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Abstract

Theoretical predictions for the functional form of the cross-section of
Z boson production in the Drell-Yan process show that the result can
be expressed in a simple analytic form. The fourier transform of this
theoretical result is particularly concise form and is simply the product
of a Sudakov factor and parton distribution functions. In this project
Pythia was used to extract Monte Carlo predictions for the cross-section
of the p + p → Z0 + X process and a comparison with the theoretical
calculations was undertaken using the 1-loop expression for the strong
coupling constant. The two were found to approximately agree on the
shape, with the absolute magnitudes for the cross-section differing by a
factor of 5. More meaningful results could not be reached due to time
constraints and therefore a list of ideas for future work is presented.

1 Introduction

In 1970 Sidney D. Drell and Tung-Mow Yan studied the annihiliation of a quark
and an antiquark into a virtual photon which then proceeds to creates a real
lepton-antilepton pair [1]. The original study was within the framework of the
parton model, treating the partons within the proton as free particles. While
partons have in the meantime been replaced with quarks and gluons (although
the term parton is now used to refer to both), the process is still called the
Drell-Yan process. Strictly speaking the Drell-Yan process refers to the creation
of a virtual photon, in the present context we will also use it to refer to the
process whereby the incoming quark-antiquark pair annihiliate to create a Z0

boson.

The Drell-Yan process is interesting for several reason. To begin with, its
predictions lent credence to the parton model which at the time was not univer-
sally accepted. Additionally, the fact that on-shell photons are massless implies
that no resonances would be observed in the spectrum of the resultant pair’s
rest mass. The observation of such observations led to the discovery of the Z
boson at the SPS collider in 1983 [2] through the study of the process
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Figure 1: Feynman diagram of the Drell-Yan process.

p + p → Z0 + X

The Z boson then proceeds to decay into a pair of leptons. The spectrum
of the rest mass of the resultant dilepton pair was indeed sharply peaked at
M = (95.2 ± 2.5)GeV/c2, vindicating the predictions of the Glashow-Salam-
Weinberg theory of electroweak interactions.

Apart from its historical interest, the Drell-Yan process remains of interest
because the details of the interaction depend in a direct manner on the parton
distribution functions (PDFs). Particles like the proton are not fundamental;
in this case, the proton consists of an (uud) quark arrangement. These are
referred to as the valence quarks to distinguish them from the sea quarks that
occur in qq pairs and, along with the gluons, account for most of the proton’s rest
mass. PDFs describe the probability for finding a quark with a given dynam-
ical state within the nucleus. Difficulties in the application of QCD to bound
states forbid the direct theoretical evaluation of PDFs. Predicting any process
whose description requires the quark model will necessarily require knowledge
of PDFs. Therefore, to allow any progress to be made, PDFs must be inferred
from experiments.

Just as the Drell-Yan process led to the discovery of the Z0 boson, it remains
to be seen whether it will in the future lead to the discovery of heavier neutral
gauge bosons. These Z ′ bosons are not part of the Standard Model and have
never been observed experimentally1. Nevertheless they are an important aspect
of several more ambitious theories (e.g. string theories in which the Stückelberg
term arises, Kaluza-Klein theories etc.).

Finally, the important aspect of the Drell-Yan process is its prevalence in
LHC physics. In the design and optimisation of the experiments, Monte-Carlo
event generators such as PYTHIA are used to simulate the underlying physics.
One must therefore establish that these generators faithfully reproduce the cur-
rent theoretical knowledge of the underlying QCD processes. Determination of
the properties of the Z boson in the Drell-Yan process is important because
the calibration of LHC experiments will be done partly by Z boson measure-
ments [5]. At the LHC parameters one can expect production rates of a few

1In January 2007 the CDF collaboration announced [3] a possible hint of a Z′ at 240 MeV.
This by no means constituted a discovery - these can only be claimed with 5σ departures
from the expected distribution while the CDF result only exhibited a 3.8 σ departure. The
D0 collaboration followed up with a larger data set and a preliminary analysis [4] shows that
that there appears to be no disagreement with the standard model. So it’s not that people
haven’t been looking!
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Figure 2: Initial state gluon radiation in the Drell-Yan process. In reality there
will also be photon emission and similar QED/QCD radiation in the final state.
The theory however only takes into account the initial state QCD radiation.

Hz, allowing the Z bosons to be used as luminosity monitors [5]. Additionally,
knowledge of the dileptron spectrum will allow a more accurate determination
of the W/Z masses. Precise estimation of the background signal also relies on
detailed knowledge of the Drell-Yan dynamics. The purpose of this study is
to establish whether such an agreement of theory and Monte-Carlo generators
exists.

Assume that two protons collide in the CM frame frame. Let Q denote the 4-
momentum transfer between them and QT be the component of Q perpendicular
to the direction of motion of the pair. As this is an s-channel process it is
clear that Q and QT are also the corresponding dynamical variables of the
intermediate gauge boson. By x we denote the Bjorken-x of a particle, given
by the equation

x =
Q2

2p · q
. (1)

In reality, the physics underlying the Drell-Yan process is rarely as simple
as described above. The quarks are allowed to radiate gluons. This initial-
state radiation can be calculated in the high QT regime. In this regime the
strong force coupling constant αs(Q2) is small enough to allow the application
of perturbation theory and so, in principle, the result of the interaction can be
computed to any desired level of accuracy.

Difficulties in calculating the gluon radiation are encountered in the low
QT regime where perturbation theory fails. Fortunately, a technique known as
resummation has been devised which allows theoretical predictions in the low
QT region to be made. The results will be described in detail in the next section.

Direct comparison with experimental data is not easy. This is because the
effects of gluon radiation will be overshadowed by effects that cannot be simply
turned off in real life. In practice when a qq pair interacts there will be QED
radiation in both the initial and final state. Hadronisation 2of the resultant
quarks will also affect the cross-section as will the effects of the interactions
between the resultant particles. Furthermore the annihiliation into a Z0 boson

2The arrangement of gluons and quarks into hadrons.
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competes with the real Drell-Yan process (i.e. the virtual photon) and the
exchange of virtual gluons.

The solution to the difficulties presented above is the simulation of the pro-
cess via Monte Carlo methods. Monte Carlo methods in particle physics rely
on randomly creating events (i.e. sets of particle 4-vectors) and using them to
evaluate the integrals which along with the matrix elements, determine the cross
section. Using a sufficiently large number of events the underlying process can
be accurately modelled. The advantage of this approach is that one is, contrary
to conventional experiments, free to set any parameters to any value 3 and,
most importantly, isolate the processes of interest. MC methods also sidestep
the formidable computational complexity of numerically evaluating these high-
dimensional integrals.

2 Overview of theoretical predictions

Progress on the problem of the Drell-Yan cross-section was stimulated by the
QCD factorisation theorem which allowed [6] the first predictions about the
cross-section [7]. These predictions worked sufficiently well in the QT ∼ Q
regime but proved to be problematic when QT < Q.

The analytic result for the cross-section in limit where QT � Q can be
written as [6]

d2σ

dQ2
T dy

=
4π3α

3s

1
(2π)2

∫
d2b eiQT ·b

×
∑
a,b

∫ 1

xA

dηa

ηa
fa(ηa, (

C

b
))2
∫ 1

xB

dηb

ηb
fb

(
ηb,

C2

b2

)
× exp

{
− CF

∫ M2
z

C2/b2

dk2

k2

αs(k2)
π

[
ln

Mz
2

k2
− 1.5

]}
×
∑
c,d

H0
c,dCa,c

(xA

ηa
, αs

(
C2/b2

))
Cb,d

(xB

ηb
, αs

(
C2/b2

))
. (2)

In the above equation y is the rapidity of the Z0 boson, b is a fourier param-
eter, fa,b(x,Q2) are parton distribution functions, CF = 4/3 , C = e2γ where
γ ' 0.5772, the Euler-Mascheroni constant and αfs = 1/137.036 is the familiar
fine structure constant. The sums are all over all parton species 4. The top
quark was not taken into account since its high mass implies that top produc-
tion will have a negligible impact on the analysis. The variables xA, xB are, in
the QT → 0 limit, given by

3You could for instance see what the world would look like if the top quark did not exist,
how supersymmetric particles fit into the big picture and what the implications of higher
dimensions are. Of course most programs necessarily come with some built-in restrictions on
what may or may not be changed but that is rarely an issue.

4Including gluons!
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xA =
Mz

s
ey, xB =

Mz

s
e−y, (3)

where s is the center-of-momentum energy of the system. The mass of the
Z0 boson was taken to be Mz = 91.187 GeV [8].

To leading order we can use the following expressions for the functuibs Ca,b

:

Ca,b

(xA

ηa

)
= δabδ(1−

xA

ηa
).

For the Hab functions we can use

Hab = δab

1 +
[
1− 4|eq| sin2 θw]2

16 sin2 θw cos2 θw

,

with eq being the charge of the parton and θw being the Weinberg angle
(sin2θw = 0.2319 [8]).

Using the above relations, formula 2 can therefore be simplified to

d2σ

dQ2
T dy

=
1

(2π)2
4π3afs

3s

∫
d2b eiQT ·b

× exp
{
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π
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k2
− 1.5

]}
×
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)
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(
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)
.

Exploiting the cylindrical symmetry of the integrand we obtain

d2σ

dQ2
T dy

=
4π3afs

3s

1
2π

∫
db bJ0(pb)

× exp
{
− CF

∫ M2
z

C2/b2
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k2

αs(k2)
π

[
ln

Mz
2

k2
− 1.5

]}
×
∑

a

H0
a,afa

(
xA, C2/b2

)
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)
, (4)

where J0(x) is the usual zero’th order Bessel function.

At this stage no more can be said without knowledge of the form of αs.
Fortunately the integral appearing in the exponential can be done analytically
for the 1-loop and 2-loop approximations to the coupling constant.

For the 1-loop case we have

α(1)
s (µ2) =

4π

β0 ln µ2

Λ2
QCD

, β0 = 11− 2
3
nf , (5)
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where ΛQCD is a scale variable for QCD determined by experiment (and
depending on the PDFs used) and nf = 5, the number of flavours we are
considering. Using this form for αs we obtain

∫
dk2

k2

α
(1)
s (k2)

π

(
lnM2

z /k2 − 1.5
)

= − 4
β0

{
ln k2

+ (1.5− lnM2
z /Λ2

QCD) ln
∣∣ ln k2/Λ2

QCD

∣∣}
+ (const) (6)

Similarly, we can choose to use the 2-loop form of the coupling constant

α(2)
s (µ2) =

4π

β0 lnµ2/Λ2
QCD

(
1− 2

β1

β2
0

log
∣∣ log µ2/Λ2

QCD
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lnµ2/Λ2

QCD

)
(7)

β1 = 51− 19
3

nf ,

in which case the analytic form of the integral becomes

∫
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α
(2)
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)
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+
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β2
0
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}
+ (const). (8)

As will be discussed in the next section, cuts were applied to the rapidity of
the Z0 boson so that |y| ≤ 2. Hence

dσ

dQ2
T

=
∫ y=2

y=−2

d2σ

dQ2
T dy

dy

Returning to equation 2 we can immediately write down an expression for
the fourier coefficients of the cross-section dσ

dQ2
T

:
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∫
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T

= exp
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×
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a
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(
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)
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)
. (9)
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Figure 3: Results of theoretical calculation for the cross-section using the 1-loop
and 2-loop approximations to the strong coupling constant.
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Figure 4: The fourier coefficients of the cross-section plotted against transverse
momentum (eq 9).

A practical difficulty in evaluating the theoretical predictions is the diver-
gence of the strong coupling constant when µ2 → Λ2

QCD. This divergence
is known as the Landau pole. The singularity is clearly non-integrable - to
avoid it the value of αs was ‘frozen’ under µ2 = 1 GeV2, so that αs(µ2) =
αs(1GeV2), µ2 < 1 GeV2.

Results were obtained using both the 1-loop and 2-loop approximation to
the strong coupling constant and are shown in figures 3,4.

To obtain dσ
dQ2

T
two integrations have to be performed: First over the fourier
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parameter b and then over the rapidity y. The first integration was performed us-
ing the GNU Scientific Libary (GSL) v1.12 [9] with the gsl_integration_qagiu
routines for improper integration in the semi-infinite interval with an upper
bound at infinity and a lower bound dictated by the limits on the momentum
variable imposed by the PDF sets. The second integration was based on Gaus-
sian quadrature, using ROOT’s TF1 implementation of the CERNLIB DGAUSS
routines. Figures 3,4 include error bars that depict the error due to integration
but do not take into account the uncertainty of the PDF sets.

3 Monte Carlo results

Pythia [10] version 6.420 was used as the Monte Carlo event generator. The
Drell-Yan process was simulated at a center of momentum energy of 14 TeV
for a pp system. A restriction 90.0 < Mz < 91.4 GeV was placed in an ef-
fort to produce ‘on-shell’ bosons and to circumvent the possibility of ill-defined
cuts in the phase space region (discussed in the next paragraph). Via use
of manual process selection (MSEL=0) only the f + f → γ/Z process was al-
lowed (MSUB(1)=1). Fragmentation and decay were turned off (MSTJ(1)=0,
MSTP(111)=0), as was the final state QCD/QED radiation (MSTP(71)=0), mul-
tiple interactions (MSTP(81)=0). Initial state radiation (MSTP(61)=1) was re-
stricted to QCD branchings of quarks and gluons (MSTJ(41)=0) in an effort to
isolate the gluon emission that we are trying to model.

Pythia ’s default cuts were used and a post-event selection routine was
used to cut the rapidity of the Z boson as |y| ≤ 2. It should be noted that
Pythia applies a multitude of cuts by default. The only relevant one is the
non-removable — yet configurable — cut on the pseudorapidity |η| < 40. The
pseudorapidity is related to the true rapidity by the formula

y =
1
2

ln

√
p2

T cosh2 η + M2
z + pT sinh η√

p2
T cosh2 η + M2

z − pT sinh η
(10)

This is a ‘1-1’ mapping y ↔ η if the mass of the Z boson is fixed. Our sharp
restriction on both the mass of the Z boson and its rapidity render Pythia ’s
cut irrelevant and simplify the event selection process.

It should be noted that no cut was placed on the transverse momentum of the
Z boson. This was done deliberately as the evaluation of the fourier coefficients
will require knowledge of the cross-section in the high pT region; cutting off
the integration at a value of pT where dσ

dp2
T

is not negligible may easily lead to
numerical instabilities of the Bessel function that arises during the calculation
of the fourier coefficients. Additionally, to this end the results were recorded in
a histogram with variable binning that allowed the fine details of the very low
pT region to be discerned while still extending in the high pt region.

A histogram of the results for the raw count of events as a function of the
transverse momentum of the boson is shown in figures 5,6. To obtain the cross-
section the histogram is normalized to the bin widths, then to unit overall area
and then scaled by 1/σtot (figure 7).
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Figure 5: Results of Pythia simulation for s=14 TeV.
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Figure 7: Monte Carlo results for the cross-section. The number of entries
corresponds to the number of bins used in the event histogram of figure 5

The numerical evaluation of the fourier integrals was done again using GSL
library, this using the adaptive QAG routines with a 15-point Gauss-Kronrod
rule. Difficulties were encountered with round-off errors and it was these dif-
ficulties that led to the use of a 15-point, rather than a 61-point rule. In the
overwhelming majority of cases the the error in the evaluation of the integral
was 2 orders of magnitude smaller than the statistical uncertainty. The large
error bars on some of the points are due to these round-off errors. 5

Upon inspecting the shape of the graph one immediately sees that the fourier
coefficients exhibit an oscillatory behaviour. This is in direct disagreement with
the theoretical predictions. I am not sure why these oscillations arise. A plau-
sible explanation could be that they are a result of the discontinuities in the
cross-section due to the discrete nature of the histogram. Alternatively, differ-
ent values of b modify the ‘frequency’ of the Bessel function that appears in the
integrand and may result in numerical instability due to the sharp cut-off of
dσ

dQ2
T

.

An attempt to cancel out these oscillations was made by binning the data
for the fourier coefficients in only a few bins. The results are shown in figure 10.
It is immediately obvious that there is a disagreement with the theory from

5I did not succeed in tracing the origin of these round-off errors. Trying non-adaptive
integration routines did not alleviate the problem. It seems very odd that one cannot obtain
the answer with a relative error less than even 10−2 in some cases. Furthermore there seems
to be a gap in existing numerical software; arbitrary precision arithmetic libraries exist (a
noteworthy example is the GNU Multiple Precision library - http://gmplib.org/). Similarly,
there are several fixed-precision libraries featuring numerical integration. Nevertheless, it
appears that there exists exactly one library that is capable of numerical integration with
arbitrary precision - mpmath. It is written in Python and the project is in its infancy so no
C/C++ wrappers exist. A patch/plugin that will allow GSL to use the arbitrary precision
of GMP suggests itself as a wortwhile pursuit, although I cannot vouch for the technical
feasability of the project.
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Figure 8: General behaviour of fourier coefficients as a function of the fourier
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text, the unusually large error bars occur because of round-off error in the GSL
gsl integration qag routines.
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Figure 10: Histogram of fourier coefficients. This is essentially an averaging
procedure. Contrary to what theory predicts it is clear that even after this
there is still a bin with a negative value. This can occur due to an unlucky
choice of bins (i.e. it could be that the specific bin’s lower and upper edges
happen to coincide with the low part of the oscillation). A different binning
was tried but without success. At any rate, this averaging procedure, without
a systematic and objective way of choosing the binning, is a dishonest practice.
One can, by arranging for a suitable binning, sacrifice the height of a bin that is
already positive to make a slightly negative bin positive as well. Playing around
with the binning is therefore not a solution to the problem.

the fact that there appears to be a bin with a negative value for the fourier
coefficient. This time the better agreement is expected in the high b region.

4 Agreement?

In figure 11 the ratio of the Pythia results for the cross-section and the theo-
retical predictions using the 1-loop cross-section is plotted. There is a pleasing
order-of-magnitude agreement but there appears to be a discrepancy by a factor
of roughly 0.15 6. This factor is not constant although this is to be expected;
the full theoretical prediction includes another term that dominates at high
pT and has been ignored in this study. Furthermore discrepancies in the over-
all scale are a common situation in Monte-Carlo simulations. Without a more
careful investigation it is therefore impossible to determine whether the analysis
itself is somehow flawed or whether this is a genuine discrepancy. Presumably

6The exact value for the first bin is 0.157±0.005. This is suspicously close to 1/2π = 0.15915
and it makes one wonder whether a magnificent agreement is not obscured by a careless
omission of a factor of 2π somewhere in the calculation. I have looked and have not found
such a mistake. Then again if I have indeed such a mistake in the first place my error-catching
abilities are also to be doubted!
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Figure 11: Ratio of Monte Carlo results over the theoretical predictions for
the cross-section. The non-constancy is to be expected since the theoretical
prediction omits the terms that dominate the high pT region. Note that the
theory overestimates the cross-section. The error bars result from combining
the statistical uncertainty of the Monte-Carlor results and the numerical error
in the evaluation of the theoretical predictions. It is worth noting that the two
are of comparable magnitude.

a comparison with experimental data will settle the question. Suggestions for
resolving the disagreement will be discussed in detail in the next section.

A comparison with the 2-loop constant was not pursued. It is clear however
that doing so would only result in a larger discrepancy between the Monte-Carlo
methods and theory: The 1-loop prediction overestimates the result 7 and the
2-loop formula for αs a larger cross-section is predicted in the low (figure 3).

The aim of the project was to compare the fourier coefficients of the two
cross-sections. This has not been done. A bug that was only spotted 2 days
before the end of the summer student programme invalidate the majority of my
results.

5 Conclusion and further progress

Hopefully by now it is clear from the above that this is a report on a work
in progress rather than a finished project. Most of my results were obtained
only during the penultimate week of the summer student programme since a
misprint in the theoretical predictions delayed my work by a few weeks. This
caused my to spend 3 weeks wondering why the theoretical prediction was in
shocking disagreement with the Monte Carlo results. At any rate this — essen-
tially preliminary — analysis shows a rough agreement between the results of

7Or the Monte-Carlo calculations underestimate the correct value!
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Pythia and theory. The very sharp decrease of the cross-section at low QT was
demonstrated. An order-of-magnitude agreement for differential cross-section
was demonstrated and the decreasing From the data at hand a definite conclu-
sion cannot be formed and more analysis is needed. I will conclude the report
with a list of the areas on which I would focus, given enough time:

• More accurate error analysis: A rigorous error analysis is required, par-
ticularly for the theoretical predictions. Errors are introduced at virtually
every stage involving an integration. For instance, there is an uncertainty
in the evaluation of equation 4 that arises due to the uncertainty in the
integration and the uncertainty in the PDF sets (among other factors).
We then integrate over the rapidity in equation 2; both the uncertainty of
the new integration and the propagation of the previous error should be
properly taken into account. The same holds for the averaging procedure
that is then carried out to produce a histogram from the theoretical pre-
diction. Through this analysis the error was taken to be relative error in
the last integration performed - the crudeness of this approach is compen-
sated by the fact that the actual accuracy of the GSL integration routines
usually exceeds by an order of magnitude the specified desired value.

• Origin of oscillations: Without an understanding of the origin of the
oscillations it is not possible to make a sensible comparison; the theory
predicts fourier coefficients that monotonically decrease with the fourier
parameter and even if the average values agree, the disagreement in the
detailed behaviour cannot be overlooked.

• Discrepancy in cross-section: It should be investigated whether the dis-
crepancy is not caused by a careless omission of a constant/ conversion
factor on my part. Care was obviously taken to avoid such a situation
but without knowing why the absolute magnitudes differ by so much I
cannot be absolutely confident that I have not made a mistake. A more
useful comparison might be to forgo the overall normalisation altogether
and compare only the shapes of the curves. Another interesting approach
would be to compare directly to experimental data or to at least compare
the Monte Carlo predictions to experiment.

• Two-loop constant: The results of the Monte Carlo simulation should also
be compared to the 2-loop correction to the strong coupling constant. This
was not carried out here due to time constraints (two-loop calculations are
significantly more computationally intensive). It is also curious that the
discrepancies between the 1-loop and 2-loop predictions in figure 4 are so
large. Unfortunately it appears that the difference in the behaviour works
in the opposite way than what we would expect, making the factor of 5 of
the previous paragraph even larger.

• Different event generator: The current analysis used Pythia exclusively.
It would be interesting to see the same analysis performed against the
results of a different event simulator. This would also provide valuable
information on the difference in the absolute magnitudes of the results.

• Different Landau cuts: The current value selected for the cut at the Lan-
dau pole was entirely arbitrary. Although the differences by selecting a
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different value for the cut should be very small it would be reassuring to
verify this.

Concluding this report I would like to thank Hannes Jung for taking the time
to carefully listen to my problems whenever an issue arised and for providing
very insightful suggestions at all stages of the project. I would also like to
warmly thank Zoltan Nagy for being a valuable source of information — as
supervisors usually are — but also a very encouraging and inspirational presence
— something not all supervisors succeed in.
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