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Abstract

Here I present my investigation in the summer student program at DESY 2009. In this I studied
three mechanisms to hide extra-dimension. I focused on the Kaluza-Klein compactification and
on the necessary calculations to arrive since from a five dimensional theory of gravity to a four
dimensional theory of gravity and electromagnetism. As a continuation of the way that we can

hide extra dimensions I touch on models of brane worlds.

1 Introduction

At present superstring and M theory are probably our best candidates for providing a unified
description of all the fundamental forces in nature, but almost all their versions are formulated in
space time of more than four dimensions. If these theories are truly fundamental, and we want
to describe our four-dimensional world, we need to have a way to extract the four-dimensional
physics from these higher dimensional theories, therefore an important issue in multi-dimensional
theories is the mechanism by which extra dimensions are hidden. Studying these mechanisms one
can find that they propose different ways to study and address the gauge hierarchy problem. In
this summer I studied three hiding mechanisms: Kaluza- Klein compactification, unwarped and
warped brane worlds.

2 The hierarchy problem

Before starting with the compactification mechanisms, in this section I will present a sketch of the
hierarchy problem.

In theoretical physics a hierarchy problem occurs when the fundamental parameters, couplings
constants or masses, of some Lagrangian are vastly different from the parameters measured by
experiment. This can happen because measured parameters are related to the fundamental pa-
rameters by a prescription known as renormalization. Typically the renormalization parameters
are closely related to the fundamental parameters, but in some cases, it appears that there has
been a delicate cancellation between the fundamental quantity and the quantum corrections to it.

Studying the renormalization in hierarchy problems is difficult, because such quantum correc-
tions are usually power-law divergent which means that the shortest-distance physics are most
important. Because we do not know the precise details of the shortest-distance theory of physics
(quantum gravity), we cannot even address how this delicate cancellation between two large terms
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occurs.

In particle physics, the gauge hierarchy problem is the question why the weak force is 1032 times
stronger than gravity, technically, the question is why the Higgs boson is so much lighter than the
Planck mass. Because the Higgs expectation value v2 = µ2/λ is measured as v = 246GeV and
the validity of the perturbation theory (see [?]) requires λ/16π2 ≤ 1, µ should obey: µ ≤ 4πv =
3TeV . But when we considered virtual effects involving very heavy new particles having mass M,
generically contribute to µ at an amount order:

δµ2 ∼ gM2

16π2
(1)

where g is a dimensionless measure of the coupling strength between the heavy virtual particle
and the Higgs doublet. Strictly speaking explicit calculations give results which diverge quadrati-
cally leading to expressions of the form δ2µ = c2Λ2 + c0M

2lnΛ2/M2 + ... the contribution to the
effective coupling δµ2, is defined to reproduce the difference between the theory with and without
the massive particle, after renormalization, and this lead an estimate of the form (1). Thus the
question here is why µ2 << δµ2

Although it is possible that the bare term µ2
0, appearing in the Lagrangian precisely cancels

these types of contributions for all such massive particles, the required cancellation is fantastically
accurate for M extremely large. A cancellation this accurate is generally known as a fine tuning,
and it is widely considered unlikely that such cancelation is the explanation. Rather, it is generally
believed that some new physics must be involved.

Below we will discuss the possibility that the new physics is due to extra dimensions.

3 Kaluza-Klein compactification

The idea of extra-dimensions actually arose before the development of string theory, as a route to
the unification of theories. Indeed in the 1920‘s T. Kaluza and O. Klein, proposed to consider an
extra dimension to unify geometrically the theories of electromagnetism and gravitation introduc-
ing the electromagnetic field as a component of the metric of a five-dimensional space-time, where
the extra dimension is compact. This work is the basis of the theories of compactification, where
the compactness of the extra dimensions ensures that space-time is effectively four-dimensional
at distances exceeding the compactification scale. Hence the size of extra dimensions must be
microscopic. For a nice review [?] and [2]

To understand this mechanism, let us assume we are starting from the Einstein- Hilbert gravity
in (D+1) dimensions, described by the Einstein- Hilbert Lagrangian (with convention (+−−−−)):

L = −
√
ĝR̂ (2)

where R̂ is the Ricci scalar, ĝ is the determinant of the metric and the hat means that they
are in (D + 1) dimensions. Now suppose that we wish to reduce the theory to D dimensions by
compactificaing one of the coordinates on a circle S1 of radius L, let this coordinate be called z,
where θ = z/L and 0 < θ < 2π. In principle we could simply now expand all the components of
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the (D+1) dimensions metric tensor as Fourier series of the form:

ĝMN (x, z) =
∑
n

gnMN (x)einz/L (3)

where x denotes collectively the D coordinates of lower-dimensional space-time. If we do this, we
get an infinitive number of fields in D-dimensions, labelled by the Fourier mode number n. We will
see that modes with n 6= 0 are associated with massive fields, and modes with n = 0 are massless.

In this summer I considered the example of a massless scalar field φ in a (D+1)-dimensional
space, that satisfies the equation of motion:

�̂φ̂ = 0 (4)

where �̂ = ∂M∂M . If we Fourier expand φ̂ after compactifing the coordinate z, so that:

φ̂(x, z) = φn(x)einz/L (5)

then we inmediatly see that the lower-dimensional fields φn(x) will satisfy:

�φn −
n2

L2
φn = 0 (6)

this is the wave equation for Kaluza-Klein modes φn of mass n/L. In the Kaluza-Klein theory we
assume that the radius L of the compactifing circle is very small, and we require enormous energies
to access the heavy modes, so at low energies < 1/L we can truncate the non zero modes. Thus,
a Kaluza- Klein reduction, implies a compactification together with a truncation to the massless
sector. In our case this means that the fields ĝMN (x, z) are independent of z.

Now we can denote the components of the metric ĝMN by ĝµν , ĝzµ and ĝzz, from a D-dimensional
viewpoint these look like a symmetric tensor (the metric), a 1-form (a maxwell potential) and a
scalar field respectively.

Doing a parametrization as follows, we write the (D+1) dimensional metric in terms of D-
dimensional fields: gµν , Aµ and φ as follows:

dŝ2 = ds2 − φ(dz +A)2 (7)

Where A = Aµdx
µ. All the fields on the right-hand side are independent of z. Note that this

ansatz means that the components of hte higher dimensional metric ĝMN are given in terms of the
lower-diemnsional fields by:

• ĝµν = gµν − φAµAν

• ĝµz = −φAµ

• ĝzz = −φ

With the goal of expressing the (D+1)-dimensional quantities in terms of the D-dimensional
ones, and to be able to express the (D+1)-dimensional Hilbert-Einstein Lagrangian in terms of
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the canonical D-dimensional Lagrangian, we have to ensure that the dimensionally-reduced La-
grangian is the Hilbert-Einstein form L =

√
−gR + ... and ensure that the scalar field φ acquires

a kinetic term with the canonical normalization, meaning a term of the form: − 1
2

√
−g(∂φ)2. This

requires a so called Weyl rescaling of the four-dimensional metric, which we will not discuss further.

Considering a space with (4+1)-dimensions lead us to a metric of the form:

gMN =
(
gµν − φAµAν −φAµ
−φAµ −φ

)

Having in mind that the Christoffel symbols are given by:

Γγβµ =
1
2
gαγ(gαβ,µ + gαµ,β − gβµ,α) (8)

and that the Ricci tensors are given by:

Rαβµν = Γαβν,µ − Γαβµ,ν + ΓασµΓαβν − ΓασνΓσβµ (9)

Γγβµ =
1
2
gαγ(gαβ,µ + gαµ,β − gβµ,α) (10)

I could calculate the necessary Christoffels:

Γ̂σλµ = Γσλµ +
1
2
φAµF

σ
λ +AλF

σ
µ (11)

Γ̂λ5σ =
1
2
φFλσ (12)

Γ̂5
λσ = −1

2
φAρAλFρµ −

1
2
φAρAµFρλ +

1
2

(Aλ,µ +Aµ,λ − ΓγAγ − ΓγµλAγ) (13)

Γ̂5
5µ = −1

2
AνφFλν (14)

Γ̂5
55 = 0 (15)

Γ̂λ55 = 0 (16)

to achieve the components of the Ricci tensor:

R̂5µ =
1
2
Fσµ;σ +

1
4
φ2AµF

σρFσρ (17)

R̂55 =
1
4
φ2FσρFσρ (18)

R̂νµ = Rνµ −
1
2
φF ρβFρδ +

1
2
φAβF

ρ
δ;ρ +

1
2
φAδF

ρ
β;ρ +

1
4
φ2AβAδF

σρFσρ (19)
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with which I calculated the Ricci scalar R̂:

R̂ = R+
1
4
φF ρνFρν (20)

Computing the determinant of the metric | G |= φg, we can see that the dimensional reduction
of higher -dimensional Hilbert-Einstein Lagrangian gives:

L = φg[R+
1
4
φF ρνFρν ] (21)

This is as we wanted the five-dimensional Hilbert-Einstein Lagrangian in terms of a four-
dimensions theory of a massless spin-2 particle, gµν (the four-dimensional graviton), a massless
spin-1, Aµ (the Kaluza-Klein gauge boson), and if we had kept φ we would have had a massless
spin-0, φ (the dilaton). In modern language the massless scalar field is called a modulus field, and
the presence of moduli are one of the big problems in string compactifications because we do not
observe them.

Recalling the mass of the Kaluza-Klein modes (see (6)) the energy scale necessary to observe
the extra-dimensions depends on L. As we have not seen yet the extra-dimensions in the particles
accelerators experiments, which have reached energies of a few hundred of GeV, we know that
L ≤ 10−17cm.

4 Unwarped brane world

Another mechanism to hide extra-dimensions is based on the assumption that the matter and
gauge fields (in the standard model) are trapped to a three-dimensional submanifold, the brane,
embedded in a fundamental multi-dimensional space. In this picture , the standard model is thus
four-dimenisonal (explaning why we have not observed extra-dimensions in particle accelerators),
but gravity is higher dimensional. Since we have only tested gravity to around 10µm, in this sce-
nario, extra dimensions may be large; this implies that they may have experimentally observable
effects, for instance at the LHC. This fact and the fact that branes are inherent in string and M
theory, make interesting to study this mechanism.

The ADD [6], [7] mechanism consists in neglecting the brane tension, σ, which is the energy
density per unit three-volume of the brane, and considering a brane in large compact extra di-
mensions. In this way the Kaluza- Klein picture is reintroduced, but in this approach the size of
the extra-dimensions R do not need to be microscopic, because only gravity is in the bulk. This
approach may address in a new way the hierarchy problem, since in multidimensional theories the
four-dimensional Planck scale is not a fundamental parameter. Rather the, fundamental mass of
multidimensional gravity M obeys:

G(D) =
1

MD−2
=

1
Md+2

(22)

where GD is the D-dimensional Newton‘s constant, and D − 4 = d is the number of extra-
dimensions. As in the Kaluza-Klein compactification, if we consider the metric independent of
the extra-dimensions, we see that the four dimensional Planck mass is:

MPl = M(MR)d/2 (23)

6



where R is the size of the extra-dimensions. Then we can suppose that the fundamental scale is
of the order of the electroweak scale and thus so is the renormalized Higgs mass. So assuming
that M ∼ 1TeV one can calculate from (23) the value of R = 1032/d10−17cm, thus if there were
for example two extra-dimensions R should be R = 1mm then we should be able to measure
effects of them. In this picture the hierarchy problem then transforms to the large size of the
extra-dimensions.

5 Warped extra dimensions

The last mechanism ignores the energy density of the brane itself, i.e., the gravitational field that
the brane produces, but when we consider distance scales much larger than the brane thickness,
the brane can be seen as source of the gravitational field which induces an interesting geometry
in the multi-dimensional space. The mechanism studied in this section considers only one extra-
dimension compactified by the introduction of two branes at z = 0 with positive tension and z = zc
with negative tension. For this configuration the next metric is a solution of the complete set of
Einstein equations (see [4] and [5])

ds2 = a2(z)ηµνdxµdxν − dz2 (24)

where ηµν is the Minkowski metric and a(x) = e−k|z| is the warp factor, k = 4π
3

ˆG(5)σ. Unlike the
metric of the Kaluza-Klein compactification, this metric is non factorizable, i.e., is not the product
between four dimensional Minkowski space and the manifold of the compact extra-dimension. Now
if we consider small fluctuations as in the Kaluza-Klein compactification, we can get an equation
with a mass spectrum m2

n, of Kaluza-Klein gravitons. The solution for the zero mode m2
0 = 0 is:

h0(z) = e−kz (25)

this mode describes the usual four dimensional gravity. Unlike the Kaluza Klein compactification
with factorizable geometry, the zero mode function depends on z non trivially, and decrease towards
z = zc. This suggests that the gravitational coupling between particles depends on which brane
they are residing. Considering that the matter resides in the negative tension brane one can arrive
to the next expression for the four-dimensional gravitational constant:

G(4) = G(5)k
1

e2kzc − 1
(26)

From the last equation using (22)we can write:

1
M2
Pl

= k
1
M3

1
e2kzc − 1

(27)

Taking the fundamental mass like Mew and also k ∼M , with kzc >> 1 we can get:

MPl = Mewe
2kzc (28)

This gives a novel possibility to address the hierarchy problem thanks to the exponential warp
factor.

And for matter residing in the positive tension brane one can arrive to the next expression for
the four-dimensional gravitational constant:
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G(4) = G(5)k
1

1− e−2kzc
(29)

Notice that taking zc → ∞ we get an infinite large extra-dimension and yet recover a finite four-
dimesnion Planck mass, which indicates that four-dimensional physics can be recovered.

6 Conclusions

The search for a theory which includes all interactions and in particular a quantum theory of
gravity has driven us to multi-dimensional theories, and with this the necessity to find mechanisms
to hide extra-dimensions. Moreover the study of these mechanisms opens the possibility to solve
in new ways the gauge hierarchy problem. In the ADD mechanism compactification the hierarchy
problem depends on the large of the size of the extra-dimensions R, leading to the possibility of
detecting them. While in the warped extra-dimension the large difference between the Mpl and
the Mew depends on the the warp factor. This gives us even more reasons to continue to study
these theories, as so far they just take the problem to different variables.
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