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Abstract
The experimental studies for the transition form factor of the process γγ∗ → π agrees

with the theoretical concepts for low energy scales (CLEO experiment). This project is
about trying to explain the data for higher energy scales (data from BaBar experiment) using
the next-to-leading and next-to-next-to-leading order contribiutions for the hard scattering
amplitude and leading and next-to-leading order contribiutons for the distribution amplitude
evolution. Depending on the order I use the MS and CS scheme
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Figure 1: The Feynman graph for the e+e− → e+e−π process. Figure taken from [3]

The form factor for transitions γ∗γ → π is a part of the γ∗γπ vertex

Γµν = −ie2Fπγγ∗
(
Q

)
εµναβ qαq′β (1)

where ε0123 = 1, q and q' are respectivelty the photon momenta corresponding to the Lorentz
indices µ and ν. The spacelike photon virtualities are
Q2 = −q2, Q′2 = −q′2 as well as

Q
2 =

1
2

(
Q2 + Q′2) (2)

The form factor Fπγγ∗
(
Q

)
is mostly measured as a part of the process e+e− → e+e−π (see [2],

[3]). At large momentum transfer the transition form factor can be represented as a convolution
of a calculable hard scattering amplitude with a nonperturbative pion distribution amplitude.
We can write the formula up to leading-twist order accuracy (see [1]).

Fπγ∗
(
Q

)
=

fπ

3
√

2Q
2

∫ 1

−1
dξ

Φπ (ξ, µF )
1− ξ2

(
1 +

αs (µR)
π

K
(
ξ,Q/µF

) )
(3)

where µF and µR respectively denote the factorization and renormalization scale, and fπ ≈
131MeV is pion decay constant. Φπ is the pion distribution ampilute, which we expand upon
Gegenbauer polynomials C

3/2
n (ξ) (the eigenfunctions of the leading order evolution kernel for

mesons) in the MS scheme as following

Φπ (ξ, µF ) = ΦAS (ξ)


1 +

∞∑

n=2,4...

Bn (µF ) C3/2
n (ξ)


 (4)

ΦAS (ξ) =
3
2

(
1− ξ2

)
(5)
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Figure 2: Lowest order Feynman graph for the γ∗γ(∗) → π process. Second graph can be obtained
by interchagning the veertices. Figure taken from [1]

Because of the symmetry of the distribution amplitude in ξ the odd contributions vanish.
The Bn coe�cents in the leading order evolve according to:

Bn (µF ) =
(

αs (µF )
αs (µ0)

) γ
(0)
k
β0

Bn (µ0) (6)

where

β0 = −2Nf

3
+

11CA

3
(7)

Except for the B0 (µ0) = 1, the Bn (µ0) coe�cents are complicated to evaluate from theory.
Some attempts were made (see for example [4], [5] or [6]) but only with results for B2 (µ0). Here
we will try to evaluate those coe�cents by �tting the form factor function to the experimental
data from CLEO and BaBar. This was once done with the CLEO data, but the results don't
match the later BaBar data ( see �gure 3).

Using the Gegenbauer expansion we can rewrite the form factor in a form

2Q
2
Fπγ∗

(
Q

)
=
√

2fπ

2

∑
n

Bn (µF )
(

2 +
αs (µr)

π
cn

(
Q/µf

))
(8)

where the αs function was considered in the two-loop order and the ΛMS = 350MeV for NF = 4

�avours. The An functions can be calculated while knowing the kernel K
(
ξ,Q/µF

)

cn

(
Q/µf

)
=

∫ 1

−1
dξ C3/2

n (ξ) K
(
ξ, Q/µF

)
(9)

The explilit formula for the MS scheme and NLO I received is
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Figure 3: The γ∗γ(∗) → π transition form factor multipied by Q2. The dashed line indicates
the asymptotic limit. The solid and dotted lines show the prediction for the form factor, more
details to �nd in the �gure source [3]
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cMS
n

(
Q/µf

)
= −3 + 2Log

[
2Q/µf

]
+

+
1
3

(
(−S1 (n + 2)− S1 (n))2 + S2 (n + 2)− S2 (n)

)
+

+
2
3

(−S1 (n + 2)− S1 (n))Log
[
2Q/µf

]
+

1
3 (n + 1) (n + 2)

(10)

where

Sj (n) =
n∑

k=1

1
kj

(11)

Using the kernel from [1] in NLO and calculating the corresponding Gegenbauer moments
from equation (9) we have

c0

(
Q/µf

)
= −10

3
(12)

c2

(
Q/µf

)
= − 5

108
(−59 + Log

[
2Q/µf

])
(13)

c4

(
Q/µf

)
=

10487− 5460 Log
[
2Q/µf

]

1350
(14)

c6

(
Q/µf

)
=

696217− 287560 Log
[
2Q/µf

]

58800
(15)

c8

(
Q/µf

)
=

36387941
2381400

− 1045
189

Log
[
2Q/µf

]
(16)

c10

(
Q/µf

)
=

5265443761
288149400

− 62816 Log
[
2Q/µf

]

10395
(17)

and all the odd functions are zero. We consider the form factor function with the accuracy up
this few An funtions, mostly to A6.
To have a better accuracy of our �t we will also consider the term of the twist-four coupling as

− fπ
√

2 80
27

δ2
(
Q2

)

Q2 (18)

where

δ2
(
µ2

)
=

[
αs

(
µ2

)

αs

(
µ2

0

)
]ΓT4/β0

δ2
(
µ2

0

)
(19)

The coupling δ2
(
µ2

)
was originally estimated in [8] and found to be

δ2
(
µ2

0 = 1GeV2
)

= 0.2± 0.02GeV2. Details can be found in [9]. The ΓT4 = 32/9
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Figure 4: χ2 results for the MS scheme function depending on the restrictions of the coe�cents
to �t (|Bn (µ0) | < Bmax ). Fits done with varying µ2

F from Q2/4 to 4Q2. The highest value
series of results correspond to the µ2

F = 4Q2. The �t were made for µ0 = 2 and for functions up
to A6

We tried to �t the form factor function to the data to determine the Bn (µ0) considering the
evolution of Bn (µF ) at the LO.

Q2Fπγγ∗
(
Q

)
=

∞∑

n=0,2,4...

Bn (µ0) AMS
n (Q, µF , µR)− fπ

√
2 80

27
δ2

(
Q2

)

Q2 (20)

Attempts were made for di�erently restricted coe�cents and varying µF and µR for the data
cut at Q2

min = 2GeV2. Figures (4) and (5) are plots of χ2 in terms of the restriction for coe�cents.
Fits were made in gnuplot.

We would like the Bn (µ0) coe�cents to be not bigger in the order than 1, to truncate the
formula for the form factor. But one can see, to make a resonable �t they have to be much
bigger.
So we continued by going to the higher orders. In MS scheme the evolution of the Bn (µF ) in
NLO is complicated and includes dependence of the Bn (µ0) on Bn−1 (µ0) , ...B0 (µ0). So the
better idea was to change the scheme. In the CS the evolution of Bn (µ) up to NLO is diagonal

Bn (µF ) =
(

αs (µF )
αs (µ0)

)− γ
(0)
k
β0

(
1 +

αs (µF )
2π

A(1)
n (µF , µ)

)
Bn (µ0) (21)

where

A(1)
n (µF , µ) =

(
1− αs (µF )

αs (µ0)

) (
− β1

2β0

γ
(0)
k

β0
+

γ
(1)
k

β0

)
(22)

where β1 = 102− 38NF /3. Anomalous dimensions, higher order evolution of Bn coe�cents and
other details can be found at [7]. But the evolution at NLO gives a very little di�erence. In
�gure (6) I plot the ratio of NLO to LO evolution and it is almost one.

But there is a rather big di�erence in the scattering amplitude. The CS formula for the
scattering amplitude one can write as following
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Figure 5: χ2 results for the MS scheme function depending on the restrictions of the coe�cents
to �t (|Bn (µ0) | < Bmax ). Fits done with varying µ2

R from Q2/2 to 4Q2. The highest value
series of results correspond to the µ2

R = 4Q2. The �t were made for µ0 = 2 and for functions up
to A6
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Figure 6: The plot of the NLO to LO ratio,
(
1 + αs(µF )

2π A(1)
n (µF , µ)

)
for n = 0 and n = 2 (for

A(1)
n see (22)), for µ0 = 2GeV and µ2

F = Q2
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Figure 7: The results for the CS scheme functions in NLO �ts. On the plot there are functions
Q2Fπγ∗

(
Q2

)
with the data from CLEO and BaBar. Various functions depend on the restrictions

of the coe�cents to �t (|Bn (µ0) | 6 Bmax). The highest function is for the coe�cent restriction
of 30, others respectively 15, 5, 2, 1. The results of the χ2 for those �ts can be found in �gure
8. Fits were done in gnuplot, for µ0 = 2 and for functions up to A

CS(NLO)
6

TCS
j (Q, µF ) =

√
2

3Q2

(
T(0)

j +
αs (µR)

2π
TCS(1)

j (Q/µF )
)

(23)

with T(0)
j = 3

2 and the

TCS(1)
j (Q/µF ) = CF

(
TCS(1)

F,j +
3
2
Log

(Q2

µ2
F

)
vj

)
(24)

vj = −2S1 (j + 1) +
3
2

+
1

(j + 2) (j + 2)
(25)

where the numerical values for the �rst few TCS(1)
F,j are TCS(1)

F,0 = −2.25, TCS(1)
F,2 = 4.90,

TCS(1)
F,4 = 10.30, TCS(1)

F,6 = 14.45, and the explicit formula can be found at [7].
Now the ACS(NLO)

n have the form

ACS(NLO)
n

(
Q/µf

)
=

(
αs (µF )
αs (µ0)

)− γ
(0)
k
β0

(
1 +

αs (µF )
2π

A(1)
n (µF , µ)

)
TCS

n (Q, µF ) (26)

I did once more a �t to evaluate the Bn coe�cents and the results are in �gures (8) and (7). As
one can see, the �ts do not explain well the data for high Q2 when we restrict the | Bn (µ0) |6 1

and even tor the restriction around 80. Figure 9 shows a �t without any restrictions for the
coe�cents.

So I continued with the NNLO scattering amplitude expresion in CS scheme.

TCS
j (Q, µF ) =

√
2

3Q2

(
T0

j +
αs (µR)

2π
TCS(1)

j (Q/µF ) +
α2

s (µR)
4π2

TCS(2)
j (Q/µF ,Q/µR)

)
(27)
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Figure 8: χ2 results for the CS scheme function depending on the restrictions of the coe�cents
to �t. Fits were done in gnuplot, for µ0 = 2GeV and for functions up to A6
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Figure 9: Simple �t for the form factor in CS and NLO in scattering amplitude. The coe�cents
from the �t are
B2 = 16.7± 2.3 B4 = −34.9± 5.0 B6 = 18.5± 2.7 and the χ2 is 0.8. There are only present the
BaBar data to make the plot more visible
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The exact expression for an arbitrary j for the TCS(2)
j is very complicated. I used the numerical

results that one can �nd in [7]. In Figure (10) one can �nd an idea of how do the An functions
change while changing the scheme or the order.
The NNLO �tting attempts didn't give a good enough result. As before a good �t could be
obtained only with high coe�cents. In �gure (11) and (12) I present an exemplary �t.

(28)

1 Results

For any method I tried, the results were not good enough. Increasing the Q2
MIN from 2GeV2

increased mostly the Bn coe�cents in �ts. Changing the order and scheme didn't improve the
�ts also. I didn't manage to explain the experimental results for high Q2 from BaBar experiment
and it seems very unlikely to be done this way.
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Figure 10: Results for di�erent schemes and orders. The legend is on the form: order of the
scattering amplitude, order of the disribution amplitude evoltion , scheme. Plots done for µ0 =

2GeV and µF = µR = Q
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Figure 11: Form factor function �t for µ0 = 2GeV and µ2
F = µR2 = Q2.The coe�cents from the

simple �t done in Mathematica are: B2 = 10.3 B4 = −19.5 B6 = 9.6
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Figure 12: Form factor function �t for µ0 = 2GeV and µ2
F = µR2 = Q2. The coe�cents from

the simple �t done in Mathematica are: B2 = 0.85 B4 = −0.64
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