

Beam Dynamics Simulations for XFEL

Igor Zagorodnov 01.01.2011 DESY

Beam dynamics simulations for the European XFEL

Full 3D simulation method (200 CPU, ~10 hours)

ASTRA (tracking with 3D space charge, DESY, K. Flötmann)

CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg)

W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003)

- W3 ACC39 wake (TESLA Report 2004-01, DESY, 2004)
- TM transverse matching to the design optics

Beam dynamics simulations for the European XFEL

Fast 3D simulation method (1 CPU, ~10 min)

Transport Matrix + analytical longitudinal space charge wake

CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg)

Beam dynamics simulations for the European XFEL Working points (11 macro-parameters)

What is the optimal choice?

$$r_{56,1} = ?$$
, $r_{56,2} = ?$, $r_{56,3} = ?$, $C_1 = ?$, $C_2 = ?$

 $-120 \le \frac{r_{56,1}}{mm} \le 0$ $-120 \le \frac{r_{56,2}}{mm} \le -50$

I. Zagorodnov, M. Dohlus, DESY 10-102, 2010

$$-80 \le \frac{r_{56,3}}{mm} \le -20$$

 $Z(s) = \frac{1}{C(s)} = \frac{\partial s_3}{\partial s} - inverse \text{ compression function}$

 $Z^{\prime}\,$ - a free parameter to move the peak

Beam dynamics simulations for the European XFEL

$$r_{56,1} = ?, \quad r_{56,2} = ?, \quad r_{56,3} = ?, \quad C_1 = ?, \quad C_2 = ?$$
Restriction on maximal energy chirps at BCs
$$\delta_{E_i} = \frac{\sigma_{E_i}}{E_i}$$

$$r_{56(1)}^0 = -\frac{\sigma_z^0}{\delta_{E_1}} \left(1 - \frac{1}{C_1}\right)$$

$$r_{56(2)}^0 = -\frac{\sigma_z^0}{\delta_{E_2}} \frac{1}{C_1} \left(1 - \frac{1}{C_2}\right)$$

$$r_{56(3)}^0 = -\frac{\sigma_z^0}{\delta_{E_3}} \frac{1}{C_1 C_2} \left(1 - \frac{1}{C_3}\right)$$

Wake compensation?

$$\boldsymbol{\delta}_{E_3} = \frac{1}{\sqrt{3}} \frac{QW_{\text{Linac}}}{E_3}$$

$$\left(\delta_{E_1},\delta_{E_2},\delta_{E_3}
ight)$$

+ scan of the RF tolerance vs. C_1 and C_2

if
$$r_{56(i)}^0 > \max(r_{56(i)})$$
, *then* $r_{56(i)}^0 = \max r_{56(i)}$
if $r_{56(i)}^0 < \min(r_{56(i)})$, *then* reject

RF tolerance

$$\frac{\left|\Delta \tilde{V}_{1,1}\right|}{V_{1,1}^{0}} = \frac{\Theta \overline{E}_{1} \overline{E}_{2} \overline{E}_{3}}{k V_{1,1}^{0} C_{3} C_{2}^{2} C_{1}^{3} \sqrt{A_{3}^{2} + B_{3}^{2}}}$$

I. Zagorodnov, M. Dohlus, DESY 10-102, 2010

Macro-parameters

Charge	Momentum	Compr.	Momentum	Compr.	Momentum	Total	First	Second
Q,	compaction	in BC ₁	compaction	in BC ₂	compaction	compr.	derivative	derivative
nC	factor in BC_1	C ₁	factor in BC_2	C_2	factor in BC_3	С	Ζ',	Ζ",
	R _{56,1} ,		R _{56,2} ,		R _{56,3} ,		[m ⁻¹]	[m ⁻²]
	[mm]		[mm]		[mm]			
1	-100	3.5	-54	8	-20	121	0	2000
0.5	-89	3.5	-50	8	-20	217	0	1000
0.25	-78	3.5	-50	8	-20	385	0	1000
0.1	-71	3.5	-50	8	-20	870	0	1000
0.02	-67	3.5	-50	8	-20	4237	0	500

 $E_1 = 130 \,\mathrm{MeV}$ $E_2 = 700 \,\mathrm{MeV}$ $E_3 = 2400 \,\mathrm{MeV}$

XFEL beam dynamic simulations for different charges simulation methods (looking for RF parameters)

Charge,	V _{1,1} ,	φ _{1,1} ,	V _{1,3} ,	φ _{1,3} ,	V ₂ ,	φ ₂ ,	V ₃ ,	φ ₃ ,
nC	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]
1	145	5.4	22	164	656	29.7	1832	21.7
0.5	150	11.5	23.1	175.5	661	30.3	1826	21.3
0.25	157	18.9	25.1	189	652	29	1860	23.9
0.1	165	25	27.6	199.5	645	27.9	1885	25.6
0.02	164	23.4	28	194.6	640	27.1	1905	26.8

RF settings in accelerating modules

Tolerances (analytically) without self fields (10 % change of compression)

Q, nC	1	0.5	0.25	0.1	0.02
$\left \Delta ilde{V}_{1,1} ight / V_{1,1}^0$	5e-4	3e-4	2e-4	1e-4	2.5e-5

Longitudinal phase space for Q=1nC with collective effects (fast)

by the linac wake

Q=1 nC

We have removed 6% of bad particles in the analysis

Q=500 pC

Q=250 pC

We have removed 6% of bad particles in the analysis (Q=235 pC!)

Q=250 pC

Q=100 pC

Q=20 pC

Beam parameters from S2E simulations

Parameter	Unit					
Bunch charge	nC	1	0.5	0.25	0.1	0.02
Peak current (gun)	Α	43	24	13.5	5.7	1.2
Bunch length (gun, FWHM)	ps	25	22	20	17	17
Slice emittance (gun)	μm	0.8	0.5	0.3	0.21	0.09
Projected emittance (gun)	μm	1	0.7	0.6	0.3	0.1
Compression		114	233	363	877	3833
Peak current	kA	4.9	5.6	4.9	5	4.6
Bunch length (FWHM)	fs	178	72	39	12	2.2
Slice emittance	μm	1	0.7	0.5	0.3	0.17
Projected emittance	μm	3.5	2.2	1.5	0.84	0.26
Slice energy spread	MeV	0.45	0.44	0.6	0.6	0.8
(laser heater off)						