

Relative Momentum Error

For 3 points the relative momentum resolution is given by: $\frac{\sigma(p_T)}{p_T} = \frac{\sigma_s}{s} = \sqrt{\frac{3}{2}} \sigma_x \cdot \frac{8p_T}{0.3BL^2}$

- degrades linearly with transverse momentum
- improves linearly with increasing B field

carsten niebuhr@desv.de

• improves quadratically with radial extension of detector

In the case of N equidistant measurements according to Gluckstern [NIM 24 (1963) 381]:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma(\kappa)}{\kappa} = \frac{\sigma_x \cdot p_T}{0.3BL^2} \sqrt{\frac{720}{(N+4)}} \quad \text{(for } N \ge 10 \text{ , curvate}$$

ure $\kappa = 1/\rho$)

N-100

1.01 1.02 1.03 1.04 1.05

Particle Detectors 2

Example: For $p_T = 1 \text{ GeV}$, L = 1 m, B = 1 T, $\sigma_r = 200 \mu \text{m}$ and N = 10 one obtains:

3

$$\frac{\sigma(p_T)}{p_T} \approx 0.5\% \text{ for a sagitta } s \approx 3.8 \text{ cm}$$

Contribution from Multiple Scattering

Momentum is determined by measurement of track curvature $\kappa = 1/\rho$ in B field:

First Track Detectors

Until ≈ 1970:

- optical measurements using
- bubble chambers
- emulsions
- spark chambers
- manual reconstruction
- can handle only very low data rates

BEBC bubble chamber

carsten.niebuhr@desy.de

Particle Detectors 2

Criteria for optimal momentum resolution:

Gas Detectors

- many measurement points
- large detector volume
- very good single point resolution
- as little multiple scattering as possible

Gas detectors provide a good compromise and are used in most experiments. However:

- per cm in Argon only ca. 100 electron-ion pairs are produced by ionisation (see next page)
- this has to be compared with the noise of a typical amplifier of ≈1000 e-
- ⇒ a very efficient amplification mechanism is required

Particle Detectors 2

Primary and Total Ionisation Yield in Gases

5

Gas Amplification For cylindrical geometry: ΕΛ $E(r) \propto \frac{1}{r}$ and $V(r) \propto \ln \frac{r}{a}$ cathode E. • the primary electrons drift towards the ¥3 positive anode anode • due to 1/r dependence the electric field close to very thin wires reaches values of E > kV/cm а 25µm • \Rightarrow in between collisions with atoms electrons gain enough energy to ionize

6

carsten.niebuhr@desy.de

the wire

further gas molecules

• \Rightarrow exponential increase in number of

electron-ion pairs very close (few μ m) to

carsten.niebuhr@desy.de

Avalanche Formation

- due to transverse diffusion a droplet like avalanche develops around the anode
- electrons are collected very fast (≈ 1 ns) mobility of electrons ≈1000 times larger than for ions
- the cloud of positive ions remains and slowly drifts towards the cathode

carsten niebuhr@desv.de

11

picture taken with

cloud chamber

Signal Shape

The signals which are induced on anode and cathode come from the fact that charges move

in the electric field between the electrodes: $dv = \frac{Q}{ICV_0} \frac{dV}{dr} \cdot dr$

Most of the electron-ion pairs are created very close to the anode wire \Rightarrow

- electrons only move a short distance in the electric field: dr small
- in contrast the ions move all the way back to the cathode: dr much larger
- \Rightarrow most of the signal is induced by the movement of the ions which takes ralativey long
- usually the signal has to be electronically differentiated

carsten niebuhr@desv.de

Particle Detectors 2

Modes of Operation of Gas Detectors

• Ionisation chamber:

complete charge collection, but no charge amplification.

- Proportional counter:
- above threshold voltage multiplication starts. Detected signal proportional to original ionization \rightarrow energy measurement (dE/dx) possible. Secondary avalanches have to be quenched. Gain $\approx 10^4 10^5$
- Region of limited proportionality: or streamer mode: strong photo emission→ secundary avalanches. Needs efficient quencher or pulsed HV. Gain upto ≈10⁹, hence simple electronics sufficient.
- Geiger-Müller counter:

carsten.niebuhr@desy.de

massive photo emission. Full length of anode wire affected. Stop discharge by HV break down. Strong quenchers needed.

Family Tree of Gaseous Detectors

Multi Wire Proportional Chamber

Cathode

Generalize principal of proportional tube to large area detector.

Multi Wire Proportional Chamber: MWPC

George Charpak 1968

- anode wires act as independent detectors
- capacitive coupling of negative signal from anode wire where avalanche is formed to neighbours is small compared to pulse, which is generated by ions drifting towards cathode
- furthermore development in electronics: possibility to read many channels in parallel $\rightarrow 10^6$ tracks per second
 - \Rightarrow Breakthrough in detector development

Nobelprize for physics 1992

MWPC

Use of gold plated tungsten wires with diameter 15-30 μ m as anode wires. Chamber walls made from glas fiber material (rigid, low mass). Thin metal foil acting as cathode (typically d \approx 50 μ m). Typical dimensions: d = 2mm, L = 4mm.

carsten.niebuhr@desy.de

Particle Detectors 2

carsten.niebuhr@desy.de

16

Particle Detectors 2

1L

Principal of a Driftchamber

Ar+CH₄

- drift distance: $x = v_D(t_1 t_0) = v_D \Delta t$
- channel

Particle Detectors 2

v_{drift} vs E-Field in various Argon-Mixtures

- strong dependence on the choice of the gas mixture
- details of the energy dependence of the ionisation cross section (Ramsauer minimum) result in a characteristic maximum of the E field dependence.

18

- for stable operation it is useful to operate in the maximum: $\frac{dv_{drift}}{dE} = 0$
- typical drift velocities : v_{drift} ≈ 2-10 cm/μs = 20-100 μm/ns

carsten.niebuhr@desy.de

```
Particle Detectors 2
```

Examples for Cylindrical Driftchamber Geometries

17

Isochrones & Lorentzangle

carsten.niebuhr@desy.de

carsten niebuhr@desv.de

The intrinsic position resolution is influenced by three effects:

- statistics of primary ionisation: point of origin of primary cluster varies by ≈100µm
- diffusion of electron cloud during it's drift to anode

-
$$\sigma = \frac{1}{\sqrt{n}} \sqrt{\frac{2Dx}{\mu E}}$$

- Lorentz effect
- limitations in time resolution of whole chain of electronic signal processing
- cabel

carsten niebubr@desv.de

- pulse shaping
- definition of time refernce t_0 etc

H1 Central Jet Chamber

• ≈ 15000 wires total force from wire tension ≈ 6 tons

carsten niebubr@desv.de

Particle Detectors 2

Options for Readout of Second Coordinate

Time Projection Chamber

22

In the seventies D.Nygren developed the Time Projection Chamber (TPC).

- large gas volume with one central electrode
- minimal amount of material
- · electrons drift in strong electric field over distance of several meters to end walls where they can be registered for example with MWPCs
- readout of anode wires and cathode pads $\rightarrow x, y$
- drift time $\rightarrow z$
- \Rightarrow unambiguous 3d hit measurements
- diffusion strongly reduced, since E || B ⇒ electrons spiral around E-field lines: Larmor radius <1µm
- laser calibration for precise v_D determination
- very good hit resolution and dE/dx meas.
- long drift times ($\approx 40 \mu s$) \Rightarrow
 - rate limitation
 - very good gas guality required

carsten.niebuhr@desy.de

Particle Detectors 2

carsten niebuhr@desv.de

24

Particle Detectors 2

Example ALEPH TPC at LEP

ALEPH TPC Event

Example ALICE TPC @ LHC

Construction of ALICE Field Cage

carsten.niebuhr@desy.de

Gating in a TPC

A specific problem in a TPC is presented by the ions drifting back to the central electrode. At high rates they disturbe the homogeneity of the electric field in the drift region. Solution by so-called gating :

- ions are collected on shielding grid
- only electrons from "interesting" tracks reach the amplification region; others are collected on gating grid
- this requires use of an external trigger

Aging Effects in Wire Chambers

Measures against aging:

carsten niebubr@desv.de

- carefully selection of materials for whole system
- highest gas quality no impurities
- avoid excessive chamber currents

Particle Detectors 2

Micro Strip Gas Chambers MSGC

Advantages

- very precise and small anode/cathode structures can be produced with lithographical methods \rightarrow very good position resolution
- high mechanical stability
- small drift distance for ions \rightarrow high rate capability

carsten niebuhr@desv.de

Particle Detectors 2

carsten niebuhr@desv.de

32

Resistive Plate Chambers RPC

30

Gas Electron Multiplier GEM

In the late 90's developed by F.Sauli at CERN [NIM A386 (1997), 531]

- typical gain of $\approx 10^3$ at 500V
- can stack several stages on top af each other
- \rightarrow large total gain at relatively moderate HV

Main Characteristics of GEM Detectors

• Rate capability ~ 1 MHz mm⁻² • Position accuracy (MIPs) σ ~ 60 μm • Radiation tolerance > 100 mC mm⁻² - corresponds to $\sim 10^{14}$ MIPs cm⁻² S-D-T GEM equvolt-gain bis TGEM Jain Effective Double-Gem DRIFT ED DRIFT 10 SGEM GEM 1 Εт TRANSFER _____ GEM 2 INDUCTION E READOUT 10^{2}_{300} 350 400 450 500 550 $\Delta V_{\text{GEM}}(V)$ carsten niebubr@desv.de 34 Particle Detectors 2

Detector R&D: GEM Readout for TPC at ILC

35

- Narrow pad response function: $\Delta s \sim 1 \mbox{ mm}$
- Fast signals (no ion tail): Δt ~ 20 ns
- + Very good multi-track resolution: $\Delta V \sim 1 \text{ mm}^3$
- Standard MWPC TPC ~ 1 $\rm cm^3$
- Ion feedback suppression: I+/I- ~ 0.1%

Summary on Track Detectors

• Relative momentum error of tracking device:

$$\left(\frac{\sigma_p}{p}\right)^2 \propto \left(a\frac{\sigma_x}{\sqrt{N}BL^2}p_T\right)^2 + \left(b\frac{1}{\beta B\sqrt{LX_0}}\right)^2$$

therefore need:

- good hit resolution
- large number of hits
- large lever arm (size of detector)
- large magnetic field
- as little amount of dead material as possible (minimise multiple scattering at low momentum)
- Gas detectors
- ionization \rightarrow gas amplification process in high electric field yields detectable signal
- wire chambers (MWPC, straws, drift chamber, TPC ...)
- micro pattern devices (MSGC, GEM, Micromegas ...) for high rate applications
- Solid state detectors
- mainly based on Silicon
- micro structures (strips or pixels) provide excellent position resolution
- for details see Friday lecture

Position and Timing Resolution

Detector Type	Accuracy (rms)	Resolution Time	Dead Time				
Bubble chamber	10–150 $\mu {\rm m}$	$1 \mathrm{ms}$	50 ms^a				
Streamer chamber	$300~\mu{ m m}$	$2 \ \mu s$	100 ms 200 ns				
Proportional chamber	$50-300 \ \mu m^{b,c,d}$	2 ns					
Drift chamber	$50300~\mu\mathrm{m}$	2 ns^e	100 ns				
Scintillator		100 ps/n^f	10 ns				
Emulsion	$1 \ \mu m$						
Liquid Argon Drift [Ref. 6]	${\sim}175{-}450~\mu{\rm m}$	$\sim 200~{\rm ns}$	$\sim 2 \ \mu s$				
Gas Micro Strip [Ref. 7]	$3040~\mu\mathrm{m}$	< 10 ns					
Resistive Plate chamber [Ref. 8]	$\lesssim 10~\mu{ m m}$	$1{-}2$ ns					
Silicon strip	pitch/ $(3 \text{ to } 7)^g$	h	h				
Silicon pixel	$2 \ \mu \mathrm{m}^i$	h	h				
 ⁴ Mattiple public time. ⁵ 300 µm is for 1 mm pitch. ⁶ Delay line cathode readout can give ±15 ⁴ wiresquering/√12. ⁶ For two chambers. ⁸ The highest readout of error time. ⁹ The highest readout of error finding. ⁸ Limited by the readout of etertrains [9]. ⁶ Limited by the readout of 34 µm pitch, mondult 	^a Multiple palsing time. ^b 30 µm is for 1 mm pitch. ^b Column is for 1 mm pitch. ^c Delay line cathole readout can give ±150 µm parallel to anode wire. ^d wirespacing/√12. ^c For two chambers. <i>f</i> n = index of refraction. ^g The highest resolution (~7) is obtained for small-pitch detectors (≤25 µm) with pubs-height-weighted center finding. ^h Limited by the readout electronics [9]. (Time resolution of ≤ 25 m is planned for the ATLAS SCT.) ⁱ Analog readout of 34 µm pitch, monolithic pixel detectors.						
buhr@desv.de 3	37		Particle Detecto				

Semiconductors in the Periodic System

1 <mark>H</mark>	2	3	4	5	6	7	8	9	10	11	12	13 III	14 IV	15 V	16	17	18 He		
¦ ₃Li	₄Be	Hauptgruppen Hauptgruppen Nebengruppen Fdelnese Gasfärmin									₅ <mark>B</mark>	° C	₇ N °	o°	<mark>۶</mark> و	Ne			
Na 11	Mg	Lanthanoide/ Actinoide										<mark>AI</mark> 13	Si	P 15	<mark>S</mark>		Ar		
K 19	Ca	Sc 21	Ti	V 23	Cr	Mn	Fe	C 0	Ni 28	29 29	Zn	<mark>₀Ga</mark>	Ge	As	Se 4	Br	Kr		
<mark>Rb</mark> ₃7	<mark>Sr</mark>	Y 39	Zr	Nb	Mo	Tc *	Ru	Rh₄₅	$\mathbf{Pd}_{_{46}}$	<mark>.</mark> 47	$\operatorname{Cd}_{_{48}}$	ln 49	<mark>_Sn</mark>	<mark>Sb</mark>	Te	 53	Xe		
Cs 55	Ba₅	La-Lu 67-71	Hf	<u>та</u> 73	W	Re	<mark>0s</mark>	lr	Pt	Au	₀Hg	TI 81	Pb	Bi	P0 [*]	<mark>_At</mark> *	Rn		
<mark>Fr*</mark> 87	"Ra [*]	Ac-Lr 89-103	Db	J 105	Rf 106	Bh 107	Hn 108	Mt 109	Uun			Metalle 上 Nichtmetalle							
		La	Ce	Pr	Nd	_ ۳m	ൢSm	Eu	Gd	Tb	Dy	Ho	Er	۳T	Yb	Lu			
		"Ac	۳ ۳	Pa [*]	U *	Np*	Pu*	Am 95	Cm 96		Cf*	Es*	.Fm	Md	No*	Lr 103			

Advantages of Silicon

38

• band gap ∆E=1.12 eV

carsten niebuhr@desv.de

- energy needed per electron-hole pair: 3.6 eV (rest goes into phonons, for comparison ≈30eV for noble gas)
- high density: ρ = 2.33 g/cm^3 with dE/dx|_min = 1.664 MeV/gcm^2 one obtains for 300 μ m thick Si-layer:

N = 300 μ m x 1.664 MeV/gcm⁻² x 2.33 g/cm³/3.6 eV

 \Rightarrow N \approx 32000 electron-hole-pairs in 300 μ m (MIP)

- good mechanical stability \Rightarrow layers of this thickness can be made self supporting
- large mobility of charge carriers \Rightarrow fast charge collection $\Delta t \approx 10$ ns
- no additional charge amplification mechanism neccessary

carsten.niebuhr@desy.de

Particle Detectors 2