e⁺e⁻ Linear Collider

<u>Disclaimer</u>

This talk was lifted from an earlier version of a lecture by N.Walker

Eckhard Elsen DESY

DESY Summer Student Lecture 3rd August 2006

<u>Disclaimer II</u>

Talk is largely based on TESLA design which meanwhile evolved into the design of the

International Linear Collider (ILC)

some reference will be made to the specifics of the ILC (The TESLA numbers are only indicative of the foreseen ILC performance).

The TESLA Linear Collider

The Superconducting Electron-Positron Linear Collider with an Integrated X-Ray Laser Laboratory

Technical Design Report

Technical Design Report (TDR) published in March 2001

on SCRF technology

 Chosen as the basis for the International Linear Collider

Energy Frontier e⁺e⁻ Colliders

LEP at CERN, CH $E_{cm} = 180 \text{ GeV}$ $P_{RF} = 30 \text{ MW}$

Why a Linear Collider?

<u>Synchrotron Radiation</u> from an electron in a magnetic field:

$$P_{\gamma} = \frac{e^2 c^2}{2\pi} C_{\gamma} E^2 B^2$$

Energy loss per turn of a machine with an average bending radius ρ:

$$\Delta E / rev = \frac{C_{\gamma} E^4}{\rho}$$

Energy loss must be replaced by RF system

Cost Scaling \$\$

• Linear Costs: (tunnel, magnets etc) $\$_{lin} \propto \rho$

• RF costs: $\$_{RF} \propto \Delta E \propto E^4/\rho$ • Optimum at $\$_{lin} = \$_{RF}$

Thus optimised cost ($\$_{lin} + \$_{RF}$) scales as E^2

The Bottom Line \$\$\$

		LEP-II	Super-LEP	Hyper- LEP
E _{cm}	GeV	180	500	2000
L	km	27		
Δ_{E}	GeV	1.5		
\$ _{tot}	10 ⁹ SF	2		

The Bottom Line \$\$\$

		LEP-II	Super-LEP	Hyper- LEP
E _{cm}	GeV	180	500	2000
L	km	27	200	
Δ_{E}	GeV	1.5	12	
\$ _{tot}	10 ⁹ SF	2	15	

The Bottom Line \$\$\$

		LEP-II	Super-LEP	Hyper- LEP
E _{cm}	GeV	180	500	2000
L	km	27	200	3200
Δ_{E}	GeV	1.5	12	240
\$ _{tot}	10 ⁹ SF	2	15	240

Solution: Linear Collider No Bends, but *lots* of RF!

For a E_{cm} = 1 TeV machine: Effective gradient *G* = 500 GV / 15 km = 34 MV/m

Note: for LC, $\$_{tot} \propto E$

The <u>TESLA</u> linear collider

A Little History

A Possible Apparatus for Electron-Clashing Experiments (*).

M. Tigner

Laboratory of Nuclear Studies. Cornell University - Ithaca, N.Y.

M. Tigner, Nuovo Cimento **37** (1965) 1228

"While the storage ring concept for providing clashingbeam experiments (¹) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable."

• SLC (SLAC, 1988-98) • NLCTA (SLAC, 1991-) • TTF (DESY, 1994-2006) • ATF (KEK, 1991-) • FFTB (SLAC, 1992-1995) • SBTF (DESY, 1994-1998) CLIC CTF1,2,3 (CERN, 1994-) • FLASH (DESY, 2006-)

Over 18 Years of Linear Collider R&D

A Little History (1988-2006)

particles perpetition rate No. bunches in bunch train Beam-beam enhancement factor (pinch effect)

beam cross-section at Interaction Point (IP) LEP $f_{rep} = 40 \text{ kHz}$ [LEP: 1-30×62000²Hz! LC: 550×5 nm²

 $L = \frac{n_b N^2 f_{rep}}{4\pi\sigma_x^* \sigma_y^*} \times H_D$

Requirements for Next Generation LC:

 $E_{\rm cm} = 0.5 - 1 \,\,{\rm TeV}$

 $L \ge 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Pbeam

 $= \frac{1}{4\pi E_{cm}} \left(E_{cm} f_{rep} n_b N \right) \frac{N}{\sigma_x^*} \frac{1}{\sigma_y^*} \times H_D$

Requirements for Next Generation LC:

 $E_{\rm cm} = 0.5 - 1 \,{\rm TeV}$

 $L \ge 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Efficiency

$L = \frac{1}{4\pi} \frac{\eta P_{RF}}{E_{cm}} \frac{N}{\sigma_x^*} \frac{1}{\sigma_y^*} \times H_D$

Beamstrahlung (energy loss δE/E)

Requirements for Next Generation LC: $L \ge 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

 $E_{\rm cm} = 0.5 - 1 \,\,{\rm TeV}$

Beamstrahlung

RMS Energy Loss for a flat beam $(\sigma_x * \sigma_v)$

Beamstrahlung

RMS Energy Loss for a flat beam $(\sigma_x * \sigma_v)$

$$\delta_{BS} \propto \frac{E_{cm}}{\sigma_z} (\frac{N}{\sigma_x})^2$$

Luminosity re-visited

IP focusing & o

$$\sigma_y^* = \sqrt{\beta_y^* \varepsilon_y}$$

Requirements for Next Generation LC:

 $L \ge 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

 $E_{\rm cm} = 0.5 - 1 \,{\rm TeV}$

Emittance and Strong Focusing

$$\sigma_{y}^{*} = \sqrt{\frac{\varepsilon_{y}\beta_{y}^{*}}{\gamma}}$$

 $\sigma_y^* = 5 \text{ nm}$ $\varepsilon_y = 3 \times 10^{-8} \text{m}$ $\beta_y^* = 0.4 \text{ mm}$

Limit on β^*

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*}, \qquad \beta^* = \beta(s=0)$$

 β^* = "depth of focus" reasonable lower limit for β^* is bunch length σ_z

Thus set $\beta^* = \sigma_z$

Final Luminosity Scaling Law

Superconducting RRF Small IP vertical LTeghnology

High current (n_b N)

 Strong focusing (small β*_y)

TESLA superconducting 9-cell Niobium cavity

The Superconducting Advantage

Low RF losses in resonator walls $(Q_0 \approx 10^{10} \text{ compared to } Cu \approx 10^4)$

- high efficiency $\eta_{AC \rightarrow beam}$

 – long beam pulses (many bunches) → low RF peak power

 large bunch spacing allowing feedback correction within bunch train.

The Superconducting Advantage

Low-frequency accelerating structures 1.3 GHz (for Cu 6-30 GHz)

- very small wakefields

relaxed alignment tolerances

high beam stability

Wakefields

Just Ohm's Law: $V(\omega, t) = I(\omega, t)Z(\omega, t)$

The TESLA concept:

"Put a large current through a low impedance"

Wakefields (alignment tolerances)

Wakefields (alignment tolerances) Transverse Wakefield Kick $\propto f^3$

Ratio of deflecting wakefield to accelerating field for 1mm offset

The TESLA Test Facility (TTF)

Cavity strings are prepared and assembled in ultra-clean room environment at TTF

The TESLA Test Facility (TTF)

TTF Test Linac constructed from completed Cryomodules ~

now user facility: FLASH

Damping Ring

BEAM

. Cryomodule

Cavities

~1m

9-cell 1.3GHz Niobium Cavity

~16m

36 9-cell 1.3GHz Niobium Cavity
3 Cryomodule
1 10MW Multi-Beam Klystron

Per Linac ($E_{cm} = 500 \text{ GeV}$): 10,296 Cavities 858 Cryomodules 286 Klystrons Gradient: 23.4 MV/m (inc. 2% overhead) LENGTH 14.4km (fill factor: 74%)

Cryoplants

 Each linac divided into 6 Cryo-units (~140 cryomodules)

 7 refrigeration (liquid He) plants housed in 7 surface halls (~5km)

Cryohalls

10MW Multibeam Klystron

Design power and pulse length (1.5ms) at 65% efficiency reached at TTF

The Thomson TH1801 multibeam klystron

10MW Multibeam Klystron

Design power and pulse length (1.5ms) at 65% efficiency reached at TTF

The Thomson TH1801 cathode

The SC linac can:

- Efficiently accelerate a high charge to high energies (high RF->beam power transfer efficiency)
- Preserve the required small bunch volumes (small emittance) because of low <u>wakefields</u>
- Has relatively relaxed tolerances

BUT how do we:

- Produce the electron charge?
- Produce the positron charge?
- Make small emittance beams?
- Focus the beam down to 5nm at the IP?

Machine Overview (TESLA)

Electron Sources

Laser-driven photo-injectors

Positron Source

Replacing planar undulator with HELICAL undulator gives possibility of <u>POLARISED POSITRONS</u>

Small Emittances Require normalised emittances of

 $\gamma \varepsilon_x = 10^{-5} \text{ m}$ $\gamma \varepsilon_v = 3 \times 10^{-8} \text{ m}$

 Thermionic guns (ε~10⁻⁵) and state-of-theart RF guns (ε~10⁻⁶) not good enough

Emittance Damping Ring required

Damping Rings

- ring in which the bunch train is stored for T~200 ms
- $\varepsilon_{x,y}$ is damped down due to synchrotron radiation effects:

How β-damping works

y' not changed by photon

How β-damping works

Must take average over all β -phases:

$$\tau_D \approx \frac{2E}{\langle P_{\gamma} \rangle}$$
 where $\langle P_{\gamma} \rangle \propto \frac{E^4}{\rho^2}$ and hence $\tau_D \propto \frac{\rho^2}{E^3}$
LEP: $E_{cm} \sim 135$ GeV, $P_{\gamma} \sim 4.7 \times 10^3$ GeV/s, $\tau_D \sim 28$ ms

Damping Rings for LC

- Typically $E \approx 3-5$ GeV
- $B_{bend} = 0.2 \text{ T} \Rightarrow \rho \approx 50-80 \text{ m}$
- $< P_{\gamma} > = 240 \text{ GeV/s} [330 \text{ kV/turn}]$
- hence $\tau_D \approx 28 \text{ ms}$
- Note: $\varepsilon_{eq} \propto E^2/\rho$

TESLA Damping Rings
Long pulse: 950ms × c = 285km!!
Compress bunch train into 18km "ring"
Minimum circumference set by speed of ejection/injection kicker (~20ns)

 Unique "dog-bone" design: 90% of 'circumference' in linac tunnel.

Limits on ε_{eq}

- Horizontal emittance defined by lattice (presence of dispersion in *x*-plane leads to so-called anti-damping):
- theoretical vertical emittance limited by
 - space charge
 - intra-beam scattering (IBS)
- In practice, ε_y limited by magnet alignment errors
 [cross plane coupling]
- typical vertical alignment tolerance: $\Delta y \approx 30 \ \mu m$ \Rightarrow requires beam-based alignment techniques!

Damping Rings

Dogbone Straight Sections

Dogbone Arc Tunnel

Cryohall and "dogbone" tunnel

Bunch Compression

bunch length from ring ~ few mm
required at IP 100-300 µm

Bunch Compression

Δz [m]

Damping ring

After compression (300 μm)

Bunch Compression

Damping ring (~ppm)

After compression 5 GeV: 2.8% 250 GeV: 0.6‰

Final Focus System for small β*

- Optical telescope required to strongly demagnify the beam
 (M_x ≈ 1/100, M_y ≈ 1/500)
- Strong focusing leads to unacceptable chromatic aberrations [non-linear optics]
- Require 2nd-order optical correction

Stability

- Tiny (emittance) beams Tight component tolerances - Field quality - Alignment Vibration and Ground Motion issues Active stabilisation
- Feedback systems

Linear Collider will be "Fly By Wire"

Stability: some numbers

Cavity alignment (RMS):
Linac magnets:
BDS magnets:
Final "lens":

500 μm 100 nm 10-100 nm ~ nm !!!

Parallel-to-Point focusing

IP Fast (orbit) Feedback

Long bunch train: 2820 bunches t_b = 337 ns

IP Fast (orbit) Feedback

(a) Separation Response

Systems successfully tested at TTF

'Banana' Effect : Beam-Beam Simulation

 Instability driven by vertical beam profile distortion

Strong for high disruption

- Distortion caused by transverse wakefields and quad offset – only a few percent emittance growth
- Tuning can remove static part

Nominal TESLA Beam Parameters + y-z correlation (equivalent to few % projected emittance growth) Beam centroids head on

Damping ring to IP Simulations

bunch compressor

linac

BDS

This is just an example what we intend to study

Timeline

•

•

- 1995 SLAC produced X-Band design report (ZDR)
- 2001 TESLA TDR Published
 - US Snowmass HEP Workshop: World-Wide Consensus
 - 2003 KEK (Japan) X-Band GLC TDR Published
 - 2004 International Technology Recommendation Panel Decision (X-Band or TESLA?) \rightarrow SCRF
 - 1st ILC Workshop, KEK Japan, November 2004
 - 2005 Formation of 'Global Design Initiative' and 'Regional Design Teams', Baseline defined
 - 2nd ILC Workshop, Snowmass Colorado, USA, August 2005
- 2006 Reference Design Report
- 2007-2008 International TDR with full costs
- 2008+ Site selection, start of construction
- 2015++ Begin e⁺e⁻ physics

more on the ILC

- go to
 - www.linearcollider.org
 - or subscribe to
 - www.linearcollider.org/newsline