger, what means the system slows down.
Figure 21(b) contains the autocorrelation functions for temperatures below the
glass transition temperature. In contrast to the �rst plot there is no system or
order in which the autocorrelation functions arrange.

The fact that something radically changes is also re�ected in �gure 22. For
this �gure we extracted di�erent values, namely:
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(a) Autocorrelation function at 28◦C, exponential decay, Γ = 166s−1

(b) Autocorrelation function at 28◦ C, stretched exponent �t, Γ = 80s−1, b = 0, 73

(c) Autocorrelation function at 10◦ C, exponential decay, Γ = 536s−1

Figure 19: Autocorrelation function for pNIPA 1by1-sample
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(a) Autocorrelation function for 1by100 dilution, Γ = 522s−1

(b) Autocorrelation function for 1by8 dilution, Γ = 334s−1

(c) Autocorrelation function for 1by1 dilution, no �t possible, Γ = 70s−1

Figure 20: Autocorrelation functions for pNIPA at T=15◦C
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(a) Autocorrelation function for the temperatures above 20◦C.

(b) Autocorrelation functions for temperatures below 20◦C.

Figure 21: Autocorrelation functions for 1by1 dilution.
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• The 'o�set' is the value of the lower plateau of the autocorrelationfunction.
A value 6= 1 means there are "frozen", not moving areas in the analyzed
part of the sample.

• The 'contrast' is the di�erence between the upper and lower plateau in
the autocorrelation function.

• The 'Γ-value', is extracted from the autocorrelation functions by a �t of
equation 15 for the short time behavior of the sample.

• 'exponent stretch' is the b-value from equation 19.

• 'R2' - is a measure of how good the �t agrees with the measurement. In
the case perfect extrapolation R2=1.

All the plots from �gure 22 have one thing in common. For high tempera-
tures (T > 20◦C) the data points show a very ordered behavior. However for
temperatures (T < 20◦C) the data points scatter chaotically. This is certainly
due to a phase change from the liquid to the glassy state.
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(a) Contrast vs. temperature (b) R2 vs. temperature

(c) Γ for short time behavior vs. tempera-
ture

(d) O�set vs. temperature

(e) Stretched exponent vs. temperature

Figure 22: Analysis of 1by1 autocorrelation functions
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5 Conclusion

In this work we performed DLS experiments on colloidal systems, namely PMMA
and pNIPA particles in a aqueous solution. The size of the pNIPA particles
shows a very high dependence on the temperature and thus we can change the
system between liquid and glassy phase by controlling the temperature. We
measured the static intensity and the intensity-autocorrelation function in or-
der to obtain information about the static and dynamic processes within our
samples. As a result we can say, that for high dilutions we have a very good cor-
respondence between the dynamic theory respecting Brownian motion and our
measurements (exponential decay in autocorrelation function). This correspon-
dence gets lost for the highly concentrated 1by1 and even for the 1by8 sample
when we go to low temperatures. A strong in�uence of the structure factor is ob-
servable. The loss of correspondence as well as the contribution of the structure
factor lead to the conclusion that the pNIPA 1by1 and 1by8-sample perform a
change from the liquid to the glassy state. In this state the theory describes the
dynamic behavior of our particles very insu�cient. However the diluted theory
can be modi�ed by using a 'stretched exponential decay' for temperatures close
below the glass transition temperature and still make good predictions for the
dynamic behavior.


