URL: https://www.desy.de/forschung/anlagen__projekte/icecube/DESY-Organigramm_uebersicht_Dez_ger.html/@@siteview
Breadcrumb Navigation
IceCube
Neutrinoteleskop IceCube
Was passiert in der Nähe eines schwarzen Lochs? Woher kommen jene unvorstellbar energiereichen Teilchen, die als kosmische Strahlung auf die Erde prasseln? Antworten auf diese Fragen erhalten Forschende von einem ungewöhnlichen Teleskop an einem spektakulären Ort: Tief im Eis des Südpols lauert der IceCube-Detektor auf Neutrinos aus dem All – geisterhafte Elementarteilchen, die bei kosmischen Gewaltakten in den fernen Weiten des Universums erzeugt werden. Wissenschaftlerinnen und Wissenschaftler vom DESY-Standort in Zeuthen sind maßgeblich an dem größten Teilchendetektor der Welt beteiligt.
Neutrinos sind extrem leichte Teilchen, die nahezu ungestört durch alles hindurchfliegen, was ihnen begegnet. Das macht sie zu einzigartigen Boten der Geschehnisse im Weltall. Denn Neutrinos erreichen die Erde auf direktem Weg, z.B. von den Zentren fremder, Millionen oder Milliarden Lichtjahre entfernter Galaxien. Licht- oder Gammastrahlen aus diesen Galaxien bleiben auf ihrem Weg zur Erde leicht in Materiewolken stecken; geladene Teilchen werden durch kosmische Magnetfelder abgelenkt, so dass sich ihr Ursprung nicht mehr feststellen lässt. Neutrinos werden weder von Materiewolken noch Magnetfeldern gestört – deshalb können sie Informationen aus Regionen des Kosmos liefern, von denen kaum ein anderes Signal zur Erde vordringt.
Was Neutrinos zu idealen kosmischen Boten macht, ist gleichzeitig auch ihr Nachteil: Sie fliegen so mühelos durch Materie hindurch, dass jede Sekunde Milliarden von Neutrinos jeden Quadratzentimeter der Erde durchqueren, ohne eine Spur zu hinterlassen. Nur ganz selten trifft ein Neutrino auf ein Materieteilchen. Deshalb sind gigantische Detektoren nötig, um ab und zu ein solches Neutrinoereignis beobachten zu können.
Teilchenspuren im ewigen Eis
Das Neutrinoteleskop IceCube ist ins ewige Eis der Antarktis eingeschmolzen – mit einem Volumen von einem Kubikkilometer ist es der größte Teilchendetektor der Welt. In einer Tiefe von bis zu 2,5 Kilometern sind 86 Stahltrossen mit über 5000 lichtempfindlichen Nachweisgeräten im Eis eingefroren. Diese optischen Module beobachten die winzigen blauen Lichtblitze, die entstehen, wenn Neutrinos mit dem kristallklaren Eis reagieren und dabei Schauer geladener Teilchen erzeugen. Anhand dieser Lichtblitze lässt sich die Flugrichtung der Neutrinos vermessen. Daraus lässt sich wiederum rekonstruieren, aus welchen Regionen des Alls die Geisterteilchen kommen und wo sie entstanden sind.
DESY ist als zweitgrößter Partner nach der Universität von Wisconsin-Madison (USA) einer der wichtigsten Akteure des internationalen IceCube-Konsortiums. Bei DESY in Zeuthen wurde ein Viertel der Detektormodule von IceCube produziert, und auch bei der derzeit stattfindenden Erweiterung, dem IceCube Upgrade, ist DESY in die Entwicklung und Produktion der Sensoren zentral eingebunden.
Erste Neutrinos aus dem All
Die meisten Neutrinos, die auf die Erde treffen, entstehen in der Sonne oder der Erdatmosphäre. Weitaus seltener sind Neutrinos, die von außerhalb unseres Sonnensystems stammen. Solche extraterrestrischen Neutrinos sind besonders interessant, denn sie geben Einblick in die gewaltigen kosmischen Objekte, von denen sie herrühren: Gammastrahlenausbrüche, Supernovae, Pulsare oder die riesigen Teilchenjets, die supermassive Schwarze Löcher im Herzen aktiver Galaxien aussenden.
Der erste Durchbruch gelang der internationalen IceCube-Gruppe im Jahr 2012: Die Forschenden identifizierten in den Messdaten zwei Ereignisse mit einer gewaltigen Energie von je 1000 Tera-Elektronenvolt (TeV) – deutlich mehr als das, was man für atmosphärische Neutrinos erwartet. 2013 kamen weitere Hochenergie-Ereignisse hinzu. Alle Spuren unterschieden sich so deutlich von der atmosphärischen Variante, dass klar war: IceCube hatte die ersten energiereichen Neutrinos aus den Tiefen des Weltalls aufgespürt.
Im Jahr 2017 gelang dann der erste Hinweis auf die Quellen der Teilchen: Ein besonders hochenergetisches Neutrino wurde aus der Richtung einer aktiven Galaxie nachgewiesen, deren Jet genau auf die Erde zeigt. Seitdem konnten die Forschenden mit IceCube weitere Hinweise auf Quellen hochenergetischer Neutrinos finden, die von unserer eigenen Milchstraße bis hin zu fernen, aktiven Galaxien reichen.
Damit eröffnet das gigantische Teleskop am Südpol einen neuen Zweig der Astronomie. Mit steigenden Nachweiszahlen hochenergetischer Neutrinos, einem erweiterten Detektor und besseren Analysemethoden hoffen die Wissenschaftlerinnen und Wissenschaftler, weitere Quellen energiereicher Neutrinos im Kosmos zu identifizieren.
- Neutrinoteleskop im Eis des Südpols, ergänzt durch ein Detektorfeld an der Eisoberfläche (IceTop)
- Fertigstellung: Dezember 2010
- Volumen: ein Kubikkilometer
- Tiefe im Eis: zwischen 1450 und 2450 m
- 86 Trossen mit je 60 optischen Modulen
- Insgesamt 5160 optische Module