USE OF GRID AT CMS: SOFTWARE VALIDATION AND TRACKER
ALIGNMENT

GREGOR BRUNS, University of Leipzig

ABSTRACT. Here I will describe the results of my stay at DESY during the Summer Student Programme
2009. My project focused on two topics in connection with the CMS experiment: validation of new
software releases and the use of the LHC Computing Grid in the alignment procedures. In the first
case I wrote a Python automatization script for the validation procedure, including an easy-to-handle
graphical user interface. This script makes use of the Grid by employing CRAB, the CMS Remote

Analysis Builder.

For the alignment procedures, the use of CRAB was also tested succesfully. By modifying Perl scripts
from the MillePede Production System (MPS) the embedding of CRAB into this system can be achieved.

1. INTRODUCTION

Annually, the Summer Student Programme of
DESY gives students from all over the world the
chance to actively participate in a research project
in one of the important particle physics labs of the
world. I was selected as a member of the CMS
group for the eight weeks of my stay. While the
CMS experiment is located at CERN, the DESY
facility has its own group working in connection
with the group at CERN.

When I arrived at DESY, there were a lot of
application procedures to be fulfilled. Accounts at
DESY and CERN had to be requested and a cer-
tificate for Grid Computing was to be validated.
Since these steps took almost a week, I had time
to familiarize myself with the working environment
I was going to use. The main programming lan-
guage that encompasses interaction with the CMS
Software (CMSSW) is the Python scripting lan-
guage. While I knew some aspects of this lan-
guage at my arrival, there was still much to grasp
and I spent most part of the first week getting to
know Python better. For data analysis the ROOT
toolkit, a C++ library for which a python wrapper
is available, is used most of the time.

In the following sections, I will describe the ba-
sics of the Large Hadron Collider at CERN, the
CMS dectector, the Grid computing network and
of alignment procedures. I will also report on the
work I have done and the results achieved.

1.1. The CMS detector. The CMS (Compact
Muon Solenoid) is one of the four detectors at
the LHC. Besides ATLAS, it is one of the multi-
purpose-detectors that are suited for different
kinds of investigations like searching for the Higgs
boson or supersymmetric particles. Figure 1 shows
the general structure of the LHC with its preac-
celerators and the relative location of the experi-
ments.

LHC

FI1GURE 1. The general structure of LHC.

The LHC[1] will provide proton-proton collisions
with a center of mass energy of 14 TeV and a
design luminosity of 103*ecm~2s~!, which is a re-
markable improvement in comparison with earlier
hadron colliders. As usual for colliders, particles
are accellerated in bunches, so that there is a high
number of collisions every time a bunch crossing

takes place. The energy levels that can be reached

2 GREGOR BRUNS, University of Leipzig

with this machine will be high enough so that de-
finitive answers to challenging problems of high
energy physics can be given, for example whether
there is super symmetry or a Higgs boson. Fur-
thermore, there will probably hints on other exten-
sions on the standard model of particle physics, for
instance if there are extra dimensions on small spa-
tial scales to be discovered. Especially important
are answers in this area in regard to the formula-
tion of a theory that unifies the strong, the weak
and the electromagnetic force.

The CMS detector will play an important role
in this search. Because of the high luminosity and
energy, there will be high levels of radiation, espe-
cially in the collision area, which imposes the need
of a very robust design. Another aspect is the se-
lection of relevant events from the huge amount
of about 10° inelastic collisions per second at the
highest energy. A trigger system was therefore de-
signed to select only about 100 events per second
for further storage and analysis. The remaining
events are discarded. Furthermore, the time be-
tween bunch crossings in the beam line will only
be 25 ns, which calls for a fast read-out of the data.
This means also that the time resolution of the de-
tector has to be very good, so that later events do
not pile up on their predecessors. Of course the
resolution of energy, momentum and angles has to
be very good, too.

As can be seen in the figure 2, the CMS de-
tector consists of several detector sections: The
tracker, electromagnetic and hadronic calorimeter,
the solenoid and the muon chambers.

Superconducting Solenoid
Silicon Tracker

Very-forward Pixel Detector

Calorimeter

Preshower

Hadron
Calorimeter
Electromagnetic
Calorimeter

Compact Muon Solenoid

FIGURE 2. An overview of the CMS detector
parts.

Each component is splitted into several subparts.
The tracker is composed of a silicon pixel detec-
tor and a silicon strip detector, which are in turn

again split in barrel, endcap or disc parts. More
details on the CMS design, especially details about
the materials and detector techniques used, can be
found in the technical design report [2].

1.2. Alignment. While the parts of the detector
can be put in place only with a precision in the or-
der of 100 pm during the installation, the detector
modules itself achieve a precision in the order of a
few pm in detecting particle hits. This fact makes
it necessary to accurately estimate the position of
the detector parts by other means, a process called
alignment. Of course, while LHC is running, there
can be additional shifts and displacements for in-
stance due to thermal expansion in the detector.
The alignment task is therefore continuous and is
not ending with the start of the experiments.

Three different kinds of alignment are used.
First, the position of the detector modules can be
more accurately directly measured as they are in-
stalled. Second, and even more accurate, a laser
alignment system can be used, which consists of
dedicated hardware installed into the CMS detec-
tor. Laser beams are deflected by mirrors with
known orientations and the positions of the mod-
ules can be determined from shifts and deflecting
angles. The third method is the most precise and
is called track based alignment. We will consider
this procedure in more detail.

Imagine a particle going through the detector,
creating hits on its way. The modules will re-
port the coordinates of the hit and based on these
data the trajectory of the particle is reconstructed.
Based on this trajectory a set of expected hits is
obtained and the shift is measured. This is illus-
trated in figure 3, where r;; is the distance between

the reconstructed and the expected hit point.
refitted ; reconstructed

hit m,

design

geometry real geometry

-y

impact point

f(p,q)
< Tresidual r,(p,q)

FIGURE 3. Sketch of a process involved in align-
ment. Shown are reconstructed and expected hit
points.

USE OF GRID AT CMS: SOFTWARE VALIDATION AND TRACKER ALIGNMENT 3

As can be seen, the real geometry and the ideal de-
sign geometry differ somewhat. By shifting the co-
ordinates of the computer internal representation
of the detector this difference can be minimized.
Of course the process is much more complicated
in reality because the number of detector modules
is high (in the order of 100000), each one char-
acterized by three spatial coordinates and three
orientation angles, and there are correlations be-
tween the shifts of the modules. For an alignment
to produce sensible data the analysis of millions of
tracks is required.

Currently, three algorithms are used at CMS.
There is the so-called Hits and Impact method
[3], which minimizes a y?-function constructed
from the residuals mentioned above, but only lo-
cally. Since correlations are mostly not consid-
ered, this algorithm is comparatively fast and low
in consumation of computing resources. The pro-
cedure is iterated, until a good level of conver-
gence is reached. The second method in use is the
Kalman filter algorithm [4], which is also an itera-
tive method. This algorithm can take input from
prior direct measurements or laser based align-
ment. The third one is MillePede [5], which has
been previously used, for instance at H1 and CDF,
and is therefore well tested. Here linear least-
squares fitting is used without iterations, which
requires the inversion of large matrices, but gives
very precise results. Since MillePede can select
non-correlated blocks from sparse matrices and in-
vert them individually, the CPU power needed has
drastically decreased.

Since CMS has not started its operation by now,
the only real particles that can be used for align-
ment are cosmic muons. This has been inten-
sively done, especially worth mentioning are the
two CRAFT (Cosmic Run At Four Tesla) runs in
2008 and 2009 with the magnetic field at 3.8 T
activated.

To design and improve the alignment algo-
rithms instead, simulations with Monte Carlo data
are used. In these simulations, which include all
the detector parts and their hits by particles, the
‘real’ path of the particles is known and therefore
the deviation between this and the reconstructed
track can be accurately determined. Therefore al-
gorithms can be tuned to minimize the shift either
more precisely, in less time or with lower need of
resources. More information about the alignment
procedures at CMS can be found in [6].

1.3. The Grid. With the design and implemen-
tation of LHC arose some technical difficulties in
the processing of the data:

e The LHC experiments will produce large
amounts of output data, CMS alone will
produce more than 3 PB per year,

e This data has to be stored and analyzed,

e There have to be at least ten times the
amount of data in Monte Carlo simula-
tions available to drastically reduce statis-
tical fluctuations, this simulated data also
has to be stored and processed.

The CERN facilities alone cannot cope with this
amount of data and cannot provide the necessary
means of storage and CPU power. For these rea-
sons, the LHC Computing Grid was launched. It
is a world spanning computer network, connect-
ing all facilities participating in the LHC exper-
iments and sharing their resources. Every facil-
ity provides mass storage systems and a computer
farm that can both be globally accessed from every
other research center. Of course, the distribution
of jobs on available computers and the storage of
data has to be managed in an efficient way. A ba-
sic concept of the Grid are the Tiers, ordered by
size and importance (see figure 4). Tier-0 is the
CERN facility and implements a link to the de-
tectors, Tier-1 are all national labs and Tier-2 are
regional centers (like DESY). This continues over
Tier-3 (institutes) to the Tier-4 workstations.

Tier-2 centres
(about 130)

Taman g7 -

[
Spain i.‘,’;

ceinzps s
France

FIGURE 4. A schematic overview of the Grid
structure.

The tool to access the Grid for CMS is called

4 GREGOR BRUNS, University of Leipzig

CRAB (CMS Remote Analysis Builder) and is
part of the CMS Software package. It pro-
vides means of locating data automatically via a
database system, getting information about the
datasets (e.g. the number of events), takes care of
finding suitable Grid resources, transfers the job
to the respective facility and processes it there.
It additionally handles the transfer of the output
files to the mass storage system, where it can be
accessed later. This procedure is controlled via a
highly adjustable configuration file. CRAB can ei-
ther run a standard CMS analysis program (i.e.
cmsRun) or execute a shell script supplied by the
user that is run locally on the Grid computer.

2. SOFTWARE VALIDATION

The CMS SoftWare (CMSSW) package is im-
proved regularly. Changes in the software alter
the way data is processed. To make sure that no
errors are introduced and to confirm expected im-
provements, a standard set of data samples is pro-
cessed with each software release and the results
are plotted in some histograms in comparison with
the results from earlier software releases.

This job is done by several persons, each re-
sponsible for a certain set of data. In my
group physics processes like the creation of tf and
Z — ptu~ decay were considered. The valida-
tion was mainly done using two Python scripts:
harvestRelVal.py, which takes a list of data sets
and produces Python files on which a cmsRun
analysis job can be run to get ROOT data files,
and ALCARECOTkAl Validation.py, which takes a
ROOQOT file and produces the required histograms.

The idea was to automatize this process and
to introduce the CMS Remote Analysis Builder
(CRAB) to it, so that it is independent on the
actual storage of the data. With the release of
CMSSW 3.2.4 the directory structure within the
ROQT files as well as the name of the files was
changed. A change like this usually made a lot
of changes for paths and histogram names in the
scripts necessary. This was also compensated for
in the automated Python script I worked on. It
employs some navigation routines for looking for
the right ROOT file and for the respective his-
togram inside, based on the name of the dataset
considered. All parts of the program are located
in small to medium sized subroutines so that the
behavior of the script can be easily changed if nec-
essary. This maybe makes it applicable for other
purposes too.

When I had seen the interface for the MillePede
Production System (MPS, see next section), I got
the idea of building a small graphical user inter-
face (GUI) for the release validation program too.
Since Perl/Tk, the interface on which the MPS
GUI is based, is in most part self-explainatory, I
quickly found an approach on using Tkinter, the
Python counterpart to Perl/Tk. Tk may not look
very modern, but it is available on most platforms,
is relieable, very easy to understand and highly
configurable. Additionally, it takes very low sys-
tem resources to run and even a remote X Window
display runs almost smooth. This makes it the
right choice for designing interfaces that probably
more than one person will work on.

The user interface consists of a main window
and two additional windows that can be opened by
clicking the corresponding button. The main win-
dow (see figure 5) contains basic and most needed
options, buttons to start the validation process,
quit the program and save the options and to
open the windows for more options and a non-
automated validation process.

(i 777777777 T

sample list fle: [Aest
Reference dir: _[fafs/cem ch/userig/ghruns/cms/refer
PDF Output: Compare to other version — | Version to compare to: [CMSSW 3 24
W Print summary
W Verhose output
W Execute harvesting scripts

 Copy files to reference dir Non-batch mode ... |

PSS oit | seveopions

Wore options

FIGURE 5. Main window of the validation GUI.

The user can select the button ‘Non-batch mode’
to open a window that grants more control over the
execution steps (see figure 6). Buttons are listed
from top to down in the order that the automated
script would execute all of them.

G PER

Please note that you have to read the datasets
first before you can get CRAB output,

draw histograms or copy reference files.

You only have to do this once.

Close window

FIGURE 6. Execution window of the validation
GUL

USE OF GRID AT CMS: SOFTWARE VALIDATION AND TRACKER ALIGNMENT 5

When pressing sequentially all the buttons in
this window, the same results as in the batch queue
should be achieved. However, here the user can
repeat a process with different settings or account
for errors that have happened while processing.

Another window (figure 7) that can be opened
contains additional configuration options that are
not needed all the time. All these options are
stored in an easy to handle configuration file,
which can also be manually edited with every
text editor. Since options are read and stored
in a syntax-based manner, the program does not
itself care about the names of the options it
reads. Therefore, the implementation of additional

options is quite easy and virtually only the GUI

design has to be changed.

PDF output path: 7
CRAB data output path: 7
Minimum version to compare to:
Display ROOT messages: ~ Everything
- Wamings and errors
+ Justemors

- Mothing

i Show canvas while processing

Close

FI1GURE 7. Option window of the validation GUI.

The results of a comparison from version 3.3.0.prel
to 3.2.5 are shown in figure 8.

100 140F

— cussw.azs

sok- 120F

—e— CMSSW_3.3.0_pre1

100f

Number of tracks
Number of events

60
80F

40F
20

20

N
a
=}
S

20000

Number of tracks

15000

10000

5000f

1 1 1 1 1 1 L L 1 L L
0 2 4 6 8 10 0 10 20 30 40 50 60 70 05040302010 0102030405
Number of tracks per event

Track dca [cm]

4500
6000F, 4000

3500F
5500

Number of tracks
Number of tracks

3000
5000 2500F
2000F
4500 1500F
1000F
4000

£ 20000F 7
S 18000F
S 16000F
[
£ 14000F
2 12000F
10000F
8000F
6000F
4000F
2000F

Track @[rad]

L .
% 5 10 15 20 25 30
Track P, [GeV]

FiGure 8. Comparison of some histograms from data created by CMSSW

versions 3.3.0.prel und 3.2.5.

As can be seen, the general shape of the plots
looks the same. However, there is a slight increase
in the number of tracks observed in all histograms,
especially in the lower left one, where a distinct
elevation of the mean value can be seen. If some-
thing like this happens, it is reported to the soft-
ware developers so that they can judge if this was
intended (maybe they changed something in the
cutoff routines) or if this was unexpected.

3. MILLEPEDE PRODUCTION SYSTEM

The MillePede algorithm is one of the algo-
rithms used for track based alignment in CMS. It
is performed in two steps: first there is the Mille
step, where the input tracks are processed in or-
der to produce the input for the alignment, fol-
lowed by the Pede step that performs the actual
tracker alignment. The configuration and setup is
done via a cmsRun input file, where parts of the

6 GREGOR BRUNS, University of Leipzig

detector can be fixed, artificial misalignments be
introduced and so on.

To provide an easy-to-handle interface for the
alignment procedure with MillePede, there exists
the MillePede Production System (MPS) [7]. This
interface consists of a set of Perl scripts that carry
out various jobs like setup of the working directory,
splitting jobs, submitting jobs to the batch queue
and so on. Splitting jobs is possible at the Mille
step, because tracks are processed independently
from each other, and necessary because an align-
ment procedure usually consists of several millions
of events and therefore the run time is way too high
when running without parallelizing.

A general MillePede alignment run involves the
setup of the jobs, submitting the splitted Mille jobs
to a computing queue, checking the results, sub-
mitting the Pede merge job and reading the out-
put data. It was implemented using the batch job
queues locally available at CERN for computing.
More details on the scripts can be found at the
MPS web page.

To make things easier, a graphical user in-
terface, written in Perl/Tk, which is called
MPedeGUI, is available. This GUI was part of the
project by last years summer student supervised
by Andrea Parenti and Silvia Miglioranzi. This
GUI (see figure 9) links several buttons to the MPS
script calls and the entry fields to the relevant ar-
guments. Modifying the scripts did therefore not
pose any problem for the GUI, as changes have to
be done only in the called subroutines.

Millipede Production System GUI
Working Directory: [#afa/cern. ch/user /p/parenti /scratohd /mpeds-test,/rundir_22x/5H
Path to mille Sript: Humber of jobs: Setup a Pede job?

Vafs/cem chiuser/péparenti Browsse 1 - yes — |

Path to cfgipy file: 4 Memary for pede job:

afsscem chiuserpiparenti Browse

Path to data:

yatsécem chiuserfpsparenti Browse

Path to pede Script:

afsscem chiuserpiparenti Browse

Batch system queuefclass: |2500

(Choose

mille queue) — | Setup additional Mille jobs?

(Choose pede queue) — no -

cmscarinhcmscaf nd
Jobname for hatch system:
smalign

Run mps_setup

Fire merge joh:

0 = = EmR o
johSpec to retry:
0 no =

Retry merge job: Force retry on OK jobs:

no =

e | EDEme

|
|
Run mps._retry |
|
Save to Directory:
|

Run mps_save

Les smalign driver it /scratehl /npede-test/rundic_J%/nps
wpede/OHSS_2_2 %/BH updateTin

merge
_runpede_rfop_template sh nsshir /casto
% Wed Jul 15 17:54:35 CEST 2009 elapsed
& ntry ren

e jobid s nevt time/evt remarl
001 jopDOL 37700849 0K 0 36 467 0077 +34
002 Jop00Z 37700856 oK 0 38 53 e
003 jop003 37790857 K 0 3 46
004 Job0D4 37790558 ok 0 38 501 0076
jobm 37701627 0K O
t
&

g

ey
Hean CPU/event

FIGURE 9. The main window of the MPS.

Since alignment will still be an important issue
when the LHC is running and there will be a lot
more alignment data to be processed than now,
the implementation of Grid use is an important
aspect. In principle, CRAB can take over some
part of the job MPS used to do, including fetching
the data and splitting the Mille jobs. Since this
implies important design changes in the MPS, for
instance a change of the directory structure, this
has to be done carefully in the future.

However, the applicability of CRAB to submit
Mille and Pede jobs was tested by me. Some ad-
justments had to be made in the run scripts, a
fitting CRAB configuration file had to be created
and the management of the storaged output files
from the split jobs had to be considered. After all,
this proved succesfull and I obtained the same re-
sults with CRAB as with MPS in doing a simple
alignment job. For this, the local CERN queues
(LSF and CAF) were used. Other Tier-2 facili-
ties, to which users can submit jobs, did not carry
the requested input files, so no test could be done
there. However, in the future with the load of CMS
data this will probably be changed and then the
CRAB configuration can easily be adjusted.

It should be mentioned that some features the
batch queue offered cannot be used anymore when
working with CRAB. For instance, a report on the
CPU time already consumed is not available any-
more.

Finally, T started implementing MPS with
CRAB, without using the CRAB features of data
collecting and job splitting. Because this only
involves changes in command processing and in-
put/output parsing, this can be done without
changing the design of MPS. The results of this
work will be submitted to Andrea Parenti together
with a description of changes and things still to be
done, so that this implementation step can be con-
tinued.

ACKNOWLEDGEMENT

I would like to thank my supervisors, Andrea
Parenti and Justyna Tomaszewska, for their ob-
servation of my work, their instructions and tips
and for the time they spent explaining things and
helping me out. I also would like to thank Gero
Flucke for giving helpful comments and explana-
tions, too. Last but not least I would like to thank
all people that have made this stay at DESY pos-
sible, especially Joachim Meyer, Andrea Schrader
and the lecturers.

USE OF GRID AT CMS: SOFTWARE VALIDATION AND TRACKER ALIGNMENT 7

REFERENCES

[1] L. Evans and P. Bryant (editors). LHC machine. JINST
8 508001, 2008.

[2] S. Chatrchyan et al. (CMS Collaboration). The CMS
experiment at the CERN LHC. JINST 3, S0800/, 2008.

[3] V. Karimaki et al. CMS-NOTE 018, 2006.

[4] W. Adam et al. CMS-NOTE 022, 2006.

[5] G. Flucke et al. CMS Silicon tracker alignment strat-
egy with the MillePede II algorithm. JINST 3, P09002,
2008.

[6] The CMS Collaboration. Alignment of the CMS Silicon
Tracker During Commissioning with Cosmic Ray Par-
ticles. in preparation, 2009.

[7] R. Mankel and A. Parenti. The MillePede Production
System (MPS). https://twiki.cern.ch/twiki/
/bin/view/CMS/SWGuideMillePedeProductionSystem.

