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Abstract

We study a class of integrable systems known as affine Toda field theories. These theories are closely
related to affine Lie algebras and can be reformulated as the condition for the vanishing of the curvature
of a vector bundle connection. We show how this zero curvature representation leads to an infinite
number of conserved quantities for these systems, and explicitly construct some of these quantities for
sl(2) and sl(3) affine Toda field theory.
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1 Introduction

Integrable systems occur in a wide range of areas throughout modern physics and mathematics. In classical
mechanics, we have such examples as the Euler top, the harmonic oscillator and the Coulomb potential. In the
theory of non-linear partial differential equations we have famous examples such as the KdV equation. The
Landau-Lifshitz equation and the Heisenberg model arise in the study of magnetism. In classical gauge field
theory we have the (anti-)self-dual Yang-Mills equations and their dimensional reductions, which describe
for instance instantons and magnetic monopoles.

Such systems could also be called “exactly solvable models.” They are characterised by the ability to
write down explicit solutions, often making use of inverse scattering methods. These solutions sometimes
appear as solitons - localised, particle-like solutions. However the feature which forms the central theme of
this report is the existence of conserved quantities.

We know from classical mechanics the importance of the conservation of quantities such as energy and
angular momentum in solving systems like central force problem. It is possible to use conserved quantities
to reduce the number of degrees of freedom of a system to a manageable amount, sometimes letting us solve
by quadrature.

The essential concept of integrability that is to be followed in this report is exactly this: the existence of
conserved quantities. In particular, to ensure integrability - which we still need to define properly - we need
as many conserved quantities as degrees of freedom.

Our focus will be on infinite dimensional systems, and especially a class of field theories known as affine
Toda field theories. The practical problem we want to overcome is then the construction of an infinite
number of conserved quantities. The approach we will use for this task is the reformulation of the equations
of motion as a zero curvature condition. A general reference for this method is [1]. We make use also of the
papers [4], [5] and the lecture notes [3].

This report is at the level of a review: we explain some of the necessary background theory and explore
in detail some non-trivial examples. By doing this, we hope to elucidate important common features of
integrable systems, and gain an insight into this area of research.

Let us first give here a brief overview of integrability as it applies in classical mechanics [2]. Consider
an n-dimensional Hamiltonian system, with coordinates qi, momenta pi (i = 1, . . . , n) and Hamiltonian
H = H(qi, pi). We can describe the motion of the system using the canonical Poisson brackets: {pi, qj} = δij ,
{pi, pj} = {qi, qj} = 0. We then have

ṗi = {H, pi} q̇i = {H, qi} (1.1)

where we note that the Poisson bracket acts as a derivation, {f, gh} = {f, g}h + {f, h}g, and is skew-
symmetric {f, g} = −{g, f}.

For any function f = f(pi, qi) which depends on time only through the coordinates and momenta we
have that

d

dt
f = {H, f} (1.2)

It follows that a function f is conserved if its Poisson bracket with the Hamiltonian vanishes.
Such a system is said to be Liouville integrable if there exist n functions Ij = Ij(qi, pi) which are conserved

and mutually Poisson commuting, {Ij , Ik} = 0∀j, k. In this case it is possible to canonically transform to a
new set of coordinates known as action-angle variables. The action variables are our new momenta, which
are functions of the Ik only, and so are constant. The angle variables are our new coordinates, which evolve
periodically. Geometrically, we can view this as a torus fibration, with base space consisting of all possible
values for the action variables and the fibre at each point being an n-dimensional torus, with the angle
variables as fibre coordinates.

So we then expect a characteristic of infinite-dimensional integrable systems to be the existence of an
infinite number of conserved quantities, which commute under some Poisson bracket.
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In this report we show how this is the case for infinite-dimensional systems admitting a zero curvature
representation, discussing mainly the case of affine Toda field theories. In sections 2 and 3 we present some of
the necessary mathematical preliminaries, introducing the zero curvature condition and showing how it leads
naturally to the time-independence of the trace of the monodromy matrix. We also discuss the Hamiltonian
and r-matrix formalisms.

In section 4 we give the formulation of the general affine Toda field theory associated to an affine Lie
algebra. (The background details on such algebras are given in an appendix.) Section 5 is then given over
to applying the ideas discussed previously to the simplest affine Toda field theory, the sl(2) affine Toda field
theory, which corresponds to the sinh-Gordon equation. We give an explicit construction of a number of the
conserved quantities for this system, as well as obtaining the r-matrix and discussing the theory in light-cone
coordinates. Section 6 shows how to apply the same methods to sl(3) affine Toda field theory.

We conclude in section 7 by showing how we can use any conserved quantity to define a Hamiltonian
flow, yielding an infinite hierarchy of integrable systems. In particular we obtain the modified KdV equation
from affine sl(2) theory expressed in light-cone coordinates.

2 The Zero Curvature Condition

2.1 The condition

We assume we are studying scalar fields φi = φi(x, t) defined over a 1 + 1-dimensional spacetime, with
periodic boundary conditions, φi(x, t) = φi(x + R, t). We denote partial derivatives as ∂

∂tφ ≡ ∂tφ ≡ φ̇ and
∂
∂xφ ≡ ∂xφ ≡ φ

′.
Our starting point is to seek two n×n matrices U(x, t, λ), V (x, t, λ), depending on the fields φi(x, t) and

an additional parameter λ, such that our equations of motion are satisfied iff

[∂t − V, ∂x − U ] = 0 (2.1)

We can regard U(x, t, λ) and V (x, t, λ) as being the time and space components of a vector bundle connection.
This vector bundle has fibre Cn and base space our 1 + 1-dimensional spacetime.

The commutator [∂t − V, ∂x − U ] gives the curvature of the connection, which vanishes if the equations
of motion are satisfied.

Example: The sinh-Gordon equation for one scalar field φ

φ̈− φ′′ = −4m2 sinh 4φ

is equivalent to the zero curvature condition for

U(x, t, λ) =
(

φ̇ mλ−1e2φ +mλe−2φ

mλ−1e−2φ +mλe2φ −φ̇

)

V (x, t, λ) =
(

φ′ −mλ−1e2φ +mλe−2φ

−mλ−1e−2φ +mλe2φ −φ′
)

The connection is only unique up to gauge transformations. Such a transformation corresponds to a
change of basis in the fibres of the vector bundle, and so is given by an invertible matrix g = g(x, t) which
acts by conjugation:

∂x − U → g−1(∂x − U)g = ∂x + g−1∂xg − g−1Ug (2.2)

and similarly for ∂t − V .
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2.2 Parallel transport and the monodromy matrix

Now, the main reason for defining a connection on a vector bundle is to allow us to parallel transport vectors
from fibre to fibre. The idea is that we have a vector ψ in the fibre above a point γ(0) and a path γ(s)
in our base space passing through γ(0). As we move along the path γ we would like to have a way of also
transporting the vector ψ through the corresponding fibres above the points γ(s), such that ψ in some sense
remains constant.

This is achieved once we specify a connection Aµ, with associated covariant derivative ∂µ − Aµ. Then
the parallel transport ψ′ of ψ along the path γ(s) is defined by the condition that the covariant derivative
of ψ′ along γ(s) is zero.

If the curvature of the connection vanishes then parallel transport is well-defined, so that the vectors
obtained by parallel transporting along different paths from a point γ(0) to γ(1) are identical. This can be
seen by considering the infinitesimal parallel transport of a vector ψ, under which

ψ → ψ + (∂µψ −Aµψ) dxµ

where we sum over µ (in our case µ = 0, 1 with x0 ≡ t and x1 ≡ x). If we denote by ψ1 the vector obtained
from the infinitesimal parallel transport x→ x+dxµ1 → x+dxµ1 +dxµ2 and ψ2 the vector obtained by taking
the route x→ x+ dxµ2 → x+ dxµ2 + dxµ1 , then computing the difference between these vectors we find

ψ2 − ψ1 = − (∂µAν − ∂νAµ −AµAν +AνAµ])ψdxµ1dx
ν
2

= [∂µ −Aµ, ∂ν −Aν ]ψdxµ1dx
ν
2

where the commutator [∂µ−Aµ, ∂ν−Aν ] is exactly the curvature of the connection. Thus the zero curvature
condition tells us that for any two paths between two points, ψ1 = ψ2. In particular, the parallel transport
of a vector around a closed loop gives us back the same vector we started with.

We can define the operator of parallel transport along a path γ by

Mγ(x, t, λ) = P exp
(∫

γ

[dxU(x, t, λ) + dt V (x, t, λ)]
)

(2.3)

where P is a path-ordering operator. If we consider dividing γ into N segments γ1, . . . , γN and let

Ln = I +
∫
γn

(dxU + dt V )

and
MN = LN . . . L1

then we can view Mγ as being the N → ∞ limit of MN . The path-ordering operator ensures that the
products LiLj are ordered so that they are multiplied together in the correct order, with “earlier” terms
appearing on the right. This is a complication due to the non-commutativity of matrix multiplication.

The matrix Mγ can also be thought of as being the solution to the parallel transport equations, (∂x −
U)M = 0 and (∂t − V )M = 0 with initial condition M0 = I (here 0 represents a trivial path which is just a
single point). In this context one can also view the path-ordering operator purely as notation denoting the
solution to these equations. It is clear that given a vector ψ then ψ′ = Mγψ is the parallel transport of ψ
along γ.

Let us now consider only the x-direction. The solution to the parallel transport equation (∂x−U)T (x, y, λ) =
0, T (x, x, λ) = I, is the transfer matrix:

T (x, y, λ) = P exp
(∫ x

y

dxU(x, t, λ)
)

(2.4)
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base B
γ(0) γ(1)γ

ψ

ψ′ = Mγψ

Figure 1: Parallel transport on a vector bundle; the operator Mγ gives the change in the vector ψ when we
travel along the path γ in the base space. The straight lines represent individual fibres.

where here our path γ runs from y to x. A special case of the transfer matrix is the monodromy matrix

M(λ) ≡ T (0, R, λ) = P exp

(∫ R

0

dxU(x, t, λ)

)
(2.5)

which is the operator of parallel transport for the entire x domain.

2.3 A generating function for conserved quantities

We will now show that the trace of the monodromy matrix is time-independent, and so can be used as a
generating function for conserved quantities. Consider a closed path defined as follows: starting at x = 0
and running to x = R at time t1, then going from time t1 to time t2 at x = R, and then back to x = 0 at
time t2, and finally back to t = t1 at x = 0.

x = 0 x = R

t = t1

t = t2

Figure 2: Path used to show that the trace of the monodromy matrix does not depend on time.

If we let

S(R) = P exp
(∫ t2

t1

dt V

)
which is equal to S(0) by periodicity, then the complete parallel transport operator for the closed loop is

M(λ)|t1S(R)M−1(λ)|t2S−1(R) = I

⇒M(λ)|t1 = S(R)M(λ)|t2S−1(R)

so that M(λ) at time t1 is conjugate to M(λ) at time t2. It follows that

T (λ) = trM(λ) (2.6)

is constant in time.
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We now want to see how we can use the time-independence of T (λ) to generate conserved quantities.
The idea is to look at the asymptotic expansions of T (λ) as λ → 0 and λ → ∞. In these limits we find
expansions of the form

log T (λ) ≈ λR−
∞∑
r=1

H+
r λ
−r +O(e−λR) (2.7)

for λ→∞, and

log T (λ) ≈ λ−1R−
∞∑
r=1

H−r λ
r +O(e−λ

−1R) (2.8)

for λ→ 0. The H±r are local conserved quantities, which is to say that they are of the form

H±r =
∫ R

0

dx I±r (2.9)

where I±r is a polynomial in the fields and their derivatives. (A global conserved quantity would consist of
multiple integrals.)

This will be illustrated in later sections when we delve into the theory of the sinh-Gordon and sl(3)
affine Toda field equations in more detail. We give here a rough outline of the method [5] for obtaining the
asymptotic expansions: first, we seek gauge transformations which allow us to write U in the form

U = λE − U0 −
∞∑
k=1

λ−kUk

where the sum should end after a finite number of terms. The motivation for seeking this form of the
potential is that for large λ we expect the leading behaviour to be proportional to λ. Here we assume we
have chosen a gauge such that E is diagonal.

The next step is to use a gauge transformation

ω = I +
∞∑
k=1

λ−kωk

which transforms U into

U ′ = λE −
∞∑
k=0

λ−k Ĩk (2.10)

where the matrices Ĩk are diagonal, proportional to some polynomial Ik in the fields and their derivatives.
This gauge transformation cannot be written down immediately - however from

(∂x − U)ω = ω(∂x − U ′)

we can derive a recursion relation which at each step gives us Ĩk, ωk+1 in terms of known quantities. Thus
we can explicitly construct the conserved quantities Ik.

3 The Hamiltonian formalism

3.1 Elements of classical field theory

Traditionally, field theory is studied from the Lagrangian viewpoint. The action of the system is given by

S =
∫
dt dxL(φ, φ̇, φ′) (3.1)
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and the equations of motion are the Euler-Lagrange equations

∂

∂t

∂L
∂φ̇

+
∂

∂x

∂L
∂φ′

=
∂L
∂φ

(3.2)

For the field φ we can define the conjugate momentum π by

π =
∂L
∂φ̇

(3.3)

and the associated Hamiltonian is
H =

∫
dx
(
πφ̇− L

)
(3.4)

The equations of motion can then be described by choosing the correct Poisson bracket relationship. For
the theories we will study in the next sections, this is

{π(x), φ(y)} = δ(x− y) {φ(x), φ(y)} = {φ(x), φ(y)} = 0

with the equations of motion taking the form

π̇ = {H,π} φ̇ = {H,φ}

Note that here we are only discussing the case of a single scalar field φ - the generalisation to multiple fields
should hopefully be obvious.

3.2 The r-matrix

Recall that the tensor product of two matrices A, B (assumed to be both n× n for simplicity) is given by

A⊗B =

a11B . . . a1nB
...

. . .
...

an1B . . . annB

 (3.5)

where each entry shown is an n×n block. We can define a Poisson bracket encompassing every entry of two
matrices A, B whose entries depend on the fields φi and their conjugate momenta by:

{A⊗̃B} =

{a11, B} . . . {a1n, B}
...

. . .
...

{an1, B} . . . {ann, B}

 (3.6)

where {aij , B} is the matrix consisting of the Poisson brackets of aij with the entries of B.
Now we take the transition matrix U(x, t, λ), and consider its Poisson bracket with U(y, t, µ). The goal

is to find a matrix r(λ, µ) such that we can express this Poisson bracket as a certain commutation relation:

{U(x, λ)⊗̃U(y, µ)} = [r(λ, µ), U(x, λ)⊗ I + I ⊗ U(x, µ)]δ(x− y) (3.7)

This is an important step, as we can then show (see [1] for details) that this implies

{T (x, y, λ)⊗̃T (x, y, µ)} = [r(λ, µ), T (x, y, λ)⊗ T (x, y, µ)] (3.8)

where T (x, y, λ) is the transfer matrix (2.4):

T (x, y, λ) = P exp
(∫ x

y

dxU(x, λ)
)
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Obviously this applies to the monodromy matrix M(λ) = T (0, R, λ):

{M(λ)⊗̃M(µ)} = [r(λ, µ),M(λ)⊗M(µ)]

We now take the trace of this equation. This gives zero on the right-hand side as the trace of a commutator
vanishes, and on the left-hand side we use that tr (A⊗B) = trA trB to find

{T (λ), T (µ)} = 0

where T (λ) = trM(λ) is the generating function for our conserved quantities.
If we now consider

{log T (λ), log T (µ)} =
2

T (λ)T (µ)
{T (λ), T (µ)} = 0

and insert the asymptotic expansions (2.7), (2.8) for log T (λ) we find that all the Poisson brackets between
the conserved quantities H±k must vanish:

{Hζ
k , H

η
m} = 0 ζ, η = ± (3.9)

This shows that we have an infinite number of Poisson commuting conserved quantities, and so guarantees
the integrability of the system.

4 Affine Toda Field Theory

We give here the Lagrangian and Hamiltonian formulations of affine Toda field theory. The word “affine” in
this case refers to an affine Lie algebra, whose simple roots are used to define the field theory. The necessary
ideas from the theory of Lie algebras are contained in the appendix.

Our definition of affine Toda field theory is based on that given in [6]. As our Lagrangian we take

L =
∫ R

0

dx

(
1
2

(∂tφ)2 − 1
2

(∂xφ)2 − 2m2
r∑
i=0

1
α2
i

e2αi·φ

)
(4.1)

Here φ is an r-component vector of scalar fields φi and the αi are the simple roots of an affine Lie algebra
ĝ. We have periodic boundary conditions, φi(x, t) = φi(x+R, t).

The equations of motion are of the form

∂2
t φi − ∂2

xφi = −2m2 ∂

∂φi

r∑
j=0

1
α2
j

e2αj ·φ (4.2)

We assume that for each system the associated affine Lie algebra is written in the Cartan-Weyl basis so that
for the simple roots αi we have

[Hj , E±i] = ±(αi)jE±i

Here i = 0, 1, . . . , r with α0 being minus the highest root of the simple Lie algebra g that the affine Lie
algebra is constructed from. The Hj , j = 1, . . . , r are the elements of the Cartan subalgebra of g and Ei is
the raising operator corresponding to the simple root αi.

The connections for this system are1

U = Φ̇ + λ−1meΦI+e
−Φ + λme−ΦI−e

Φ (4.3)

V = Φ′ − λ−1meΦI+e
−Φ + λme−ΦI−e

Φ (4.4)

1Note this is the same as in [6] but with λ↔ λ−1
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where

Φ =
r∑
i=1

φiH
i I+ =

r∑
i=0

Ei I− =
r∑
i=0

E−i (4.5)

The theory may also be formulated using the Hamiltonian

H =
∫ R

0

dx

(
1
2
π2 +

1
2

(∂xφ)2 + 2m2
r∑
i=0

1
α2
i

e2αi·φ

)
(4.6)

where π is an r-component vector of the momenta πi associated to the scalar fields φi. We have Poisson
brackets

{πi(x), φj(y)} = δijδ(x− y) {πi(x), πj(y)} = {φi(x), φj(y)} = 0 (4.7)

and also
πi = φ̇i (4.8)

5 Example: sl(2)

The Lie algebra sl(n) consists of traceless real n× n matrices. A Cartan-Weyl basis for sl(2) is given by

H1 =
(

1 0
0 −1

)
E1 =

(
0 1
0 0

)
E−1 =

(
0 0
1 0

)
(5.1)

with
[H1, E±1] = ±2E±1 (5.2)

so that there is just one simple root, α1 = 2, which is also the highest root of the algebra. It follows that
the generators corresponding to the affine root α0 = −α are

H0 = −H1 E0 = E−1 E−0 = E1 (5.3)

The Hamiltonian for this case is

H =
∫ R

0

dx

(
1
2
π2 +

1
2

(∂xφ)2 +m2 cosh 4φ
)

(5.4)

To illustrate how the Poisson bracket formulation works in practice, we derive the equations of motion:

φ̇(x) = {H,φ(x)} =
∫ R

0

dy
1
2
{π(y)2, φ(x)}

=
∫ R

0

dy π(y){π(y), φ(x)}

=
∫ R

0

dy π(y)δ(y − x)

hence
φ̇ = π (5.5)
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and also

π̇(x) = {H,π(x)} =
∫ R

0

dy

(
1
2
{(∂yφ(y))2, π(x)}+m2{cosh 4φ(y), π(x)}

)
=
∫ R

0

dy
(
∂yφ(y)∂y{φ(y), π(x)}+ 4m2 sinh 4φ(y){φ(y), π(x)}

)
=
∫ R

0

dy
(
− ∂yφ(y)∂yδ(x− y)− 4m2 sinh 4φ(y)δ(x− y)

)
=
∫ R

0

dy ∂2
yφ(y)δ(x− y)− 4m2 sinh 4φ(x)

having integrated by parts, and so
π̇ − φ′′ = −4m2 sinh 4φ (5.6)

or
φ̈− φ′′ = −4m2 sinh 4φ (5.7)

This is known as the sinh-Gordon equation.

5.1 The connection

Constructing the connection terms as defined in (4.3), (4.4), (4.5) we find

U(x, t, λ) = φ̇

(
1 0
0 −1

)
+m

(
0 λ−1e2φ + λe−2φ

λ−1e−2φ + λe2φ 0

)
(5.8)

V (x, t, λ) = φ′
(

1 0
0 −1

)
+m

(
0 −λ−1e2φ + λe−2φ

−λ−1e−2φ + λe2φ 0

)
(5.9)

and it is straightforward to verify that the zero curvature condition gives the equation of motion

φ̈− φ′′ = −4m2 sinh 4φ (5.10)

which agrees with (5.7).
We now seek to gauge transform the connection U(x, t, λ) into the form (2.10).This is achieved as follows:

the non-constant transformation

g1 =
(
e−φ 0

0 eφ

)
(5.11)

sends L ≡ ∂x − U to

L′ = ∂x − (φ̇+ φ′)
(

1 0
0 −1

)
− λm

(
0 1
1 0

)
− λ−1m

(
0 e4φ

e−4φ 0

)
and then applying

g2 =
1√
2

(
1 1
1 −1

)
(5.12)

gives us
L′′ = ∂x − λσ3 −A− λ−1B (5.13)

where we have rescaled λ ≡ λm,

A = (φ̇+ φ′)
(

0 1
1 0

)
= (φ̇+ φ′)σ1 B = m2

(
cosh 4φ − sinh 4φ
sinh 4φ − cosh 4φ

)
= m2 cosh 4φσ3 −m2 sinh 4φ iσ2

(5.14)
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and the three Pauli matrices are

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(5.15)

Note that these satisfy σiσj = Iδij + iεijkσk.
We now claim that there exists a gauge transformation

ω = I +
∞∑
k=1

λ−kωk (5.16)

such that

ω−1L′′ω = ∂x − λσ3 +
∞∑
k=0

λ−k Ĩk

where Ĩk are diagonal and ωk are off-diagonal. Now, this means(
I +

∞∑
k=1

λ−kωk

)(
∂x − λσ3 +

∞∑
k=0

λ−k Ĩk

)
=
(
∂x − λσ3 −A− λ−1B

)(
I +

∞∑
k=1

λ−kωk

)

⇒
∞∑
k=0

λ−k Ĩk+
∞∑
k=1

λ−k+1[σ3, ωk] =
∞∑
k=1

λ−kω′k−
∞∑
k=1

λ−kAωk−
∞∑
k=1

λ−k−1B ωk−A−λ−1B−
∞∑
k=1

λ−kωk

∞∑
r=0

λ−r Ĩr

(5.17)
The first few terms in this sequence are given by

O(λ0) : Ĩ0 + [σ3, ω1] = −A (5.18)

O(λ−1) : Ĩ1 + [σ3, ω2] = ω′1 −Aω1 −B − ω1Ĩ0 (5.19)

O(λ−2) : Ĩ2 + [σ3, ω3] = ω′2 −Aω2 −Bω1 − ω1Ĩ1 − ω2Ĩ0 (5.20)

and in general

Ĩk + [σ3, ωk+1] = ω′k −Aωk −Bωk−1 −
k∑
r=1

ωr Ĩk−r (5.21)

Next we note that for an arbitrary two-by-two matrix P = Pd + Pod we have [σ3, P ] = 2σ3Pod (where Pd
denotes the diagonal part of P and Pod denotes the off-diagonal part). Thus we have a unique solution for
the recursion relations for (Ĩk, ωk+1) if we require ωk+1 to be off-diagonal and Ĩk to be diagonal.

We work out the first few terms. Equations (5.18) and (5.14) give

Ĩ0 + 2σ3ω1 = −(φ̇+ φ′)σ1

hence
Ĩ0 = 0 ω1 = −1

2
(φ̇+ φ′)iσ2 (5.22)

The next term is

Ĩ1 + 2σ3ω2 = −1
2

(φ̇+ φ′)′iσ2 +
1
2

(φ̇+ φ′)2iσ1σ2 −m2 cosh 4φσ3 +m2 sinh 4φ iσ2

hence

Ĩ1 = −
(

1
2

(φ̇+ φ′)2 +m2 cosh 4φ
)
σ3 ω2 = −

(
1
4

(φ̇+ φ′)′ − 1
2
m2 sinh 4φ

)
σ1 (5.23)
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Proceeding in this way we obtain

Ĩ2 =
1
8
∂x(φ̇+ φ′)2I ω3 =

1
4
iσ2

(
−1

2
(φ̇+ φ′)′′ + 4m2 cosh 4φφ′ +

1
2

(φ̇+ φ′)3 + 2(φ̇+ φ′)m2 cosh 4φ
)

(5.24)
and also

Ĩ3 =

[
1
4

(φ̇+ φ′)
(
−1

2
(φ̇+ φ′)′′ + 4m2 cosh 4φφ′ +

1
2

(φ̇+ φ′)3 + 2(φ̇+ φ′)m2 cosh 4φ
)

−1
4

(φ̇+ φ′)′m2 sinh 4φ+
1
2
m4 sinh2 4φ

]
σ3

(5.25)

We have thus shown that

∂x − U → ∂x − λσ3 +
∞∑
k=1

λ−k Ĩk

so

U(x, t, λ) = λσ3 −
∞∑
k=1

λ−k Ĩ+
k

where Ĩk = I+
k σ3 for k odd, and Ĩk = I+

k I for k even. Let us now construct the monodromy matrix

M(λ) = P exp

(∫ R

0

dxU(x, λ)

)
As U is diagonal the path-ordering operator is not needed and we can easily write

M(λ) =

exp
(∫ R

0
dx
[
λ−

∑∞
k=1 λ

−kI+
k

])
0

0 exp
(∫ R

0
dx
[
−λ+

∑∞
k=1(−1)k+1λ−kI+

k

])
 (5.26)

We now take the logarithm of the trace:

log T (λ) = log

[
eλR exp

(
−
∫ R

0

dx

∞∑
k=1

λ−kI+
k

)][
1 + e−2λR exp

(
−2
∫ R

0

dx
∑
k odd

λ−kI+
k

)]

≈ λR−
∞∑
k=1

λ−k
∫ R

0

dx I+
k +O(e−2λR)

as λ→∞.
We conclude that the quantities

H+
k =

∫ R

0

dx I+
k (5.27)

are local conserved quantities of the system. Note however that

H+
2 =

1
8

∫ R

0

dx ∂x(φ̇+ φ′)2 =
1
8

(φ̇+ φ′)2
∣∣∣R
0

which vanishes by our periodic boundary conditions, and thus is a trivial conserved quantity. Indeed every
even-indexed conserved quantity H+

2k is trivial.
The same procedure can be carried out with only minor changes to obtain the quantities H−k . In this

case we start with the gauge transformation g1 = diag (eφ, e−φ) so as to obtain λ−1σ3 as our leading term;
we also end up with

A = (φ̇− φ′)σ1 B = m2 cosh 4φσ3 +m2 sinh 4φ iσ2 (5.28)
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and obtain

I−0 = 0 I−1 = −
(

1
2

(φ̇− φ′)2 +m2 cosh 4φ
)

I−2 =
1
8
∂x(φ̇− φ′)2 (5.29)

It is interesting to note that

H±1 = −
∫ R

0

dx

(
1
2

(φ̇± φ′)2 +m2 cosh 4φ
)

(5.30)

are related to the Hamiltonian (5.4) by

H = −1
2

(H+
1 +H−1 ) (5.31)

and the momentum

P =
∫ R

0

dx φ̇φ′ (5.32)

by

P = −1
2

(H+
1 −H

−
1 ) (5.33)

5.2 Light-cone coordinates

We can also switch to light-cone coordinates, defined by

x± = x± t (5.34)

with the corresponding derivatives

∂± =
1
2

(∂x ± ∂t) (5.35)

The light-cone connections are

U± =
1
2

(U ± V ) (5.36)

with U , V as given at the start of the previous section. Explicitly,

U± = ±∂±φ
(

1 0
0 −1

)
+mλ±1

(
0 e∓2φ

e±2φ 0

)
(5.37)

To express the monodromy matrix in terms of these new operators, we use the fact that the zero curvature
condition allows us to deform our contour of integration at will, once the endpoints are fixed. Rather than
integrate from x = 0 to x = R we choose a two-segment path (figure 3):

x = 0 x = R

t = R
2

x = R
2

C+ C−

Figure 3: Lightcone factorisation of the monodromy matrix

The contour C+ is defined by x = t and hence x− = 0 while x+ runs from 0 to R. The contour C− is
defined by x = R− t, and so by periodicity we have φ(R− t, t) ≡ φ(−t, t), hence this is equivalent to x = −t
so that x+ = 0 and x− runs from 0 to R.
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The monodromy matrix M(λ) then factors as

M(λ) =M−(λ)M+(λ) (5.38)

where

M±(λ) = P exp

(∫
C±
dx± U±(x±, λ)

)
(5.39)

Now let us form the two operators L± = ∂± − U± and use the gauge transformation

g =
(
e−φ 0

0 eφ

)
(5.40)

to obtain
L+ → ∂+ − λσ3 − 2∂+φσ1 (5.41)

L− → ∂− − λ−1m2

(
0 e4φ

e−4φ 0

)
(5.42)

having also rescaled λ ≡ λm.
We now focus just on L+; the gauge transformation

g =
(
λ 2∂+φ
0 λ

)
(5.43)

takes us to

L+ → ∂+ − λ
(

0 1
1 0

)
− λ−1

(
0 4(∂+φ)2 − 2∂2

+φ
0 0

)
(5.44)

Letting U = 4(∂+φ)2 − 2∂2
+φ and diagonalising we find

L+ → ∂+ − λσ3 − λ−1 1
2

(
U −U
U −U

)
(5.45)

We see that L+ is now in the form (5.13) but with A = 0. The gauge transformation ω = I +
∑∞
k=1 λ

−kωk
can then be used to completely diagonalise L+ into the final form ∂+ − λσ3 −

∑∞
k=0 λ

−k Ĩk: the recursion
relations are as in equations (5.18)-(5.21) with A = 0:

O(λ0) : Ĩ0 + [σ3, ω1] = 0 (5.46)

O(λ−1) : Ĩ1 + [σ3, ω2] = ω′1 −B − ω1Ĩ0 (5.47)

O(λ−2) : Ĩ2 + [σ3, ω3] = ω′2 −Bω1 − ω1Ĩ1 − ω2Ĩ0 (5.48)

and in general

Ĩk + [σ3, ωk+1] = ω′k −Bωk−1 −
k∑
r=1

ωr Ĩk−r (5.49)

We find immediately that Ĩ0 = ω1 = 0, and assuming as before that Ĩk is diagonal and ωk is off-diagonal we
then have

Ĩ1 = −U
2
σ3 ω2 =

U
4
σ1 (5.50)

Ĩ2 = 0 ω3 =
U ′

8
iσ2 (5.51)

Ĩ3 =
1
8
U2σ3 (5.52)
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We see that we have k, Ĩk = I+
k σ3 for k odd and I+

k some polynomial in the field and its derivatives, and
Ĩk = 0 for k even.

Returning to L− we apply

g =
1√
2

(
1 1
1 −1

)
(5.53)

such that

L− → ∂− − λ−1m2

(
cosh 4φ − sinh 4φ
sinh 4φ − cosh 4φ

)
(5.54)

We now turn to the construction of the monodromy matrix. It is clear that

M+(λ) =
(

exp
(
λR−

∑∞
k=0 λ

−kh+
k

)
0

0 exp
(
−λR+

∑∞
k=0 λ

−kh+
k

)) (5.55)

with h+
k =

∫
C+ dx+ I

+
k . To calculate M−(λ) we expand

M−(λ) = P exp

(∫
C−
dx− U−

)
≈ I +

∫
C−
dx− U−

which is allowable as we have U− proportional to λ−1, thus

M−(λ) ≈ I + λ−1m2

∫
C−
dx−

(
cosh 4φ − sinh 4φ
sinh 4φ − cosh 4φ

)
+O(λ−2) (5.56)

from which

M(λ) =
(
e+ 0
0 e−

)
+ λ−1m2

((∫
dx− cosh 4φ

)
e+ −

(∫
dx− sinh 4φ

)
e−(∫

dx− sinh 4φ
)
e+ −

(∫
dx− cosh 4φ

)
e−

)
(5.57)

where e± stand for the entries of M+(λ). Taking the trace we have

T (λ) = trM(λ) = exp

(
λR−

∞∑
k=0

λ−kh+
k

)(
1 + λ−1m2

∫
dx− cosh 4φ+O(e−λR)

)
(5.58)

so that taking the logarithm for λ→∞ we find

log T (λ) = λR− λ−1H+
1 +O(λ−2) (5.59)

where

H+
1 = −

(∫
C+
dx+ (2(∂+φ)2 − ∂2

+φ) +m2

∫
C−
dx− cosh 4φ

)
(5.60)

Notice that the term ∂2
+φ is a total derivative and so normally would vanish at the boundary. However we

do not have periodicity at the end points of the lightcone contours C±. Note also that 2(∂+φ)2 = 1
2 (φ̇+ φ′)2

and that if we had expanded for λ→ 0 we would obtain

H−1 = −

(∫
C−
dx− (2(∂−φ)2 − ∂2

−φ) +m2

∫
C+
dx+ cosh 4φ

)
(5.61)

displaying a certain similarity between these and the quantities H±1 found in normal coordinates.
By keeping terms of higher order in the above expansions we could generate the remaining conserved

quantities H+
3 , H

+
5 . Interestingly these would involve multiple integrals in the exponential series for M−,

seemingly implying that these conserved quantities are not of the local type.
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Finally let us note that we can introduce a lightcone Hamiltonian formalism by defining the Poisson
brackets

{φ(x+), φ(x′+)} =
1
4
ε(x+ − x′+)

{φ(x−), φ(x′−)} =
1
4
ε(x− − x′−)

{φ(x+), φ(x′−)} = 0

(5.62)

where φ(x±) is understood to mean φ restricted to C±, and ε(x− y) is the step function,

ε(x− y) =

{
1 x > y

0 x < y
∂xε(x− y) = δ(x− y) (5.63)

With these Poisson brackets we can recover the sinh-Gordon equation on the lightcone as

∂+∂−φ = {H+
1 , ∂−φ} = −m2

∫
dx′−{cosh 4φ(x′−), ∂+φ}

= −4m2

∫
dx− sinh 4φ∂+{φ(x′−), φ(x−)}

= m2

∫
dx− sinh 4φ δ(x′− − x−)

so that we obtain
∂+∂−φ = m2 sinh 4φ (5.64)

Note that ∂+∂−φ = 1
4 (∂2

x − ∂2
t )φ so this agrees with (5.7).

5.3 The r-matrix

In order to give a complete picture of the sl(2) conserved quantities, we sketch here the derivation of the
r-matrix for the connection U(x, t, λ). Recall from section 3 that we seek a 4× 4 matrix r(λ, µ) such that

{U(x, λ)⊗̃U(y, µ)} = [r(λ, µ), U(x, λ)⊗ I + I ⊗ U(x, µ)]δ(x− y) (5.65)

It is easiest to write our connection (5.8) in terms of the Pauli matrices as

U(x, t, λ) = π σ3 +m(λ+ λ−1) cosh 2φσ1 +m(λ−1 − λ) cosh 2φ iσ2 (5.66)

where π = φ̇. We further define k0(λ) = m(λ+ λ−1) and k1(λ) = m(λ−1 − λ) so that

1
2
{U(x, λ)⊗̃U(x, µ)} =

[
k0(µ) sinh 2φσ3 ⊗ σ1 + k1(µ) cosh 2φσ3 ⊗ iσ2 − k0(λ) sinh 2φσ1 ⊗ σ3

− k1(λ) cosh 2φ iσ2 ⊗ σ3

]
δ(x− y)

(5.67)

using the Poisson brackets (4.7). Next we write

[r(λ, µ), U(λ)⊗ I + I ⊗ U(µ)]δ(x− y) = [r(λ, µ), π(σ3 ⊗ I + I ⊗ σ3) + cosh 2φ(k0(λ)σ1 ⊗ I + k0(µ)I ⊗ σ1)

+ sinh 2φ(k1(λ)iσ2⊗I+k1(µ)I⊗iσ2)]δ(x−y)

which we want to equal (5.67). The first thing we note is that no terms containing a π factor appear in
(5.67), so seek our r(λ, µ) so that it commutes with σ3 ⊗ I + I ⊗ σ3. Noting that (a ⊗ b)(c ⊗ d) = ac ⊗ bd
we clearly have [I ⊗ I, σ3 ⊗ I + I ⊗ σ3] = [σ3 ⊗ σ3, σ3 ⊗3 I + I ⊗ σ3] = 0, while as σiσj = −σjσi for distinct
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i, j we see that σ1⊗ σ1 and σ2⊗ σ2 also commute. Taking a small amount of inspiration from [1] we try the
following ansatz for r(λ, µ):

r(λ, µ) = f(λ, µ)(I ⊗ I − σ3 ⊗ σ3) + g(λ, µ)(σ1 ⊗ σ1 + σ2 ⊗ σ2) (5.68)

Our commutator then works out as

−2f
[

cosh 2φ(k0(λ)iσ2 ⊗ σ3 + k0(µ)σ3 ⊗ iσ2) + sinh 2φ(k1(λ)σ1 ⊗ σ3 + k1(µ)σ3 ⊗ σ1

]
δ(x− y)

− 2g
[

cosh 2φ(k0(λ)σ3 ⊗ iσ2 + k0(µ)iσ2 ⊗ σ3 + sinh 2φ(k1(λ)σ3 ⊗ σ1 + k1(µ)σ⊗σ3)
]
δ(x− y)

(5.69)

We now equate the coefficients of the matrix tensor products in (5.69) and (5.67), finding the four equations

σ3 ⊗ σ1 ⇒ k0(µ) = −fk1(µ)− gk1(λ) (5.70)
σ1 ⊗ σ3 ⇒ k0(λ) = fk1(λ) + gk1(µ) (5.71)
σ3 ⊗ iσ2 ⇒ k1(µ) = −fk0(µ)− gk0(λ) (5.72)
iσ2 ⊗ σ3 ⇒ k1(λ) = fk0(λ) + gk0(µ) (5.73)

Subtracting the third equation from the first we have

µf + λg = µ (5.74)

while subtracting the fourth from the second gives

λf + µg = −λ (5.75)

We combine these into the one matrix equation(
µ λ
λ µ

)(
f
g

)
=
(
µ
−λ

)
(5.76)

which is easily solved by inversion, giving

f =
µ2 + λ2

µ2 − λ2
g = − 2λµ

µ2 − λ2
(5.77)

Explicitly, we have found the r-matrix to be

r(λ, µ) =
2

µ2 − λ2


0 0 0 0
0 µ2 + λ2 −2λµ 0
0 −2λµ µ2 + λ2 0
0 0 0 0

 (5.78)

and thus shown the validity of equation (5.65) for sl(2) affine Toda field theory, which in turn implies the
relation

{T (x, y, λ)⊗̃T (x, y, µ)} = [r(λ, µ), T (x, y, λ)⊗ T (x, y, µ)] (5.79)

for T (x, y, λ) the transfer matrix. As explained in section 3, this guarantees that the conserved quantities
H±k are mutually Poisson commuting, and so ensures integrability.

6 Example: sl(3)

A Cartan-Weyl basis for the Lie algebra sl(3) consists of the following Cartan generators

H1 =
1
2

1 0 0
0 −1 0
0 0 0

 H2 =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 (6.1)
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together with the following step operators

E1 =

0 1 0
0 0 0
0 0 0

 E−1 =

0 0 0
1 0 0
0 0 0

 (6.2)

E2 =

0 0 0
0 0 1
0 0 0

 E−2 =

0 0 0
0 0 0
0 1 0

 (6.3)

E3 =

0 0 1
0 0 0
0 0 0

 E−3 =

0 0 0
0 0 0
1 0 0

 (6.4)

where the roots are

± α1 = (±1, 0) ± α2 =

(
∓1

2
,±
√

3
2

)
± α3 =

(
±1

2
,±
√

3
2

)
(6.5)

We take α1 and α2 to be our simple roots, so that α3 = α1 + α2 is the highest root. The affine root is then
α0 = −α3 with corresponding step operators E0 = E−3 and E−0 = E3.

From (4.6) the Hamiltonian is

H =
∫ R

0

dx

(
1
2
π2

1 +
1
2
π2

2 +
1
2

(∂xφ1)2 +
1
2

(∂xφ2)2 + 2m2
[
e2φ1 + e−φ1+

√
3φ2 + e−φ1−

√
3φ2

])
(6.6)

with the Poisson brackets (4.7) giving π1 = φ̇1, π2 = φ̇2 and so equations of motion

φ̈1 − φ′′1 = −2m2
(

2e2φ1 − eφ1+
√

3φ2 − e−φ1−
√

3φ2

)
(6.7)

φ̈2 − φ′′2 = −2
√

3m2
(
eφ1+

√
3φ2 − e−φ1−

√
3φ2

)
(6.8)

6.1 The connection

From equations (4.3), (4.4), (4.5) we have the following connection:

U(x, t, λ) =
1
2

φ̇1 + 1√
3
φ̇2 0 0

0 −φ̇1 + 1√
3
φ̇2 0

0 0 − 2√
3
φ̇2

+m

 0 λ−1eφ1 λe−
1
2φ1−

√
3

2 φ2

λeφ1 0 λ−1e−
1
2φ1+

√
3

2 φ2

λ−1e−
1
2φ1−

√
3

2 φ2 λe−
1
2φ1+

√
3

2 φ2 0


(6.9)

V (x, t, λ) =
1
2

φ
′
1 + 1√

3
φ′2 0 0

0 −φ′1 + 1√
3
φ′2 0

0 0 − 2√
3
φ′2

+m

 0 −λ−1eφ1 λe−
1
2φ1−

√
3

2 φ2

λeφ1 0 −λ−1e−
1
2φ1+

√
3

2 φ2

−λ−1e−
1
2φ1−

√
3

2 φ2 λe−
1
2φ1+

√
3

2 φ2 0


(6.10)

Applying the zero curvature condition to this connection leads to the equations of motion (6.7), (6.8), as
can be directly verified.

We next consider the operator L = ∂x − U . For slight notational convenience we rescale the fields as

ϕ1 ≡
1
2
φ1 ϕ2 ≡

1
2
√

3
φ2 (6.11)
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Then the gauge transformation

g1 =

e−ϕ1−ϕ2 0 0
0 eϕ1−ϕ2 0
0 0 e2ϕ2

 (6.12)

sends L to the form

∂x−λm

0 0 1
1 0 0
0 1 0

−
ϕ̇1 + ϕ′1 + ϕ̇2 + ϕ′2 0 0

0 ϕ̇2 + ϕ′2 − ϕ̇1 − ϕ′1 0
0 0 −2 (ϕ̇2 + ϕ′2)

−λ−1m

 0 e4ϕ1 0
0 0 e−2ϕ1+6ϕ2

e−2ϕ1−6ϕ2 0 0


We now also rescale λ ≡ mλ and we define fi = ϕ̇i + ϕ′i, i = 1, 2 as well as x = e4ϕ1 , y = e−2ϕ1+6ϕ2 ,
z = e−2ϕ1−6ϕ2 before applying the gauge transformation

g2 =
1√
3

1 1 1
1 ω2 ω
1 ω ω2

 ω = e2πi/3 (6.13)

to find that
L→ ∂x − λE −A− λ−1B (6.14)

where

E =

1 0 0
0 ω 0
0 0 ω2

 (6.15)

A =
1
3

 0 (1− ω2)f1 − 3ωf2 (1− ω)f1 − 3ω2f2

(1− ω)f1 − 3ω2f2 0 (1− ω2)f1 − 3ωf2

(1− ω2)f1 − 3ωf2 (1− ω)f1 − 3ω2f2 0

 (6.16)

B =
m2

3

 x+ y + z ω2x+ ωy + z ωx+ ω2y + z
x+ ωy + ω2z ω2(x+ y + z) ωx+ y + ω2z
x+ ω2y + ωz ω2x+ ωy + z ω(x+ y + z)

 (6.17)

having noted the relation 1 + ω + ω2 = 0.
Our connection L is now in the same form (5.13) as we obtained for the sl(2) connection in the previous

section, so that we can apply the gauge transformation
∑∞
k=1 λ

−kωk that sends the connection to the desired
form

∂x − λE +
∞∑
k=1

λ−k Ĩk (6.18)

with the same recursion relations as before:

Ĩ0 + [E,ω1] = −A (6.19)

Ĩ1 + [E,ω2] = ω′1 −Aω1 −B − ω1Ĩ0 (6.20)

and

Ĩk + [E,ωk+1] = ω′k −Aωk −Bωk−1 −
k∑
r=1

ωr Ĩk−r (6.21)

To solve these we again assume ωk is off-diagonal and Ĩk is diagonal. Note that if

ωk =

0 p q
r 0 s
t u 0


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then

[E,ωk] =

 0 p(1− ω) q(1− ω2)
r(ω − 1) 0 s(ω − ω2)
t(ω2 − 1) u(ω2 − ω) 0


It is then simple to obtain

Ĩ0 = 0 ω1 =
1
3

 0 ω2f1 + (ω − 1)f2 ωf1 + (ω2 − 1)f2

f1 + (ω − ω2)f2 0 ωf1 − (ω2 − 1)f2

f1 − (ω − ω2)f2 ω2f1 − (ω − 1)f2 0

 (6.22)

We find that Ĩ1 = −(Aω1)|diag −B|diag is given by

Ĩ1 = −1
3
(
f2

1 + 3f2
2 +m2(x+ y + z)

)1 0 0
0 ω2 0
0 0 ω

 (6.23)

so that our first conserved quantity is

H+
1 = −1

3

∫ R

0

dx
(
(ϕ̇1 + ϕ′1)2 + 3(ϕ̇2 + ϕ′2)2 +m2

[
e4ϕ1 + e−2ϕ1+6ϕ2 + e−2ϕ1−6ϕ2

])
(6.24)

or, changing back to the original field variables φi,

H+
1 = −1

3

∫ R

0

dx

(
1
4

(φ̇1 + φ′1)2 +
1
4

(φ̇2 + φ′2)2 +m2
[
e2φ1 + e−φ1+

√
3φ2 + e−φ1−

√
3φ2

])
(6.25)

By choosing the first gauge transformation (6.12) to be g1 = diag (eϕ1+ϕ2 , e−ϕ1+ϕ2 , e−2ϕ2) we can carry out
the above procedure with the leading term being proportional to λ−1, we then obtain

H−1 = −1
3

∫ R

0

dx

(
1
4

(φ̇1 − φ′1)2 +
1
4

(φ̇2 − φ′2)2 +m2
[
e2φ1 + e−φ1+

√
3φ2 + e−φ1−

√
3φ2

])
(6.26)

so that the Hamiltonian (6.6) is given by

H = −3
(
H+

1 +H−1
)

(6.27)

while the momentum is

P = −3
(
H+

1 −H
−
1

)
=
∫ R

0

dx
(
φ̇1φ

′
1 + φ̇2φ

′
2

)
(6.28)

It is of course also possible to investigate the sl(3) in lightcone coordinates and to obtain its r-matrix: indeed
a general formula for the r-matrices of affine Toda field theory is well-known, see for instance [5].

7 Deformations of sl(2) solutions and KdV flows

7.1 Higher Hamiltonian flows

In the previous sections we have shown how to obtain an infinite number of Poisson-commuting conserved
quantities, H±k . We can take each of these quantities as a Hamiltonian, and introduce auxiliary time
parameters t±k so that we can evolve our fields φi by

∂φi

∂t±k
= {H±k , φi} (7.1)
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We thus obtain fields
φi = φi(x, t, t±1 , t

±
2 , . . . ) (7.2)

which are solutions not only to the original affine Toda field equations, but also to the infinity of higher
Hamiltonian flows defined by (7.1) - this compatibility is ensured by the mutual commutativity of all the
H±k amongst themselves and with the original Hamiltonian, which also shows that each of these equations
are themselves integrable.

7.2 Obtaining the MKdV equation from lightcone sl(2)

As an example we consider affine sl(2) Toda theory on the lightcone. We focus on the positive lightcone
contour C+ where we had the conserved quantity (5.52) given by

h+
3 =

1
8

∫
C+
dx+

(
4(∂+φ)2 − 2∂2

+φ
)2

(7.3)

We calculate ∂t+3 ∂+ = {h+
3 , ∂+} using the lightcone Poisson brackets (5.62):

{φ(x+), φ(x′+)} =
1
4
ε(x+ − x′+)

Dropping the subscript + for convenience, we have

{h+
3 , ∂φ} =

∫
dx
(
2(∂φ)2 − ∂2φ

)
{2(∂φ)2 − ∂2φ, ∂′φ(x′)}

=
∫
dx
(
2(∂φ)2 − ∂2φ

) (
4∂φ{∂φ, ∂′φ(x′)} − ∂2∂′{φ(x), φ(x′)}

)
= −1

4

∫
dx
(
2(∂φ)2 − ∂2φ

) (
4∂φ∂δ(x− x′)− ∂2δ(x− x′)

)
= ∂

( (
2(∂φ)2 − ∂2φ

)
∂φ
)

+
1
4
∂2
(

2(∂φ)2 − ∂2φ
)

having integrated by parts. Evaluating the derivatives, we find

∂t+3
∂+φ = −1

4
∂4

+φ+ 6(∂+φ)2∂2
+φ (7.4)

and rescaling u = 2∂+φ, τ = 1
4 t

+
3 , we find the modified KdV equation in the form

uτ + u+++ − 6u2u+ = 0 (7.5)

with subscripts denoting derivatives.

8 Conclusion

We have thus shown how to exploit the zero curvature condition

[∂t − V, ∂x − U ] = 0 (8.1)

to construct an infinite number of conserved quantities. The fact that this is possible is a remarkable feature
of integrable systems.

Although we used the examples of sl(2) and sl(3) in this review, the general methodology should apply
to any system which admits a zero curvature representation. Hence the ideas we have discussed provide
powerful tools for many problems.
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Asides from the zero curvature condition, the other central theme we have discussed is the Hamiltonian
formalism. The use of Poisson brackets and the introduction of r-matrices provided important insights into
the integrability of affine Toda field theory, and again apply extensively throughout the field of integrable
systems.

We mention here one subtlety that arose in the writing of this report. In the theory of affine sl(2) in
lightcone coordinates we used the unusual gauge transformation (5.43). This was to ensure the appearance
of the total derivative term ∂2

+φ in the our answer for H+
1 , in agreement with for instance [9]. Had we carried

on without this gauge transformation we would not have obtained this term, which is slightly mysterious.
This issue seems to involve the non-periodicity of the lightcone fields, which should require an additional
gauge transformation of the monodromy matrices M±(λ) - however when we implemented this correction
we failed to find the necessary terms. It would seem there is some subtle point here that we did not have
time to cover in this review.

A Lie algebras and affine Lie algebras

We review some background material on Lie algebras, drawing on the presentations in [7], [8].

A.1 Lie algebras

We consider first an ordinary finite-dimensional compact connected Lie group G with associated Lie algebra
g. Recall that a Lie group is a group with the structure of a smooth manifold, and its Lie algebra consists
of the tangent space to the group at the identity, the idea being that in the vicinity of the identity we can
expand a general group element g as

g ≈ 1− iT axa
where xa are some infinitesimal parameters and the T a are elements of the Lie algebra, called the generators
of the group.

Mathematically the Lie algebra has a vector space structure, with the Ta forming a basis. We also have
a bilinear skew-symmetric form [· , ·] : g × g → g called the Lie product, which satisfies Jacobi’s identity:
[X, [Y, Z]]+ cyclic permutations = 0 for any X,Y, Z ∈ g. In the case of a matrix Lie group (or a matrix
representation of a Lie group) the Lie product is simply the matrix commutator. We will implicitly assume
we are dealing with this case in what follows.

The starting point in classifying Lie algebras is to find the largest possible set of (Hermitian) generators
which commute with each other under the Lie product. This set is called the Cartan subalgebra, and we
denote its elements (the Cartan generators) by Hi, i = 1, . . . , r. We then take a basis for g in which the
remaining generators Eα satisfy the eigenvalue equations

[Hi, Eα] = αiEα i = 1, . . . r

The r-component vector α = (αi) is called a root vector. By conjugating the above equation we find that
Eα† ≡ E−α has root vector −α. In fact ±α are the only possible scalar multiples of a root α which are also
roots. Note that for any of the Cartan generators Hi the root vector is the zero vector.

The set {Hi, Eα : i = 1, . . . , r, α a root } then forms a basis for the Lie algebra known as the Cartan-Weyl
basis. The matrices E±α can be thought of as raising and lowering operators, as if we suppose vµ is a common
eigenvector of the Hi such that Hivµ = µivµ, then HiE±αvµ = [Hi, E±α]vµ+E±αHivµ = (±αi+µi)E±αvµ.

The Jacobi identity with X = Hi, Y = Eα and Z = Eβ shows that

[Hi, [Eα, Eβ ]] = (α+ β)i[Eα, Eβ ]

and so for α 6= −β, [Eα, Eβ ] = ε(α, β)Eα+β if α+ β is also a root, for some number ε(α, β). If α+ β is not
a root, then [Eα, Eβ ] = 0. For the final case, if α = −β then [Eα, Eβ ] commutes with all Hi and so must
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be expressible as a linear combination of the Hi. In fact we can choose our basis such that

[Eα, E−α] =
2α ·H
α2

α ·H ≡ α1H1 + · · ·+ αrHr

The benefit of this is that for all roots α then E±α and 2α·H
α2 forms an algebra isomorphic to that of

su(2), which is well known to physicists as corresponding to the quantum mechanical description of angular
momentum. This then allows us to define representations of our Lie algebra g.

However for our purposes, the only point we want to note from the theory of su(2) is that 2α·H
α2 has

integral eigenvalues. In particular if we consider the adjoint representation defined by the action of the Lie
algebra on itself

ad X(Y ) = [X,Y ]

then clearly α ·H has eigenvalues α · β for β a root, and we conclude that for all roots α, β

2α · β
α2

∈ Z

Let us now consider the space of roots α. We can choose an r-dimensional basis {α(i) : i = 1, . . . , r} such
that any root is expressed as a linear combination

α =
r∑
i=1

niα(i)

where the ni are integers, which are either all positive or zero (in which case we say the root α is positive)
or all negative or zero (in which case we say the root α is negative). The sum of all the ni for a root α is
called the height of the root, while the basis elements α(i) are called simple roots.

We end our discussion by noting the remarkable fact that any Lie algebra is completely determined by its
simple roots, as it is possible to reconstruct the entire root system by taking appropriate linear combinations
of simple roots. There is even a way to encode all the information about the simple roots in a matrix called
the Cartan matrix, with entries defined by

Aij = 2
α(i) · α(j)

α2
(j)

i, j = 1, . . . , r

For any Cartan matrix A all the entries are integers, with 2s on the diagonal and the off-diagonal entires
zero or negative.

It is also possible to represent this graphically, using Dynkin diagrams, where each simple root is repre-
sented by a dot, with 0,1,2 or 3 lines joining the dots depending on whether the angle between the roots is
0, 120, 135 or 150 degrees. Longer roots are represented by shaded dots (for a simple Lie algebra there are
at most two roots lengths).

A.2 Affine Lie algebras

An affine Lie algebra is a certain type of infinite-dimensional Lie algebra. The starting point in their
construction is to consider G, the set of smooth maps from the circle S1 into a finite-dimensional compact
connected Lie group G. This forms an infinite-dimensional Lie group known as the loop group of G.

Let γ : z → γ(z) be an element of G. We can write γ(z) as

γ(z) = exp(−T aθa(z)) ≈ 1− iT aθa(z)

where the Ta are the generators of the Lie group (i.e. the basis elements of the Lie algebra), and θa(z) are
certain functions defined on the circle. On the right-hand side we have expanded γ(z) about the identity
element. If we now also expand θa(z) =

∑∞
−∞ θ−na zn as a Laurent polynomial in z we find

γ(z) ≈ 1− i
∑
n,a

T a−nθ
n(z)
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which implies we should take
T an ≡ T azn

as generators for the loop algebra. The defining commutation relations are

[T an , T
n
m] = ifabcT

c
n+m

Next we append a single extra element k to the Lie algebra, with the defining property that it commutes
with all elements of the Lie algebra. For a simple compact Lie group the element k, which is known as a
central extension of the Lie algebra, enters into the commutation relations as

[T am, T
b
n] = ifabcT

c
m+n + kmδabδm+n,0

In all cases that we will discuss, however, we may set k = 0. Now, k also lies in the Cartan subalgebra, the
elements of which are now written as Hi

0. The equations for the root vectors are

[Hi
0, E

α
n ] = αiEαn [k,Eαn ] = 0

This would imply we take as roots (α, 0) - however these are infinitely degenerate with respect to k. To
remove this degeneracy we add one last element to our algebra, in the form of a derivation d which satisfies

[d, T an ] = nT an [d, k] = 0 d† = d

Concretely, we can write d = z d
dz .

We now have all the components of our affine Lie algebra in place. The Cartan subalgebra consists of
Hi

0, k and d, with roots
(α, 0, n)

corresponding to the step operators Enα, and

nδ = (0, 0, n)

corresponding to the generators Hi
n.

Our new simple roots are given by

ai = (α(i), 0, 0) i = 1, . . . , r a0 = (−ψ, 0, 1)

where the α(i) are the simple roots of the original Lie algebra g and ψ is the highest root of that algebra.
The reasoning here is that for a given value of n we can form any root (α, 0, n) by adding simple roots

to na0 = (−nψ, 0, n). Thus the roots a0, ai form a basis for the root system of the affine Lie algebra.
Finally, we define a scalar product by

(α, k, n) · (β, l,m) = α · β + km+ ln

(This is a result of seeking a symmetric scalar product invariant under the action of the group G on the
Lie algebra.) Hence in practice for affine roots (α, 0, n), (β, 0,m) the scalar product agrees with that for
non-affine roots: (α, 0, n) · (β, 0,m) = α · β.

In practice this means when constructing an affine Lie algebra out of a normal finite-dimensional one
g, we start with the root system of g and find the highest root ψ. Then we define the affine simple root
α(0) = −ψ and so essentially have the complete root system. We may also extend our definition of the Cartan
matrix so that i, j run from 0 to r rather than from 1 to r, and append an extra node to the corresponding
Dynkin diagram.
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