
A.B. Meyer (DESY), 24 February 2022

Statistical Methods in Data Analysis, KSETA
code by Thomas Keck, DA lecture, KIT 2017, exercise 9

Keras and Tensorflow on MNIST Dataset

The classification of handwritten digits is the standard problem for image classification. In this
exercise, we will process 70000 labeled images of handwritten digits from the MNIST1 dataset in
order to train and test (deep) neural networks on this task.

Following these instructions, you will gain experience with state-of-the-art software packages
used for large scale deep learning and you can experiment with your own neural network designs
and compare the results with modern setups.

Figure 1: Example images from the MNIST dataset

• Setup and training

Read the script install dependencies.sh and run it. It will set up a Python virtual
environment that holds all needed software such as TensorFlow (www.tensorflow.org)
and Keras (www.keras.io). Activate the virtual environment in every new terminal:
source py venv/bin/activate.

TensorFlow is one of the most popular and powerful tools in the machine learning
community and can be used to build, train and execute large scale machine learning
models. The core concept of TensorFlow is the representation of the information flow as
tensors in a graph. The wrapper Keras hides this concept in large parts to make the
library much easier to use.

The MNIST dataset (http://yann.lecun.com/exdb/mnist/) contains in total 70000
images of handwritten digits. The images are in greyscale with 28 × 28 pixels each (see
Figure 1 for some examples).

This exercise is shipped with the script download dataset.py that downloads and
extracts the dataset as binary and converts for you some example images from the binary
dataset as png files (the inverted images of Figure 1). Execute the script, have a look at
the example images and feel free to read the code.

In preparation of the training, read the code of the script train.py and identify the part,
where the machine learning model is defined. The model contains all relevant components,
i.e. convolutional, dense and maximum pooling layers. It specifies activation functions and
optimizer. Full documentation can be found on the Keras (www.keras.io) webpage.

Execute the script train.py and determine whether you are in the underfitting or
overfitting regime. How long (wallclock) does one epoch take? Explain how the number of
trainable parameters, 11022, comes about. What would be the number of parameters for a
conventional (dense) neural network with one hidden layer and 10 outputs?

• Improved training and testing

Now, modify the model defined in the file train.py and try to achieve the best global
accuracy. Hint: You will need to increase the model capacity, e.g. number of convolution

1(Modified) National Institute of Standards and Technology

www.tensorflow.org
www.keras.io
http://yann.lecun.com/exdb/mnist/
www.keras.io


2

filters and possibly add additional dense layers. Optimization settings are usually not so
critical, but you are free to experiment with them, too, of course. Be careful with the
increase of model capacity, as the CPU requirements take off quickly.

For your trained model, produce an estimate of your achieved accuracy by running the
script apply.py manually on twenty images, i.e. ./apply.py example input *.png. How
does your estimate compare with your expectation? Can you explain the result?

Have a look at the website http://yann.lecun.com/exdb/mnist/, which holds a
leaderboard for the test dataset with the performance of modern (deep) machine learning
models. You might want to compare your setup with popular models such as LeNet-5,
VGG-16, AlexNet or Inception-v4 to get an idea of the complexity of modern neural
network architectures.

• Application on other data

Use GIMP (or any other graphics editor) to create images of your own handwritten digits
and evaluate whether the performance you experience with your own example images
matches the performance achieved during training on the MNIST dataset. You need to
create greyscale png images with 28 × 28 pixels, the background of the image has to be
black and the digits have to be written in white color. Does the model classify your images
correctly? If not, what can be possible reasons that it does not work as expected?

http://yann.lecun.com/exdb/mnist/

