
Event display for the International Linear Collider
Summer student report

Stewart Martin-Haugh, supervisor Steve Aplin
Physics Computing/IT

September 10, 2009

1 Introduction

The International Linear Collider (ILC) is a proposed high-energy physics experiment,
and will be the second machine (after the LHC) to effectively probe the TeV energy
scale. It is an e+e− collider, with

√
s = 500GeV maximum centre of mass energy. Very

broadly summarised, the ILC will be able to make precision measurements of new physics
discovered at the LHC, with the cleaner experimental profile offered by an e+e− collider [1].
Many decisions about the experiment have yet to be made: the most important of which
are where and when it will be built, and which detector prototype it will adopt. There are
three proposed detector prototypes: ILD, SiD and Fourth. In order to evaluate the physics
case for the machine, and distinguish between the different detectors, an unprecedented
level of initial analysis using full Monte Carlo data has already been performed. This
undertaking means that much of the ILC software is mature at a far earlier stage than
for previous experiments. Visualisation is important already at this stage, in order to
check the validity of reconstruction, simulation, and to explore the different strengths and
weaknesses of the detector concepts. The processing chain is shown in figure 1.

Figure 1: Overview of the ILC software framework and processing chain.

1

2 The Generic Event Viewer

One of the early tasks of the project was to evaluate whether a newly developed event
display might be suitable for the ILC. The event display in question, GenericEventViewer,
is (as of the time of writing) being developed by Andreas Moll [3] and colleagues at the
Max Planck Institute for Physics in Munich. It is written in C++ and uses the QT 4
framework for its graphical user interface. It currently offers some attractive features,
in particular its modularity and modern choice of tools. Since the ILC is a long-term
project, it is important, at this stage, to choose standard computer software likely to be
available and supported over the next few years. In the version used for evaluation, it was
possible to show tracks and geometric primitives, but this was not yet extended to allow
standard ILC event and geometry files to be read. Once this functionality is in place, and
an initial release has been made, it would be interesting to re-evaluate the software.

3 The C Event Display

The next focus of the project was the C Event Display (CED), so-called because of its
choice of programming language. It operates using a simple client-server communication
model, which will be discussed in detail later. It is lightweight and relatively simple , but
its main shortcoming is that it offers no graphical user interface, and cannot be customised
at runtime. One of the goals of this project was to investigate the viability of a graphical
user interface for CED.

3.1 Fisheye Transforms

A HEP detector centred at the interaction point of an accelerator is usually cylindrically
symmetric, with small (∼cm) inner detectors ranging to larger outer detectors. This
disparity of scale is a problem for the human observer, because it makes difficult to view
the hierarchy of interactions at all levels. The ILC detector concepts use the particle flow
algorithm [4], in which a single particle is followed through the tracking detectors and
calorimeters. The relative importance of a detector element is not proportional to its size.
In fact, different detector elements are more significant for different particles. This is only
possible if we adopt a non-Euclidean coordinate system for the event display, exaggerating
the size of the inner detector relative to the outer detectors. A popular example of this is
the “fish-eye” transform, given [5] as follows:

ρ =
√

x2 + y2 (1)

ρF =
ρ

1 + αρ
(2)

zF =
z

1 + α|z| (3)

φF = φ (4)

It is easy to verify that the transform is non-singular at the origin (unlike the choice
zF = log(zF), and tends to 1 as the ρ and z co-ordinates tend to infinity. The trans-
form thus corresponds to a mapping of the space {0,∞} onto the space {0, 1}. Using
the absolute value of z and keeping the angle the same allows the cylindrical symmetry

2

to be maintained. After the transform, the co-ordinate system must be changed back to
Cartesian. Two helper functions were written to perform this transform in CED: firstly

Figure 2: Front view of the ILD for an e+e− ⇒ tt̄ event with (top) and without (bottom)
fisheye.

fisheye transform(), which implements it for an arbitrary x, y, z relative to the beam axis,
and a second, single fisheye transform(), which implements it for a single co-ordinate only.
In addition to this, the ced draw methods were altered to include the fisheye transform.
Altering each function individually to this end means that this is not a general solution.
A suggestion for a more elegant implementation may be found in [6]. The idea is that
one works directly with the Vertex Buffer in OpenGL, leaving all the ced draw methods
intact, and offering performance improvements, particularly with respect to hardware ac-
celeration. Additionally, this means that new drawing methods could be designed without
consideration of the fisheye transform. This modularises the code as well as making it
less prone to errors.

3.2 Server-client communication

As it stood before the project, CED (the server) would accept hits, tracks, and detector
geometry through the Marlin client (specifically the MarlinCED class). CED was unable
to send information back to the client, which is a clear barrier to a graphical user interface,

3

Figure 3: Side view of the ILD for the same event.

for which constant communication in both directions is required. The existing client-server
interface uses POSIX sockets [7], so it was decided to adopt this for the server-client
communication. The API functions used are given below:

Sockets API functions
connect() Open a socket
write() Send information to a socket
read() Receive information from a socket
close() Close a socket

More information is available in[7]. The sample application for this is picking, i.e. selecting
a track, hit or geometry (via point and click) and then seeing information about it appear
on screen. This is possible since every object displayed is a representation of an LCIO
object, and has a corresponding unique LCIO ID number. If this is passed to CED with
the drawing commands, then CED can return this information to the client. Code was
written to display information about Monte Carlo particles when Monte Carlo tracks,
or hits which could be traced back to a simulated source, were displayed. A remaining
problem was that once the picking loop was entered, it was not possible to cycle through
the rest of the events in Marlin: control was lost meaning that Marlin would have to be
shut down.

4

Figure 4: Perspective view of the ILD for the same event. The display may be rotated
and translated as usual. Off-axis helices can be seen to be distorted, but this is a feature
of the transform itself.

3.3 Helper functions for Marlin

To complement the client-server communication code, helper functions were written for
MarlinCED, adding some basic analysis functionality for Monte Carlo Particle (MCParti-
cle) objects. These are intrinsically useful, as well as offering proof of concept for server-
client communication.

New helper functions for MarlinCED
printMCParticle() Display relevant information about a particle
printMCFamily() Display information about a particle, its ancestors and offspring
printAndDrawMCFamily() Same as above, but draw the family too

printMCParticle() provides output in the following format:

[id]PDG | px , py , pz | energy | gen | [s imstat]
[17739] −211| −7.54e−01, −8.28e−01, 1 .70 e+00| 2 .04 e+00|1 | [vt
s]

Note that more information (including vertex, endpoint, mass, charge, and no. of daugh-
ters) is given in the full version. printMCFamily() is recursively defined: it calls itself for

5

each daughter but with the number of “branches” reduced by one, and similarly for each
mother particle. Since the numbers of branches are both unsigned integers, the function is
guaranteed to exit. printAndDrawMCFamily() is very similar, but also draws the particle
hierarchy.

3.4 Bug fixes and general improvements

In addition to the work mentioned, some general improvements and fixes to the Marlin and
CED source code were made. In particular, the drawing code in CED and the drawHelix()
method in MarlinCED were improved. Two problems with the drawHelix() method were
found:

• Some particles were not displaying in the correct positions.

• Particles with low momentum were being treated the same as those with high mo-
mentum.

The first of these problems was found to be due to an issue with the line drawing function
call: it was being called with the argument (z,y,z) instead of (x,y,z). When working with
the QWERTY keyboard layout, where ‘x’ and ’z’ are adjacent, this is a very easy error
to make, and one that will not be picked up by the software. The second problem was
due to the fact that very high momentum charged particles do not curve noticeably in
magnetic fields, so may be well approximated for visualisation as straight lines. This
was implemented already, but a mistake with the logic meant that the low momentum
tracks were also given straight lines. Since very low momentum particles curl very tightly
in magnetic fields, the decision was made to approximate them as points. A few trivial
changes to Marlin codes were made, standardising the definition of π across several source
files.

3.5 Incorporation into Marlin and CED code database

All of the work discussed has bene incorporated into the SVN repository [8]. Because of
the problems mentioned above, the picking code was commented out so as not to create
problems with the released code.

4 Conclusions and outlook

The work presented here can be seen as a first step towards a more interactive, config-
urable version of CED. As mentioned above, a future GUI implementation would require
server-client communication using sockets, as implemented here for the picking algorithm.
Similarly, some extensions to the viewing options in CED will be needed, and one of these,
the fisheye view, is now available.

5 Acknowledgments

I would like to thank Steve Aplin, Frank Gaede and Jan Engels for extensive discussions
and useful help. Each of them took on some supervision tasks, and made me feel very at

6

home in the group. I would also like to thank Joachim Meyer and the rest of the DESY
Summer Student Programme organisers for a wonderful opportunity.

References

[1] ILC Reference Design Report, Volume I: Executive Summary

[2] ILD Letter of Intent

[3] http://www.mpp.mpg.de/~molland/GenericEventViewer/

[4] Innovations in ILC detector design using a particle flow algorithm approach
Stephen R Magill, New J. Phys, 2007

[5] Event Display: Can We See What We Want to See?
H. Drevermann, D. Kuhn, B.S. Nilsson, CERN School of Computing, 1995

[6] OpenGL discussion forum
http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=
showflat&Number=262910

[7] Open Group Base Specifications Issue 6
IEEE Std 1003.1, 2004 Edition
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/socket.h.
html

[8] Marlin SVN Repository
https://svnsrv.desy.de/viewvc/marlin/Marlin/

7

http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/socket.h.html
http://www.mpp.mpg.de/~molland/GenericEventViewer/
http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=showflat&Number=262910
http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=showflat&Number=262910
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/socket.h.html

	Introduction
	The Generic Event Viewer
	The C Event Display
	Fisheye Transforms
	Server-client communication
	Helper functions for Marlin
	Bug fixes and general improvements
	Incorporation into Marlin and CED code database

	Conclusions and outlook
	Acknowledgments

