
Web Interface for CMS HLT Output

Mr. A M Bi�n

9th September 2009

Contents
1 Introduction . 2

2 Initial Site . 2

3 Reducing Loading Time . 3
3.1 Eclipse Development Environment . 3
3.2 Bu�er Solution . 4
3.3 Lumisection . 4

4 Lumisection Number . 5
4.1 Speci�ed LS Number . 5
4.2 Range of LS Numbers . 6
4.3 Range is Shown . 6

5 Begin and End Time . 7

6 Further Improvements . 7

7 Acknowledgements . 8

A Selected Code . 9
A.1 HTML . 9
A.2 Core javascript . 9
A.3 Servlet Code . 11

References . 13

1

Abstract

The High Level Trigger (HLT) has an extremely important role in the data
taking processes of the Compact Muon Solenoid (CMS) experiment as it provides a
factor of O (1000) in data reduction. Here the web-interface used for monitoring the
HLT, which forms part of CMS's Run Control System, is alterred thus improving
its useability and e�ciency.

1 Introduction
The Trigger System at CMS [1] represents one of the most technically demanding chal-
lenges of the experiment as it is responsible for the real time selection and recording of
(judged) useful events. The �rst level of the trigger, Level-1 (L1), is hardware based and
reduces the data by a factor of O (1000) using low level analysis in custom trigger proces-
sors. All other levels are software based and select useful events via partial reconstruction;
they are collectively referred to as the High Level Trigger.

The Run Control System at CMS allows for the monitoring and control of the collection
of event data from the detector elements [2]. The web-interface used to monitor the High
Level Trigger is a typical example of the Run Control, it utilizes Java Servlet Technology
[3] and Ajax (Asynchronous Javascript and XML), with a database back-end to provide
an interactive method of viewing the data.

2 Initial Site
Initially the site was as shown in Figure 1, the Run Number can be speci�ed directly
or looked up via a suggestion box upon inputting a date. Tables showing Lumisection

Figure 1: The Initial Site

or Loginfo data can then be brought up by pressing the appropriate buttons. The site
utilizes Java Servlet technology in three ways:

2

1. When a date is entered into the �Date Used� input �eld an SQL query is executed
which returns the run numbers of that date's runs. These run numbers are then
used to populate a suggestion box for the CMS �Run Number� �eld. This procedure
follows closely an example used in [4]

2. When the Run Number �eld has been completed the Begin and End time for that
run are retrieved and printed to screen

3. When either of the buttons are pressed the servlet requests the relevant subset of
data from the core database

The Lumisections table contains information such as lumisection number, modi�cation
time and the pre-scaler module. Information relating to the e�ciency of the trigger, i.e.
number of events passed by the L1 trigger, events subsequently passed and rejected by
the HLT is also shown.

One problem with the site as it stands is that on pressing the �Lumisection� button
a huge amount of data must be transferred asynchronously through the servlet. The
large waiting times associated with this situation makes the task of monitoring the HLT
arduous and time consuming. The remainder of this report documents improvements
made to the site to increase its e�ciency and useability.

3 Reducing Loading Time

3.1 Eclipse Development Environment
Throughout the alterations to the site the Eclipse Rich Client Platform was used [5] and
there were several reasons for this:

• Using the eclipse platform changes to several of the site's components (e.g. HTML
index, the core javascript, Servlet code) could be made simultaneously and with
ease

• Eclipse has built in de-bugging capabilities for HTML and Java, making editting of
the code less error-prone

• Convenient access to the CVS Repository, which allowed revisions to be saved as
updated versions of the source �les

• As a personal motivation, it allowed me to become familiar with a very powerful
and broadly applicable development environment

3

Figure 2: The Eclipse Development Environment

3.2 Bu�er Solution
Initially the idea was to use a method with a data bu�er, which would gradually load the
data to the screen, as opposed to waiting for all the data to be retrieved then loading it to
screen at once. The disadvantage of this approach however is that, although data can be
read as other data is loading, still all the data is being read, and this handicaps the site
with long loading times. Moreover the data is still loaded sequentially, so if data towards
the end of the run is required then this solution does not aid the user at all.

3.3 Lumisection
Earlier we mentioned that the lumisection number is shown in the Lumisections table, a
lumisection is de�ned as:

�The sub section of a run during which the instantaneous luminosity is
constant, 220 orbits which is approximately 93 seconds�

The lumisection number then provides a practical way of book keeping, which is why it
is contained in the Lumisections table. This also makes the lumisection number an ideal
�eld to further �lter the data by, and it was this �ltering that was decided upon as a
resolution to the data overload problem su�ered by the original site.

4

4 Lumisection Number

4.1 Speci�ed LS Number
The next version of the site provided an input box where the lumisection number (LS
Number on the site) could be speci�ed, with these alterations to the HTML, the site
looked as in Figure 3. With subsequent changes to the core javascript and the Ajax

Figure 3: Alterred HTML

servlet code (written in Java [6]) the lumisection number as well as the run number could
be speci�ed, drastically reducing the data called upon by the servlet. An example of this
kind of query is shown in Figure 4. With this, the loading time problem was solved in

Figure 4: Speci�ed Lumisection Number

5

the sense that the site responds almost instantly to data requests, while the information
relating to the HLT can still be �exibly searched. However, the ability to show only the
data associated with one lumi section number could be considered inconvenient, this lead
to the second stage of renovation of the site.

4.2 Range of LS Numbers
The next logical improvement would then be to have the ability to specify a range of
lumisection numbers associated with a speci�c run. With this improved version of the
site, a single LS Number can be speci�ed just as before or a range of LS Numbers can
be speci�ed by inputting two numbers, separated by an hyphen, with the lowest number
written �rst (e.g. 3-5). Selected parts of the code responsible for this is shown in Appendix
A, an example of a range of values being called is shown in Figure 5.

Figure 5: Range of Lumisection Numbers

4.3 Range is Shown
The one issue with the improved site is that although now the LS Number can be exactly
speci�ed as a range or a single value, the user does not know what LS Numbers are

6

available for a speci�c Run Number.
To solve this problem, Ajax was once again used. When the Run Number �eld is

completed, a query is asynchronously made to the database to �nd the maximum LS
Number for that run. This data is put into a map object, which is subsequently read by
the core javascript and printed to screen. An example of this in action is shown in Figure
6, the relevant Servlet code is shown in Appendix A.3.

Figure 6: Range of LS Numbers is shown

5 Begin and End Time
The site has the further feature that, as soon as the Run Number is enterred, the Begin
and End time of that run are shown (this is once more made possible through Ajax).
Initially the site was querying older versions of the HLT database, so the information was
not shown.

To solve this problem, the Ajax servlet code was alterred such that the relevant
databases were being queried. The �Begin Time� is read from a table �RUNNUM-
BERTBL� whereas the �End Time� is read as the �nal entry in �the Modi�cation Time�
column of the lumisection table. To reduce loading time, the maximum LS Number and
the End Time are read in the same servlet query (As both data are written to the same
row). The output is shown in Figure 7, and the code is discussed in Appendix A.3.

6 Further Improvements
Whenever a task of improvement is undertaken, as was done here, it is always di�cult
to know when the task has been completed. During my time working on the site I feel
I have improved its useability and e�ciency, however, there are still improvements that
one could look to make, and which I was unable to make myself due to the �nite nature
of my stay here at DESY. These improvements might include:

7

Figure 7: Begin and End Times are shown

• Making use of the return key as a method of submitting data (as opposed
to having to use the cursor to press buttons). This might be seen as an improvement
to the e�ciency with which the site could be used. It could be added to the site
simply by employing the �onkeypress� attribute and adding a few lines of code to
the javascript

• Fixing the position of the suggestion box. At present the Run Number sugges-
tion box is not tied town, but �oats nearby the input box. Ideally the suggestions
would drop-down from the input box and remain �xed there. This then is an issue
with the CSS (Cascading Style Sheets) and should be �xed with little trouble, at
least in theory.

• Making the site more graphical. The additions made to the site are, stylistically
very basic. Perhaps the look and feel of the site would be better if more graphical
methods were used, e.g. selection box for LS Numbers instead of manual input.
However this may have the disadvantage of slowing the site's response time.

7 Acknowledgements
I would like to thank my DESY summer-student supervisor, Derek Hatton, for setting me
this task. Moreover I would like to thank him for the assistance and knowledge, ranging
from the processes involved in the high level trigger itself to intricacies in Java servlet
programming, he has provided me with throughout my time here. Perhaps most of all I
thank him for his patience, as I came to this project with no knowledge of javascript, Ajax
or Servlet Technologies and was allowed the time to become familiar with these concepts,
thus attaining skills that will be applicable in whichever �eld of Physics I shall end up
inhabitting.

8

A Selected Code

A.1 HTML
Firstly the index.html �le was edited to create the input �eld �LS Number�, this is trivial
HTML

<TH ALIGN=RIGHT>LS Number</TH>
<TD> <input class="zinput" type="text" id="lsnumbr" autocomplete="off" >
</TD></TR>

A.2 Core javascript
Next changes were made to the �lumisectionon� function, which is acted out when the
Lumisecton button is pressed. This function is part of the core javascript of the site and
performs many tasks. Firstly the Run Number and LS Number are read from the site:

function lumisectionon() {

var foundname = inputTextField.value;
var foundls = inputLsnumbrField.value;

If the LS Number �eld is blank, the function defaults to an LS Number of 1, this way all
of the data isn't called up should the user forget to specify an LS Number

if (foundls == 0)
{
foundls = "1";

}

An example of this feature in action is shown in Figure 8
Then the input in the LS Number �eld is checked to see whether a range of values or

a single value is speci�ed. If a range is speci�ed then the lower and upper limits of that
range are placed into a two element array, if a single value is speci�ed, then its value and
a null value are passed into the array.

var foundlsA = foundls.split("-");
if(foundls.indexOf("-") == -1)
{
foundlsA[0] = foundls;
foundlsA[1] = 0;
}

9

Figure 8: Lumisection Number Defaulting to 1

Finally the URL is alterred, with the values of the array passed into it, and a �GET�
request called:

if(foundlsA[1] == 0)
{
url = urlbase+"/lookup?username="+escape(foundname)+"&type="+
escape("6")+"&block="+escape("1")+"&lsnumbr="+escape(foundlsA[0]);
}
else
{
url = urlbase+"/lookup?username="+escape(foundname)+"&type="+escape
("5")+"&block="+escape("1")+"&lsnumbr="+escape(foundlsA[0])+
"&range="+escape(foundlsA[1]);
}
if (window.XMLHttpRequest){

req = new XMLHttpRequest();
} else if (window.ActiveXObject){

req = new ActiveXObject("Microsoft.XMLHTTP");
}
req.open("Get",url,true);

The values of �type� and �block� are used in the Ajax Servlet code for decision making
purposes, here a �type� of 6 refers to a single LS Number, whereas a �type� of 5 refers to

10

a range of LS Numbers.

A.3 Servlet Code
In the servlet code the �type� is read from the URL and converted from a string to an
integer before being used in a switch statement. The cases which interest us here are, as
explained above, 5 and 6:

String type = req.getParameter("type");
HashMap customer;

int typeInt = Integer.parseInt(type);

if (username != null)
{
switch (typeInt)
{

...

case 5:
//Case when a range of LSNumbers are required
lsnumbr = req.getParameter("lsnumbr");
range = req.getParameter("range");
customer = getCustomerBlockInfo(username,block,lsnumbr, range);
responseString = JSONUtil.buildJSON(customer, "customer");
break;

case 6:
//Case when only one LS Number is required
lsnumbr = req.getParameter("lsnumbr");
customer = getCustomerBlockInfo(username,block,lsnumbr, lsnumbr);
responseString = JSONUtil.buildJSON(customer, "customer");
break;

}

The �getcustomerBlockInfo� function makes a connection with the database containg the
HLT info, it then performs a query (written in SQL [7]) on that database and prints the

11

results to a map object

private HashMap getCustomerBlockInfo(String username, String block,
String lsnumbr, String range)

{
int blockInt = Integer.parseInt(block);
int lsnumbrInt = Integer.parseInt(lsnumbr);
int rangeInt = Integer.parseInt(range);

Connection con = DatabaseConnector.getConnection();
ResultSet result = null;
HashMap map = new HashMap();

...

map.put("LUMISECTIONS", "");
String svalue = "
";
Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from
hlt_supervisor_lumisections_v2 where RUNNR = '" + username + "'
and LSNUMBER between '" + lsnumbrInt + "'
AND '" + rangeInt + "'ORDER BY LSNUMBER");

In the Servlet script also the asynchronous queries that enable the range of LS Num-
bers and the Begin and End Times to be shown are performed. Firstly two database
connections are made, as the data required lies in seperate tables (c.f. Section 5), and
then a map is built to store the data

private HashMap getCustomerInfo(String username)
{

Connection con1 = DatabaseConnector.getConnection();
Connection con2 = DatabaseConnector.getConnection();
HashMap map = new HashMap();

Next the queries are made

try{
Statement select = con1.createStatement(ResultSet.

12

TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
Statement select2 = con2.createStatement(ResultSet.

TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
ResultSet result1 = select.executeQuery("SELECT * FROM

hlt_supervisor_lumisections_v2 where RUNNR =
'"+username+"' ORDER BY LSNUMBER DESC");

ResultSet result2 = select2.executeQuery("SELECT * FROM
RUNNUMBERTBL where RUNNUMBER ='"+username+"'");

Note the use of �ORDER BY LSNUMBER DESC�, this means that only the �rst row of
data must be read to �nd the Max LS Number and End Time. Finally, this data is loaded
into the map, where it can be read in the core javascript

if (result1 != null)
{

result1.first();
String value1 = result1.getString(3);
String maxls = result1.getString(1);
String dateAndTime1 = value1.substring(10, 18);
loadMap(map, "ENDTIME", dateAndTime1);
loadMap(map, "MAXLS", maxls);

}
if (result2 != null)

{
result2.first();
String value2 = result2.getString(2);
String dateAndTime2 = value2.substring(10, 18);
loadMap(map, "BEGTIME", dateAndTime2);

}

As noted in the text, we see that the End Time and Max LS Number queries are performed
together.

References
[1] The CMS Trigger and Data Acquisition Group (2005), The CMS High Level Trigger.

[2] G. Bauer et al (2008), The Run Control System of the CMS Experiment, J. Phys.:
Conf. Ser. 119 022010.

13

[3] J. Hunter & W. Crawford (1998), Java Servlet Programing, O'Reilly.

[4] S. D. Olson (2007), Ajax on Java, O'Reilly.

[5] J. McA�er & J. Lemieux (2006), Eclipse: Rich Client Platform, Addison-Wesley.

[6] D. Flanagan (1997), Java in a nutshell, 2nd Edition, O'Reilly.

[7] L. Beighley (2007), Head First SQL, O'Reilly.

14

