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Abstract

The dependence of the hadronic in Higgs decay on the renormalization scale y is
analyzed in different orders up to NNNLO. According to the requirement of Fastest
Apparent Convergence, the Principle of Minimal Sensitivity and the procedure by
Brodsky, Lepage and Mackenzie, the points with the least dependence are deter-
mined. These optimized scales differ from the simple choice Q = p. The solutions
are not unique beyond NLO, but the different principles lead to comparable results.
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1 Renormalization of the strong coupling

Despite its name, the effective QCD coupling o, = % is not a constant. Due to the renor-
malization of strong vertices a,() runs with the energy scale p. After renormalization at
Lo, the values of a(p) can be calculated for any p with the help of the renormalization

group equation (3) [1].

1.1 Quantum Chromodynamics

QCD behaves quite differently from QED. While QED is an Abelian gauge theory, the non-
Abelian nature of QCD allows for the self-interaction of the gauge bosons (gg-coupling).
Virtual gluons lead to the anti-shielding effect (opposite to QED) which determines the
sign of the beta function (3): the strong coupling decreases.

1.2 Perturbation theory

Physically relevant variables are expanded in powers of the strong coupling a,. This
expansion is truncated after a certain order and therefore only exact up to higher terms.
For example, the strong coupling at the momentum transfer () and any observable C' can
be expressed in the following way.

0@ = i)Yo (2) el

1=0 H

= - (14 e (D)o +ar (L) a2 +ar (L) ) + 0t )

C o= aru- {com(u)ol (%) e (%) +a3(1)Cs (%)] +0(rY)
1.3 Renormalization group equation

In the renormalization group equation (RGE) (3) the S-function describes the change of
as with p.

d
T = Blouw) ©)

= —a2(u) - [Bo + Buas (i) + Boa (1) + Bsad(p)] + O(al(w))

B(as(p)) is a solution of the RGE [2]| and its Taylor expansion of 3(«s) is determined by
the coefficients 3;!. The first and second one are scheme independent, but for 3;, i > 2
the renormalization scheme must be specified. Generally they depend on the number of

!Comparing different articles, the 3; often differ by factors of ﬁ.



fermion flavours n involved at a certain energy. In M S they read |[3]:
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The (-function has the values ((2) = %2 and ((3) = 1.202.
These coefficients are needed for the running coupling in 4-loop approximation [4].
The short notation L = In(u?/Azzg) is used?.
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This function is verified by comparing its derivative to the [-function. They differ
only by terms of O (L75). Thus (4) obeys the RGE to the fourth order.
In order to plot a (i) the parameter Agzg must be calculated. Therefore the experimental
results of e.g. as(Myz) and as(M;) are used as reference values for the number of flavours of
interest. Due to M, < M, < My here it is n = 4 or 5, respectively. These reference values
are helpful because they have been measured experimentally with a high precision. The
corresponding A’s are used to compute the strong coupling also at other scales. The A is
determined which fulfils a(Agg) = as(Mx). In case of 7 the fitted value as(M;) = 0.32
was taken instead of the measured 0.34 since it deviates strongly from the fit average
|6] which would influence the Aj;g significantly. As a cross check ay is evaluated at the
bottom threshold with n =4 or 5. The values in tab.(1) agree up to 0.4%.

Table 1: Determintation of Ay
My |GV 7] [ ou(Mx) [0 | Agrg | ol (04)
MZ — 91.1876 || 0.1176 [7] 0.2037 | 0.223
= 1.77684 || 0.32 [6] |4 | 0.2862 | 0.224

2Be careful, in both of Bethke’s papers [5], [6] the logarithm is forgotten in the definition of L!
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(X.S(A) for M, =91.1876 GeV and (xg(MZ) =0.1176 Running coupling (x.s(u) for A = 0.2037 GeV
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Figure 1: Determination of A (left) and running coupling (right) with n = 5 and A =
0.2037

2 Scale dependence

2.1 Arbitrary choice of the renormalization scale

Having specified a renormalization scheme, the choice of the renormalization scale y is still
arbitrary. A priori there is no unique principle to resolve the scale ambiguity. Nevertheless,
physical observables must not depend on this arbitrary scale since they are well-defined,
measurable quantities. This is provided as long as the infinite perturbation series is taken
into account. The coefficients themselves can be scale dependent, but the depencies of
different order cancel each other. However, if the series is truncated at the nth order, a
scale dependence remains. In order to minimize the theoretical uncertainties it is crucial
to reduce the p-dependence by an optimal fixing of the scale. Furthermore, it would be
interesting to estimate from the nth order also the contribution of the (n+1)th order.

2.1.1 Calculation of coefficients

A physical observable does not depend on p, but the the coefficients C; (%) depend

logarithmically on the ratio of the physical scale () and the renormalization scale u [8|. In
the following the coefficients in eq.(2) are calculated up to the third order by expanding
as(Q) and C in terms of ag(p) and by using the renormalization group equation (3). In
each order one expects the structure

2 2 02
C; (Q> =2+ Y (Q—2) + CP1p? (—2) + o+ V! (Q—2)
T T T T

Differentiating both the left and right hand side of eq.(1) allows for a comparison of
coefficients.

d d
= —0(Q) (B + Fros(Q) + Ba0(@)) + O(a?) (5)



Then the square of (1) is inserted into eq.(5), where the arguments are left out for brevity
(ai = q; <%>> Therefore the binomial theorem

(1+2)™ = f: <7Z>xk

k=0

is applied to calculate o™(Q) with an arbitrary power m to order O(a™"3(u)).

a™(Q) = al(p) - [1+ aros(p) + asal(p) + azad(p)]™
m(m—1) ,

= (0 [+ maa(0) + oy + "Dtz
+ (may + mm — Dayay + "=V )4 007+ ()

(6)
= aZ(Q) = aZ(p) - [1+ 2aa,(p) + (202 + a)ag(w)] + O(aZ (1))
= ﬂ(as(Q» — ( ) [50 + (61 + 25()@1)043(/1/)
+ (Boai + Prar + Bz + 2(Brar + Boaz))a ()] + O(3 (1)) (7)

The right hand side of (1) yields the derivatives of the a;.

d da da da
Comparing the coefficients of eq. (7) and (8) leads to:

dal

dnQZ —o (9)
da2

dTQQ = —b =26 @ (10)
da

T = P ool = 3hiar — 2hea (1)

This system of equations is solved by integrating (9) and inserting it in (10), then
these two are used for eq. (11).

(8) = (%)
(3) - sor(E) ()
o8) - () o () (@) o

The expansion of C' must also hold for the special case Q) = pu.

¢ = ar- et 0 (4) ot + o (L) a2+ €a () atiw)

a (@) - [Co + Ci(1)as(@) + C2(1)aZ(Q) + Cs(1)a(Q)]
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Taking o?(Q) = o2(u) - (1 +3aja,s(p)) from (6) with m = 3, one gets the pu-dependent
coefficients C; by sorting the terms of C by powers of a4(u) and using the a-coefficients
a; known from (12-14).

C=ay"(n) [ Co+as(p)-[Ci(1) +mCoai]
1(@/n)

ag(u) . [02(1) + (m + 1)@101(1) + mCLQC(] + WQ%CO]
C2(@Q/n)
30, . m(m + 1) 2
Oés(/J,) [03(1) + (m + 2)02(1)a1 + (m + 1)01(1)@2 + 9 C’l(l)al
+ m(m — 1)00@1@2 + m(m — 16)(m — 2) C(]CL? + mCOCL3] ]
Now the coefficients can be read off:
@) _ —1In Q—2 -m
Gy (ﬁ) =C1(1) -1 (qu) BoCo (15)
Q = —1In Q—2 - [(m m n Q’ M 2
e (2) = -m (L) - fon+ e +man) +a (L) 2D
(16)
9 = m a m a 7m(m +1) a?
6 (2) =cua) + (m + DCa)an + m+ D0 + 2Dy
+ m(m — 1)Coaras + m(m = 16)(m — Q)Coai’ + mCyas
+ In? <%) [(m+1) (% + 1) 2C1(1) +m <m + g) Bo1Co]
5 (Q*\ mm+1)(m+2) .,
—In (F) . 6 By Co (17)

The last step in Cj required the auxiliary calculations for the coefficients of In® and

In®:
() [ {ezm e 220 s (i)
A () [ e @H)woﬁlco.m(m%)]

2.2 Best choices of the scale

There exist some semi-heuristic-deductive approaches to resolve the scale ambiguity to
some extent. Nevertheless, the procedures described in the following do not always provide
unique solutions and cannot (so far) be applied to arbitrarily high orders. But at least
the requirement of FASTEST APPARENT CONVERGENCE, the PRINCIPLE OF MIMINAL
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SENSITIVITY and the scheme of BRODSKY-LEPAGE-MACKENZIE enable us to figure out
where physical observables depend least on the scale, on higher orders or on the number
of flavours. This is nicely reviewed in [9)].

2.2.1 Fastest Apparent Convergence (FAC)

Grunberg presented the FAC procedure [10]. This allows to truncate the expansion of an
observable R at a low order by choosing the renormalization scheme (RS) such that the
higher coefficients r; vanish. Here the r; represent the RS so that R can be described by

R = ag(p) - (14 rios(p) + r203(p) + -..).

Let & be the coupling in the chosen scheme having the coefficients v;. Then R reduces to
(with a = a,(p))
R=a=a-(1+va+uvna’+.).

In second order v; follows from R=a - (1+ma)=a- (1 +via) =a= vy =1y.
Changing the RS with a fixed scale p is equivalent to redefining the scale in a certain
scheme [9] according to  — p* = p-exp(—ry/b) with b = 5—2 or by adjusting A — A* = A -
exp(+4r1/b). In higher orders (>NLO) also the expansion coefficients 7, 3, ... or vg, vs, ...
must be changed with logarithms In(A*?/A?) [10]. But this correspends to a change not
only of the optimized scale, but also of the renormalization scheme. Alternatively, the MS
scheme is maintained and the coefficients are chosen as follows. In NNLO the requirement
of Fastest Apparent Convergence allows different constraints on the expansion parameters.
Either the NLO or NNLO contribution vanishes, e.g.

Rro = Rnro &1 =0 (18)
Rnro = Rynro Sry=0 (19)

Another possibility is to constrain ry and 7y simultaneously: R.o = Rynro-

2.2.2 Principle of Minimal Sensitivity (PMS)

In Stevenson’s Principle of Minimal Sensitivity [11] the optimum RS is characterized by
the condition

OR

%‘RS:RSbest
As the RS is represented by A, this can be written more formally as

OR® 9
or  or

where 7 := bln(u/A) and R® is the second order approximation. The idea behind it is
to find the 7 or corresponding scale u, respectively, at which the truncated observable
changes least when p is varied. Using the RGE (3) with ¢ = 3;/8 and m = 1 here
the optimized coefficient 7, is obtained from a comparison of coefficients in the derivative
which is postulated to equal zero in order to achieve a minimal sensitivity.

=0

[a™(7) + ™ (7) - (7)]

()
8];_ = o?- %—1—@-(27’1(1+a0)+cz =0
N—— v

0% =0 (i)

(20)



With 7 = 7,4 and & = «(7), r1(7) — 7 must be constant w.r.t. 7 (i) and the coefficient
= _2(Tc&c) (ii) leads to the optimized second order approximation

(21)

opt

1+ ia
RY, = R<2)(f):@~[1+f1a]:a-[ +2ac}

1+a
2.2.3 Brodsky-Lepage-Mackenzie (BLM)

The ansatz by Brodsky, Lepage and Mackenzie [12] absorbs all contributions from vacuum
polarization into corrections of ag(p). The number of possible fermion loops depends
directly on the number of flavours n. Therefore the BLM-criterion rescales y — p* such
that the second order coefficient becomes independent of n. Writing a := 2= a physical
observable has the following coefficients in second order [9]:

R =a(p) - (1+ (An + B) a())
N———

Changing the scale introduces logarithms.

a(p) = a(p’) = a(p)- (1= ba(p)In(u*/p))

=R = a(p") - (1+ (An+ B+bln(u"/p)) a(p)) (22)
1
Inserting b = —%n + 1—21, r] can be made independent of n by choosing p* = Ap.
« 1 11
ri = n-(A-— 3 In(\)) +B + 5 In(A)
N—_—— —
=0
=In(\) = 34 = u*=p*! (23)

3 Corrections for the Higgs decay in higher orders

3.1 Hadronic Higgs decay

The Higgs boson can decay in first order over a top quark triangle into two gluons. This

includes one ttH vertex and two ay vertices. Accordingly, the decay width starts with o2
in LO. The Born level reads |13]:

2
GrM3 (o (1)
r orn H -
Born(H — g9) 36mv2 -

But the LO is not sufficient since the diagrams with more quarks and gluons in the final
states in (O)(a?) (see [13]) contribute reasonably. So the general decay width

V2Gr
My

I'(H — gg) = Ct-S(Va)
with the renormalized M;-dependent coefficient function C and the vacuum polarization

of the Higgs field Vj is expressed as the Born width times the correction factor [14] (here
in O(a?)) [15]



K =1+ 17.9167a + (156.81 — 5.7083 Ly )a” + (467.68 — 122.44 L, + 10.94L7)a® (24)
Here is Ly :=In <JJ“/[J—§2 and a := 2. In [13] and [15] Q = = Mpy has already been

H
inserted. Even though the Higgs mass is not known, My < 114 GeV was excluded by LEP

and a light Higgs is favoured by the electroweak x? fit. For this reason My = 120 GeV is
assumed here®. CDF and DQ|16] published the combined result M; = 173.1 GeV.

3.2 Reconstruction of the u-dependence

For analyzing the u-dependence of the K-factor (similar to [17]) it is necessary to regain
the terms in p. There are two possibilities: one can multiply C? -V using the decoupling
relation between o and o [18] and the running top mass [19]. This procedure yields
a p-dependent expression which reproduces the result in |15 when the Higgs mass is in-
serted.

A more efficient way is the application of the RGE (3) on (24) which recoveres the log-
arithms In <A;[2 ) The correction factor consists of the contributions from LO (1), NLO

(Ki(p) o< @) and NNLO (K5(u) o< a?). The coefficients are obtained with m = 2 from
(15)-(17) where the constants Cy, C1(1), C2(1), C3(1) emerge from comparison to [13]
because they have set = My or to [15] in case of C5(1).

1 /9 7 M3
~—_——
Ci(1)
1 149533 363 495 19 (M2 )

tal (e — 50 - @) - (]

tn- (_%+—<<2>+ Z«B) - %m (Aj—%)) +n’ (% - —<< >)>

(G e () o (52)

+ 043' [ ( (25200 -+ 36101( ) + 45002(1)) In <]Z—§)

2 2
+ (6685C1(1) + 76051 Co) In? (%) —463C, - In® <%)] (25)

Since the decay width T'(H — gg) oc K - o as the observable of interest is proportional to
a? and the Higgs mass is the physical reference value for the scale with ay = as(My) =

3unlike [13] where they use a LEP excluded Higgs mass
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0.116, we define

o?(p)
Cro(p) = o
+

K - S

Cnro(p) = (1 =
Cnyvro(p) = (14 Ky(p) + Ka(p)) - O‘i(%/j)

and analyze the scale dependence of the different orders in fig. (2).

3.3 Application of the scale finding procedures

In this section the principles of chapter (2.2) are applied to the Higgs decay width. The
results of the determination of the best scales are summarized in tab. (2).

FAC The scales for vanishing higher order coefficients can be found numerically. Ac-
cording to (18) a vanishing NLO coefficient requires an intersection between the curves
Cro(p) and Cnpo(p) which happens at ‘/JFAC = 11.5946 GeV ‘ The NLO does not con-
tribute here. Requiring a zero NNLO (Cyro(p) = Cnyro(p)) leads to two intersections.
Thus, the solution is not unique! However, the solution ppac = 2.1219 can be excluded
from a physical point of view as this scale is two orders of magnitude smaller than M.
So | urpac = 50.8799 | is regarded as the proper scale. NLO and NNLO cancel each other

at HEAC = 20.5534 GeV |.

PMS A minimal sensitivity is reached at a stationary point. For this reason the deriva-
tives are calculated. The LO decreases monotonously so that there is no maximum or
minimum. But the higher orders have maxima.

o2 . 2 dC(p) 2 da?(p)

_ 2 2
A v L K (p) + pra(p)

(26)

With the knowledge of the g-function we can use:

pda”(p) L. pda(p)

dpz n H dp? = —na (B + afy + o’ B2) + O(a"?) (27)
—_——
B

Writing L,g = In (1\;—22) the C-factor becomes
H

Cnnro(p) = o - [Co+ a(Cy + CLyuy) + o (Co + CyLyuy + CélLiH)]
%,—/ 7

Dl D2

so that the derivative in (26) can be expressed as

dCNNLO(,U)

42 a'[=40, Do) + a°[—451 Dy — 303, D1] + o’ [=262Cy — 361Dy — 260D

+ a'[=262Co — 3By D1 + Cy + CY Lu] + o*[—260Co + Cf]
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For the NLO (27) is applied only up to §; and (3.3) up to D; resulting in the following
total derivative:

dCnro(p)

d,u2 = Oé5 [—BﬁlDl] + Oé4 [—26100 — 350D1] + 043 [—25000 + Ci]

The NLO has one stationary point at | pupys = 10.4658 GeV‘ whereas the NNLO so-

lution is again not unique: ‘,upMS = 43.95GeV or 1.822 GeV | The second value is close
to the unphysical FAC solution and is neglected for the same reason.

BLM According to (23) with A = —L the BLM-scale is calculated as

pprv = My exp (—5&) = 39.38 GeV

3.4 Comparison of the results

The correction factors as functions of the p and the optimized scales are visualized in fig.
(2). The intersections and stationary points are close to each other. This shows that FAC
and PMS yield similar, but not equal results. The values for the best scales are larger
for NNLO than for NLO. The NLO BLM result, however, is close to the NNLO FAC and
PMS results.

C' is evaluated at the optimized scales as listed in tab. (2). The values are listed
for the different principles and orders. For instance NLO means a zero next-to-leading
order, NNNLO-+NNLO-+NLO denotes that these three orders vanish simultaneously, i.e.
Cro = CnNnNLO-

A common method to estimate the error is to insert the half and the double scale. Some-
times it works to predict the subsequent order if

Cyniiro(p) € [Chnro(p/2), Cnnro(2p)]

But in this case the estimation only works for the simple choice 4 = Q = Mpy. On the
other hand it becomes evident that this simple arbitrary choice can only be regarded as
a first guess since these C-values differ reasonably from the optimized ones. However, in
NNNLO the best FAC-scale = 118 GeV =~ My is quite close to the inserted Higgs mass
My = 120 GeV. The NNNLO results for the scale from FAC and PMS are much higher
than the lower orders.
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Figure 2: p-dependence of C' in several orders

Table 2: Best scales

‘ Principle ‘ Order ‘ w |GeV] ‘ C(p) ‘ C(u/2) ‘ C(2p) ‘
FAC NLO 11.5946 | 2.1853 2.0184 2.0483
FAC NNLO 50.8799 | 1.8114 1.7637 1.7640
FAC NNLO (2.1219) | (-1.0006) | (6.3876) | (0.2709)
FAC NLO-+NNLO 20.5534 | 1.7163 2.3094 1.3287
FAC NNNLO 118 1.7463 0.7379 2.1757
FAC NNNLO+NNLO 103 1.6075 0.4273 2.1204
FAC NNNLO+NNLO+NLO | 71.7 1.1072 -0.6765 1.9089
PMS NLO 10.4658 | 2.1895 1.9334 2.0759
PMS NNLO 43.95 1.8117 1.7333 1.7788
PMS NNLO (1.822) | (-1.0161) | (16.0554) | (-0.0198)
PMS NNNLO 645 2.3296 2.2646 2.2883
BLM NLO 39.38 1.8906 2.0916 1.6789
uw= Mg | LO My 0.9477 1.1710 0.7834
= Mg | NLO My 1.5581 1.7608 1.3782
w= My | NNLO My 1.7450 1.8062 1.6488
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4 Further observables in higher orders

This project also comprised searching in literature for more observables which are already
available in higher orders and could be studied with the methods presented above. Some
of them are listed in the following.

T-Decays

e O(a?) accuracy [20]

4
s

e towards O(a}) accuracy [21]
e hadronic Z- and 7- decays in O(a?) [22]

Moments and Sum Rules

e Higher moments of DIS structure functions at NNLO |23]
e Towards NNLO in the sum rule for the kaon distribution amplitude [24]

e O(a?) corrections to the Bjorken sum rule for polarized electroproduction and to
the GLLS sum rule

Others
e Higgs decay into b-quarks at O(al) |25]
e Vector boson production at hadron colliders in NNLO [26]

e NNLO corrections to four-fermion production |27]

14



5 Conclusion

5.1 Summary

The depenence of the hadronic decay width of the Higgs boson on the renormalization
scale was analyzed by regaining the scale dependent coefficients from the renormalization
group equation. The arbitrary choice of the scale was optimized by the application of the
requirement of Fastest Apparent Convergence (FAC), the Principle of Minimal Sensitivity
(PMS) and the flavour-independent procedure by Brodsky, Lepage and Mackenzie (BLM).
The optimized scales differ notably from the simple choice p = Q = Mpy. Compared to
each other, PMS and FAC result in similar, but not exactly equal values. However, the
solution is not unique in NNLO! One still has to judge from a physical point of view
which of the two solutions is regarded as the best value. The BLM procedure is so far
only possible in NLO.

5.2 Outlook

The analyses could be extended to as high orders as possible, in case of FAC and PMS
if numerical methods are used to determine intersections and vanishing derivatives. Fur-
thermore, it would be interesting to investigate the scale dependence of the observables
listed in chapter (4).

The concepts still need to be extended to allow for analytical calculations of coefficients
beyond the NLO. Although some authors have claimed to have resolved the scale ambi-
guities in NLO, the solutions are not unique in NNLO. Therefore the procedures should
be improved.
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