URL: https://www.desy.de/news/news_search/index_eng.html
Breadcrumb Navigation
DESY News: Searching for the chemistry of life
News
News from the DESY research centre
Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents. The team led by Ivan Halasz from the Ruđer Bošković Institute and Ernest Meštrović from the pharmaceutical company Xellia presents its observations from DESY's X-ray source PETRA III in the journal Chemical Communications.

From the mixture of all four nucleobases, A:T pairs emerged at about 100 degrees Celsius and G:C pairs formed at 200 degrees Celsius. Credit: Ruđer Bošković Institute, Ivan Halasz
Our genetic code is stored in the DNA as a specific sequence spelled by the nucleobases adenine (A), cytosine (C), guanine (G) and thymine (T). The code is arranged in two long, complementary strands wound in a double-helix structure. In the strands, each nucleobase pairs with a complementary partner in the other strand: adenine with thymine and cytosine with guanine.
“Only specific pairing combinations occur in the DNA, but when nucleobases are isolated they do not like to bind to each other at all. So why did nature choose these base pairs?” says Stolar. Investigations of pairing of nucleobases surged after the discovery of the DNA double helix structure by James Watson and Francis Crick in 1953. However, it was quite surprising that there has been little success in achieving specific nucleobase pairing in conditions that could be considered as prebiotically plausible.

Nucleobase powder and steel balls in a milling jar. Credit: Ruđer-Bošković-Institut, Tomislav Stolar
In the lab, the scientists tried to produce nucleobase pairs by grinding. Powders of two nucleobases were loaded into a milling jar along with steel balls, which served as the grinding media, while the jars were shaken in a controlled manner. The experiment produced A:T pairs which had also been observed by other scientists before. Grinding however, could not achieve formation of G:C pairs.
In a second step, the researchers heated the ground cytosine and guanine powders. “At about 200 degrees Celsius, we could indeed observe the formation of cytosine-guanine pairs,” reports Stolar. In order to test whether the bases only form the known pairs under thermal conditions, the team repeated the experiments with mixtures of three and four nucleobases at the P02.1 measuring station of DESY's X-ray source PETRA III. Here, the detailed crystal structure of the mixtures could be monitored during heating and formation of new phases could be observed.

“Our results show a possible alternative route as to how the molecular recognition patterns that we observe in the DNA could have been formed,” adds Stolar. “The conditions of the experiment are plausible for the young Earth that was a hot, seething cauldron with volcanoes, earthquakes, meteorite impacts and all sorts of other events. Our results open up many new paths in the search for the chemical origins of life.” The team plans to investigate this route further with follow-up experiments at P02.1.
Reference:
DNA-specific selectivity in pairing of model nucleobases in the solid state; Tomislav Stolar, Stipe Lukin, Martin Etter, Maša Rajić Linarić, Krunoslav Užarević, Ernest Meštrović and Ivan Halasz; Chemical Communications, 2020; DOI: 10.1039/D0CC03491F