
QCD and Renormalization:Dependene of Observables on the RenormalizationSale in Higher Orders of the Strong Coupling αsElina FuhsDESY Summerstudent Program 2009Supervisor: Dr.Markus DiehlTheory GroupSeptember 10, 2009

AbstratThe dependene of the hadroni in Higgs deay on the renormalization sale µ isanalyzed in di�erent orders up to NNNLO. Aording to the requirement of FastestApparent Convergene, the Priniple of Minimal Sensitivity and the proedure byBrodsky, Lepage and Makenzie, the points with the least dependene are deter-mined. These optimized sales di�er from the simple hoie Q = µ. The solutionsare not unique beyond NLO, but the di�erent priniples lead to omparable results.
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1 Renormalization of the strong ouplingDespite its name, the e�etive QCD oupling αs = g2
s

4π
is not a onstant. Due to the renor-malization of strong verties αs(µ) runs with the energy sale µ. After renormalization at

µ0, the values of αs(µ) an be alulated for any µ with the help of the renormalizationgroup equation (3) [1℄.1.1 Quantum ChromodynamisQCD behaves quite di�erently from QED. While QED is an Abelian gauge theory, the non-Abelian nature of QCD allows for the self-interation of the gauge bosons (gg-oupling).Virtual gluons lead to the anti-shielding e�et (opposite to QED) whih determines thesign of the beta funtion (3): the strong oupling dereases.1.2 Perturbation theoryPhysially relevant variables are expanded in powers of the strong oupling αs. Thisexpansion is trunated after a ertain order and therefore only exat up to higher terms.For example, the strong oupling at the momentum transfer Q and any observable C anbe expressed in the following way.
αs(Q) = αs(µ)

∞∑

i=0

ai

(
Q

µ

)

αi
s(µ)

= αs(µ) ·
(

1 + a1

(
Q

µ

)

αs(µ) + a2

(
Q

µ

)

α2
s(µ) + a3

(
Q

µ

)

α3
s(µ)

)

+ O(α5
s) (1)

C = αm
s (µ) ·

[

C0 + αs(µ)C1

(
Q

µ

)

+ α2
s(µ)C2

(
Q

µ

)

+ α3
s(µ)C3

(
Q

µ

)]

+ O(αm+4
s (2)1.3 Renormalization group equationIn the renormalization group equation (RGE) (3) the β-funtion desribes the hange of

αs with µ.
d

d ln(µ2)
αs(µ) = β(αs(µ)) (3)

= −α2
s(µ) · [β0 + β1αs(µ) + β2α

2
s(µ) + β3α

3
s(µ)] + O(α5

s(µ))

β(αs(µ)) is a solution of the RGE [2℄ and its Taylor expansion of β(αs) is determined bythe oe�ients βi
1. The �rst and seond one are sheme independent, but for βi, i ≥ 2the renormalization sheme must be spei�ed. Generally they depend on the number of1Comparing di�erent artiles, the βi often di�er by fators of 1

4π
.
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fermion �avours n involved at a ertain energy. In MS they read [3℄:
β0 =

1

4π

[

11 − 2

3
n

]

β1 =
1

(4π)2

[

102 − 38

3
n

]

β2 =
1

(4π)3

[
2857

2
− 5033

18
n +

325

54
n2

]

β3 =
1

(4π)4

[
149753

6
+ 3564ζ(3)−

(
1078361

162
+

6508

27
ζ(3)

)

n +

(
50065

162
+

6472

81
ζ(3)

)

n2 +
1093

729
n3

]

The ζ-funtion has the values ζ(2) = π2

6
and ζ(3) = 1.202.These oe�ients are needed for the running oupling in 4-loop approximation [4℄.The short notation L ≡ ln(µ2/ΛMS) is used2.

αs(µ
2) =

1

β0L
− 1

β3
0L

2
β1 ln L +

1

β3
0L

3

(
β2

1

β2
0

(
ln2 L − lnL − 1

)
+

β2

β0

)

+
1

β4
0L

4

(
β3

1

β3
0

(

− ln3 L +
5

2
ln2 L + 2 lnL − 1

2

)

− 3
β1β2

β2
0

ln L +
β3

2β0

) (4)This funtion is veri�ed by omparing its derivative to the β-funtion. They di�eronly by terms of O (L−6). Thus (4) obeys the RGE to the fourth order.In order to plot αs(µ) the parameter ΛMS must be alulated. Therefore the experimentalresults of e.g. αs(MZ) and αs(Mτ ) are used as referene values for the number of �avours ofinterest. Due to Mτ < Mb < MZ here it is n = 4 or 5, respetively. These referene valuesare helpful beause they have been measured experimentally with a high preision. Theorresponding Λ's are used to ompute the strong oupling also at other sales. The Λ isdetermined whih ful�ls αs(ΛMS) = αs(MX). In ase of τ the �tted value αs(Mτ ) = 0.32was taken instead of the measured 0.34 sine it deviates strongly from the �t average[6℄ whih would in�uene the ΛMS signi�antly. As a ross hek αs is evaluated at thebottom threshold with n =4 or 5. The values in tab.(1) agree up to 0.4%.Table 1: Determintation of ΛMS

MX [GeV℄ [7℄ αs(MX) n ΛMS α
(n)
s (Mb)

MZ = 91.1876 0.1176 [7℄ 5 0.2037 0.223
Mτ = 1.77684 0.32 [6℄ 4 0.2862 0.224

2Be areful, in both of Bethke's papers [5℄, [6℄ the logarithm is forgotten in the de�nition of L!4



Figure 1: Determination of Λ (left) and running oupling (right) with n = 5 and Λ =
0.20372 Sale dependene2.1 Arbitrary hoie of the renormalization saleHaving spei�ed a renormalization sheme, the hoie of the renormalization sale µ is stillarbitrary. A priori there is no unique priniple to resolve the sale ambiguity. Nevertheless,physial observables must not depend on this arbitrary sale sine they are well-de�ned,measurable quantities. This is provided as long as the in�nite perturbation series is takeninto aount. The oe�ients themselves an be sale dependent, but the depenies ofdi�erent order anel eah other. However, if the series is trunated at the nth order, asale dependene remains. In order to minimize the theoretial unertainties it is ruialto redue the µ-dependene by an optimal �xing of the sale. Furthermore, it would beinteresting to estimate from the nth order also the ontribution of the (n+1)th order.2.1.1 Calulation of oe�ientsA physial observable does not depend on µ, but the the oe�ients Ci

(
Q
µ

) dependlogarithmially on the ratio of the physial sale Q and the renormalization sale µ [8℄. Inthe following the oe�ients in eq.(2) are alulated up to the third order by expanding
αs(Q) and C in terms of αs(µ) and by using the renormalization group equation (3). Ineah order one expets the struture

Ci

(
Q

µ

)

= C
(0)
i + C

(1)
i ln

(
Q2

µ2

)

+ C
(2)
i ln2

(
Q2

µ2

)

+ ... + C
(i)
i lni

(
Q2

µ2

). Di�erentiating both the left and right hand side of eq.(1) allows for a omparison ofoe�ients.
d

dlnQ2
(l.h.s.) =

d

dlnQ2
αs(Q) = β(αs(Q))

= −α2
s(Q) · (β0 + β1αs(Q) + β2α

2
s(Q)) + O(α5

s) (5)5



Then the square of (1) is inserted into eq.(5), where the arguments are left out for brevity
(

ai ≡ ai

(
Q
µ

)). Therefore the binomial theorem
(1 + x)m =

∞∑

k=0

(
m

k

)

xkis applied to alulate αm
s (Q) with an arbitrary power m to order O(αm+3

s (µ)).
αm

s (Q) = αm
s (µ) ·

[
1 + a1αs(µ) + a2α

2
s(µ) + a3α

3
s(µ)

]m

= αm
s (µ) · [1m + ma1αs(µ) + (ma2 +

m(m − 1)

2
a2

1)α
2
s(µ)

+ (ma3 + m(m − 1)a1a2 +
m(m − 1)(m − 2)

6
a3

1)α
3
s(µ)] + O(αm+4

s (µ))(6)
⇒ α2

s(Q) = α2
s(µ) · [1 + 2a1αs(µ) + (2a2 + a2

1)α
2
s(µ)] + O(α5

s(µ))

⇒ β(αs(Q)) = − α2
s(µ) · [β0 + (β1 + 2β0a1)αs(µ)

+ (β0a
2
1 + β1a1 + β2 + 2(β1a1 + β0a2))α

2
s(µ)] + O(α5

s(µ)) (7)The right hand side of (1) yields the derivatives of the ai.
d

d lnQ2
αs(Q) =

d a1

d lnQ2
α2

s(µ) +
d a2

d lnQ2
α3

s(µ) +
d a3

d lnQ2
α4

s(µ) (8)Comparing the oe�ients of eq. (7) and (8) leads to:
d a1

d lnQ2
= −β0 (9)

d a2

d lnQ2
= −β1 − 2β0 a1 (10)

d a3

d lnQ2
= −β2 − β0a

2
1 − 3β1a1 − 2β0a2 (11)This system of equations is solved by integrating (9) and inserting it in (10), thenthese two are used for eq. (11).

a1

(
Q

µ

)

= −β0ln

(
Q2

µ2

) (12)
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(
Q

µ

)

= +β2
0 ln

2

(
Q2

µ2

)

− β1ln

(
Q2

µ2

) (13)
a3

(
Q

µ

)

= −β3
0 ln

3

(
Q2

µ2

)

+
5

2
β0β1ln

2

(
Q2

µ2

)

− β2ln

(
Q2

µ2

) (14)The expansion of C must also hold for the speial ase Q = µ.
C = αm

s (µ) ·
[

C0 + C1

(
Q

µ

)

αs(µ) + C2

(
Q

µ

)

α2
s(µ) + C3

(
Q

µ

)

α3
s(µ)

]

= αm
s (Q) ·

[
C0 + C1(1)αs(Q) + C2(1)α2

s(Q) + C3(1)α3
s(Q)

]6



Taking α3
s(Q) = α3

s(µ) · (1+3a1αs(µ)) from (6) with m = 3, one gets the µ-dependentoe�ients Ci by sorting the terms of C by powers of αs(µ) and using the α-oe�ients
ai known from (12-14).

C =αm
s (µ) · [ C0 + αs(µ) · [C1(1) + mC0a1]

︸ ︷︷ ︸

C1(Q/µ)

α2
s(µ) · [C2(1) + (m + 1)a1C1(1) + ma2C0 +

m(m − 1)

2
a2

1C0]
︸ ︷︷ ︸

C2(Q/µ)

α3
s(µ) · [C3(1) + (m + 2)C2(1)a1 + (m + 1)C1(1)a2 +

m(m + 1)

2
C1(1)a2

1

+ m(m − 1)C0a1a2 +
m(m − 1)(m − 2)

6
C0a

3
1 + mC0a3] ℄Now the oe�ients an be read o�:

C1

(
Q

µ

)

=C1(1) − ln

(
Q2

µ2

)

· mβ0C0 (15)
C2

(
Q

µ

)

=C2(1) − ln

(
Q2

µ2

)

· [(m + 1)β0C1(1) + mβ1C0] + ln2

(
Q2

µ2

)

· m(m + 1)

2
β2

0C0(16)
C3

(
Q

µ

)

=C3(1) + (m + 2)C2(1)a1 + (m + 1)C1(1)a2 +
m(m + 1)

2
C1(1)a2

1

+ m(m − 1)C0a1a2 +
m(m − 1)(m − 2)

6
C0a

3
1 + mC0a3

=C3(1) − ln

(
Q2

µ2

)

· [mβ2C0 + (m + 1)β1C1(1) + (m + 2)β0C2(1)]

+ ln2

(
Q2

µ2

)

· [(m + 1)
(m

2
+ 1
)

β2
0C1(1) + m

(

m +
3

2

)

β0β1C0]

− ln3

(
Q2

µ2

)

· m(m + 1)(m + 2)

6
β3

0C0 (17)The last step in C3 required the auxiliary alulations for the oe�ients of ln2 and
ln3:

ln2

(
Q2

µ2

)

·
[

β2
0C1(1) ·

{

1 + 2m +
m(m − 1)

2

}

+ β0β1C0 ·
{

5

2
m + m(m − 1)

}]

= ln2

(
Q2

µ2

)

·
[

β2
0C1(1) · (m + 1)

(m

2
+ 1
)

+ β0β1C0 · m
(

m +
3

2

)]

ln3

(
Q2

µ2

)

· β3
0C0

[

m(m − 1) +
m(m − 1)(m − 2)

6
+ m

]

= ln3

(
Q2

µ2

)

· β3
0C0

m(m + 1)(m + 2)

62.2 Best hoies of the saleThere exist some semi-heuristi-dedutive approahes to resolve the sale ambiguity tosome extent. Nevertheless, the proedures desribed in the following do not always provideunique solutions and annot (so far) be applied to arbitrarily high orders. But at leastthe requirement of Fastest Apparent Convergene, the Priniple of Miminal7



Sensitivity and the sheme of Brodsky-Lepage-Makenzie enable us to �gure outwhere physial observables depend least on the sale, on higher orders or on the numberof �avours. This is niely reviewed in [9℄.2.2.1 Fastest Apparent Convergene (FAC)Grunberg presented the FAC proedure [10℄. This allows to trunate the expansion of anobservable R at a low order by hoosing the renormalization sheme (RS) suh that thehigher oe�ients ri vanish. Here the ri represent the RS so that R an be desribed by
R = αs(µ) · (1 + r1αs(µ) + r2α

2
s(µ) + ...).Let ᾱ be the oupling in the hosen sheme having the oe�ients vi. Then R redues to(with α ≡ αs(µ))

R = ᾱ = α · (1 + v1α + v2α
2 + ...).In seond order v1 follows from R = α · (1 + r1α) = α · (1 + v1α) = ā ⇒ v1 = r1.Changing the RS with a �xed sale µ is equivalent to rede�ning the sale in a ertainsheme [9℄ aording to µ → µ∗ = µ ·exp(−r1/b) with b = β0

8π
or by adjusting Λ → Λ∗ = Λ ·

exp(+r1/b). In higher orders (≥NLO) also the expansion oe�ients r2, r3, ... or v2, v3, ...must be hanged with logarithms ln(Λ∗2/Λ2) [10℄. But this orrespends to a hange notonly of the optimized sale, but also of the renormalization sheme. Alternatively, the MSsheme is maintained and the oe�ients are hosen as follows. In NNLO the requirementof Fastest Apparent Convergene allows di�erent onstraints on the expansion parameters.Either the NLO or NNLO ontribution vanishes, e.g.
RLO = RNLO ⇔ r1 = 0 (18)

RNLO = RNNLO ⇔ r2 = 0 (19)Another possibility is to onstrain r1 and r2 simultaneously: RLO = RNNLO.2.2.2 Priniple of Minimal Sensitivity (PMS)In Stevenson's Priniple of Minimal Sensitivity [11℄ the optimum RS is haraterized bythe ondition
∂R

∂RS
|RS=RSbest

= 0As the RS is represented by Λ, this an be written more formally as
∂R(2)

∂τ
=

∂

∂τ

[
αm(τ) + αm+1(τ) · r1(τ)

]
,where τ := bln(µ/Λ̃) and R(2) is the seond order approximation. The idea behind it isto �nd the τ or orresponding sale µ, respetively, at whih the trunated observablehanges least when µ is varied. Using the RGE (3) with c = β1/β0 and m = 1 herethe optimized oe�ient r̄1 is obtained from a omparison of oe�ients in the derivativewhih is postulated to equal zero in order to ahieve a minimal sensitivity.

∂R(2)

∂τ
= α2 ·







∂r1

∂τ
− 1

︸ ︷︷ ︸

=0 (i)

−α · (2r1(1 + αc) + c)
︸ ︷︷ ︸

=0 (ii)







= 0 (20)8



With τ̄ ≡ τopt and ᾱ ≡ α(τ̄), r1(τ) − τ must be onstant w.r.t. τ (i) and the oe�ient
r̄1 = − c

2(1+ᾱc)
(ii) leads to the optimized seond order approximation

R
(2)
opt = R(2)(τ̄) = ᾱ · [1 + r̄1ᾱ] = ᾱ ·

[
1 + 1

2
ᾱc

1 + ᾱ

] (21)2.2.3 Brodsky-Lepage-Makenzie (BLM)The ansatz by Brodsky, Lepage and Makenzie [12℄ absorbs all ontributions from vauumpolarization into orretions of αs(µ). The number of possible fermion loops dependsdiretly on the number of �avours n. Therefore the BLM-riterion resales µ → µ∗ suhthat the seond order oe�ient beomes independent of n. Writing a := αs

π
a physialobservable has the following oe�ients in seond order [9℄:

R = a(µ) · (1 + (An + B)
︸ ︷︷ ︸

r1

a(µ))Changing the sale introdues logarithms.
a(µ) → a(µ∗) = a(µ) · (1 − ba(µ) ln(µ∗/µ))

⇒ R = a(µ∗) · (1 + (An + B + b ln(µ∗/µ))
︸ ︷︷ ︸

r∗
1

a(µ)) (22)Inserting b = −1
3
n + 11

2
, r∗1 an be made independent of n by hoosing µ∗ = λµ.

r∗1 = n · (A − 1

3
ln(λ))

︸ ︷︷ ︸

=0

+B +
11

2
ln(λ)

⇒ ln(λ) = 3A ⇒ µ∗ = µe3A (23)3 Corretions for the Higgs deay in higher orders3.1 Hadroni Higgs deayThe Higgs boson an deay in �rst order over a top quark triangle into two gluons. Thisinludes one ttH vertex and two αs verties. Aordingly, the deay width starts with α2
sin LO. The Born level reads [13℄:

ΓBorn(H → gg) =
GF M3

H

36π
√

2

(

α
(n)
s (µ)

π

)2But the LO is not su�ient sine the diagrams with more quarks and gluons in the �nalstates in (O)(α2
s) (see [13℄) ontribute reasonably. So the general deay width

Γ(H → gg) =

√
2GF

MH
C2

1 · ℑ(VH)with the renormalized Mt-dependent oe�ient funtion C1 and the vauum polarizationof the Higgs �eld VH is expressed as the Born width times the orretion fator [14℄ (herein O(α3
s)) [15℄ 9



K = 1 + 17.9167a + (156.81 − 5.7083LtH)a2 + (467.68 − 122.44LtH + 10.94L2
tH)a3 (24)Here is LtH := ln

(
M2

t

M2
H

) and a := αs

π
. In [13℄ and [15℄ Q = µ = MH has already beeninserted. Even though the Higgs mass is not known, MH ≤ 114 GeV was exluded by LEPand a light Higgs is favoured by the eletroweak χ2 �t. For this reason MH = 120 GeV isassumed here3. CDF and DØ[16℄ published the ombined result Mt = 173.1 GeV.3.2 Reonstrution of the µ-dependeneFor analyzing the µ-dependene of the K-fator (similar to [17℄) it is neessary to regainthe terms in µ. There are two possibilities: one an multiply C2

1 ·VH using the deouplingrelation between α
(5)
s and α

(6)
s [18℄ and the running top mass [19℄. This proedure yieldsa µ-dependent expression whih reprodues the result in [15℄ when the Higgs mass is in-serted.A more e�ient way is the appliation of the RGE (3) on (24) whih reoveres the log-arithms ln

(
M2

H

µ2

). The orretion fator onsists of the ontributions from LO (1), NLO(K1(µ) ∝ α) and NNLO (K2(µ) ∝ α2). The oe�ients are obtained with m = 2 from(15)-(17) where the onstants C0, C1(1), C2(1), C3(1) emerge from omparison to [13℄beause they have set µ = MH or to [15℄ in ase of C3(1).
K(µ) = 1

︸︷︷︸

C0

+ α ·








1

π

(
95

4
− 7

6
n

)

︸ ︷︷ ︸

C1(1)

−2 β0 ln

(
M2

H

µ2

)








+ α2· [
1

π2
(
149533

288
− 363

8
ζ(2) − 495

8
ζ(3)− 19

8
ln

(
M2

H

µ2

)

+ n ·
(

−4157

72
+

11

2
ζ(2) +

5

4
ζ(3) − 2

3
ln

(
M2

H

µ2

))

+ n2 ·
(

127

108
− 1

6
ζ(2)

)

)

−
(

3 β0

π

(
95

4
− 7

6
n

)

+ 2 β1

)

ln

(
M2

H

µ2

)

+ 3 β2
0 ln2

(
M2

H

µ2

)

]

+ α3· [
C3(1)

π3
− (2β2C0 + 3β1C1(1) + 4β0C2(1)) ln

(
M2

H

µ2

)

+
(
6β2

0C1(1) + 7β0β1C0

)
ln2

(
M2

H

µ2

)

− 4β3
0C0 · ln3

(
M2

H

µ2

)

] (25)Sine the deay width Γ(H → gg) ∝ K ·α2 as the observable of interest is proportional to
α2 and the Higgs mass is the physial referene value for the sale with αH ≡ αs(MH) =3unlike [13℄ where they use a LEP exluded Higgs mass
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0.116, we de�ne
CLO(µ) =

α2(µ)

α2
H

CNLO(µ) = (1 + K1(µ)) · α2(µ)

α2
H

CNNLO(µ) = (1 + K1(µ) + K2(µ)) · α2(µ)

α2
Hand analyze the sale dependene of the di�erent orders in �g. (2).3.3 Appliation of the sale �nding proeduresIn this setion the priniples of hapter (2.2) are applied to the Higgs deay width. Theresults of the determination of the best sales are summarized in tab. (2).FAC The sales for vanishing higher order oe�ients an be found numerially. A-ording to (18) a vanishing NLO oe�ient requires an intersetion between the urves

CLO(µ) and CNLO(µ) whih happens at µFAC = 11.5946 GeV . The NLO does not on-tribute here. Requiring a zero NNLO (CNLO(µ) = CNNLO(µ)) leads to two intersetions.Thus, the solution is not unique! However, the solution µFAC = 2.1219 an be exludedfrom a physial point of view as this sale is two orders of magnitude smaller than MH .So µFAC = 50.8799 is regarded as the proper sale. NLO and NNLO anel eah otherat µFAC = 20.5534 GeV .PMS A minimal sensitivity is reahed at a stationary point. For this reason the deriva-tives are alulated. The LO dereases monotonously so that there is no maximum orminimum. But the higher orders have maxima.
α2

H · µ2dC(µ)

dµ2
= µ2dα2(µ)

dµ2
· K(µ) + µ2α2(µ)

dK(µ)

dµ2
(26)With the knowledge of the β-funtion we an use:

µ2dαn(µ)

dµ2
= n αn−1 · µ2dα(µ)

dµ2

︸ ︷︷ ︸

β

= −nαn+1(β0 + αβ1 + α2β2) + O(αn+3) (27)Writing LµH ≡ ln
(

µ2

M2
H

) the C-fator beomes
CNNLO(µ) = α2 · [C0 + α(C1 + C ′

1LµH
︸ ︷︷ ︸

D1

) + α2 (C2 + C ′

2LµH + C ′′

2 L2
µH

︸ ︷︷ ︸

D2

)]so that the derivative in (26) an be expressed as
dCNNLO(µ)

dµ2
= α7[−4β2D2] + α6[−4β1D2 − 3β2D1] + α5[−2β2C0 − 3β1D1 − 2β0D2]

+ α4[−2β2C0 − 3β0D1 + C ′

2 + C ′′

2LµH ] + α3[−2β0C0 + C ′

1]11



For the NLO (27) is applied only up to β1 and (3.3) up to D1 resulting in the followingtotal derivative:
dCNLO(µ)

dµ2
= α5 [−3β1D1] + α4 [−2β1C0 − 3β0D1] + α3 [−2β0C0 + C ′

1]The NLO has one stationary point at µPMS = 10.4658 GeV whereas the NNLO so-lution is again not unique: µPMS = 43.95 GeV or 1.822 GeV . The seond value is loseto the unphysial FAC solution and is negleted for the same reason.BLM Aording to (23) with A = − 7
6π

the BLM-sale is alulated as
µBLM = MH exp

(
− 7

2π

)
= 39.38 GeV3.4 Comparison of the resultsThe orretion fators as funtions of the µ and the optimized sales are visualized in �g.(2). The intersetions and stationary points are lose to eah other. This shows that FACand PMS yield similar, but not equal results. The values for the best sales are largerfor NNLO than for NLO. The NLO BLM result, however, is lose to the NNLO FAC andPMS results.

C is evaluated at the optimized sales as listed in tab. (2). The values are listedfor the di�erent priniples and orders. For instane NLO means a zero next-to-leadingorder, NNNLO+NNLO+NLO denotes that these three orders vanish simultaneously, i.e.
CL0 = CNNNLO.A ommon method to estimate the error is to insert the half and the double sale. Some-times it works to predit the subsequent order if

CNn+1LO(µ) ∈ [CNnLO(µ/2), CNnLO(2µ)]But in this ase the estimation only works for the simple hoie µ = Q = MH . On theother hand it beomes evident that this simple arbitrary hoie an only be regarded asa �rst guess sine these C-values di�er reasonably from the optimized ones. However, inNNNLO the best FAC-sale µ = 118 GeV ≈ MH is quite lose to the inserted Higgs mass
MH = 120 GeV. The NNNLO results for the sale from FAC and PMS are muh higherthan the lower orders.
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Figure 2: µ-dependene of C in several ordersTable 2: Best salesPriniple Order µ [GeV℄ C(µ) C(µ/2) C(2 µ)FAC NLO 11.5946 2.1853 2.0184 2.0483FAC NNLO 50.8799 1.8114 1.7637 1.7640FAC NNLO (2.1219) (-1.0006) (6.3876) (0.2709)FAC NLO+NNLO 20.5534 1.7163 2.3094 1.3287FAC NNNLO 118 1.7463 0.7379 2.1757FAC NNNLO+NNLO 103 1.6075 0.4273 2.1204FAC NNNLO+NNLO+NLO 71.7 1.1072 -0.6765 1.9089PMS NLO 10.4658 2.1895 1.9334 2.0759PMS NNLO 43.95 1.8117 1.7333 1.7788PMS NNLO (1.822) (-1.0161) (16.0554) (-0.0198)PMS NNNLO 645 2.3296 2.2646 2.2883BLM NLO 39.38 1.8906 2.0916 1.6789
µ = MH LO MH 0.9477 1.1710 0.7834
µ = MH NLO MH 1.5581 1.7608 1.3782
µ = MH NNLO MH 1.7450 1.8062 1.6488
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4 Further observables in higher ordersThis projet also omprised searhing in literature for more observables whih are alreadyavailable in higher orders and ould be studied with the methods presented above. Someof them are listed in the following.
τ -Deays
• O(α3

s) auray [20℄
• towards O(α4

s) auray [21℄
• hadroni Z- and τ - deays in O(α4

s) [22℄Moments and Sum Rules
• Higher moments of DIS struture funtions at NNLO [23℄
• Towards NNLO in the sum rule for the kaon distribution amplitude [24℄
• O(α3

s) orretions to the Bjorken sum rule for polarized eletroprodution and tothe GLLS sum ruleOthers
• Higgs deay into b-quarks at O(α4

s) [25℄
• Vetor boson prodution at hadron olliders in NNLO [26℄
• NNLO orretions to four-fermion prodution [27℄
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5 Conlusion5.1 SummaryThe depenene of the hadroni deay width of the Higgs boson on the renormalizationsale was analyzed by regaining the sale dependent oe�ients from the renormalizationgroup equation. The arbitrary hoie of the sale was optimized by the appliation of therequirement of Fastest Apparent Convergene (FAC), the Priniple of Minimal Sensitivity(PMS) and the �avour-independent proedure by Brodsky, Lepage and Makenzie (BLM).The optimized sales di�er notably from the simple hoie µ = Q = MH . Compared toeah other, PMS and FAC result in similar, but not exatly equal values. However, thesolution is not unique in NNLO! One still has to judge from a physial point of viewwhih of the two solutions is regarded as the best value. The BLM proedure is so faronly possible in NLO.5.2 OutlookThe analyses ould be extended to as high orders as possible, in ase of FAC and PMSif numerial methods are used to determine intersetions and vanishing derivatives. Fur-thermore, it would be interesting to investigate the sale dependene of the observableslisted in hapter (4).The onepts still need to be extended to allow for analytial alulations of oe�ientsbeyond the NLO. Although some authors have laimed to have resolved the sale ambi-guities in NLO, the solutions are not unique in NNLO. Therefore the proedures shouldbe improved.AknowledgementsI would like to thank Dr.Markus Diehl for supervising this projet. His explanations andadvises were always very helpful.I am also thankful to Prof.Dr.Ahmed Ali for answering some questions.Speial thanks to Aleksandra for interesting disussions and mutual enouragement!Further thanks go to Prof.Dr. Joahim Meyer and Andrea Shrader for organizing thisgreat summer students program 2009 at DESY.
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