Update on large-log resummation

Henning Bahl

2nd International FeynHiggs Meeting 29.11.2016, Munich

[Introduction](#page-2-0)

- [FeynHiggs](#page-4-0) with \overline{DR} input
- [Calculation of pole mass](#page-9-0)
- [Comparison to](#page-14-0) SUSYHD
- [Effective THDM](#page-29-0)
- **[Conclusion](#page-33-0)**

- \triangleright EFT calculations allow to resum large logarithms \rightarrow should be accurate for high SUSY scale M_S
- Imisses however terms $\propto v/M_S$
- ^I diagrammatic calculation expected to be more accurate for low $M_S \leq$ few TeV)

Goal

Combine both approaches to get precise results for both regimes.

If not stated otherwise all plots with parameters

$$
\tan \beta = 10
$$
, $M_{\text{soft}} = \mu = M_A \equiv M_S$, $A_{b,c,s,e,\mu,\tau} = 0$

Current status

FeynHiggs resummation procedures at the very similar level of accuracy as pure EFT calculations

 $\overline{1}$ y expected to see correspondence for high scales, but so far still large discrepancies could be observed

 $\overline{1}$

Discussions mainly about

- $\overline{DR} \leftrightarrow \overline{OR}$ conversion
- \triangleright terms induced by momentum dependence of Higgs self-energy

FeynHiggs uses mixed OS/\overline{DR} scheme \rightarrow to use $\overline{\rm DR}$ input parameters conversion necessary

Procedure so far

- $\blacktriangleright m_{\tilde{t}_{1,2}}^{\text{DR}}, X_t^{\text{DR}}, X_b^{\text{DR}}$ $\stackrel{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} M_{\tilde{t}_{1,2}}, X_t^{\text{OS}}, X_b^{\text{OS}}$
- Forget about $m_{\tilde{t}_{1,2}}^{\text{DR}}, X_t^{\text{DR}}, X_b^{\text{DR}}, \text{ use } M_{\tilde{t}_{1,2}}, X_t^{\text{OS}}, X_b^{\text{OS}}$ as 'new' input parameters
- \triangleright No conversion of μ , M_A , $M_{\tilde{b}_{1,2}}$, ...

Two problems with this approach

- 1. Conversion induces terms beyond 2L level
- 2. X_t , entering in resummation procedure, is calculated by

$$
X_t^{\overline{\text{DR}}, \text{EFT}} = X_t^{\text{OS}} \left[1 + \left(\frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} \left(1 - \hat{X}_t^2 \right) \right) \ln \left(\frac{M_S^2}{m_t^2} \right) \right].
$$

$$
\Rightarrow X_t^{\overline{\text{DR}}, \text{EFT}} \neq X_t^{\overline{\text{DR}}}
$$

Alternative method: fixed-order conversion $Set\ X_t^{\overline{\text{DR}}} = X_t^{\text{OS}} = X_t^{\text{DR,EFT}}$ $t^{D_{\text{R,EF}}T}$, add missed 2L terms by hand. $e.g. (\hat{X}_t = X_t/M_S, \hat{\mu}) = \mu/M_S$ $\hat{\Sigma}_{\phi_1\phi_1}^{1L} = 2k \frac{1}{s^2}$ s^2_β m_t^4 $\frac{m_t^4}{v^2} \hat{\mu}^2 \left(\hat{X}_t^{\text{OS}}\right)^2$ $\int X_t^{OS} = X_t^{\overline{DR}} + k\Delta X_t$, $M_S^{OS} = M_S^{\overline{DR}} + k\Delta M_S$ $2k\frac{1}{2}$ *s* 2 *β* m_t^4 $\frac{m_t^4}{v^2}\hat{\mu}^2\left(\hat{X}_t^{\overline{\rm DR}}\right)^2+4k^2\frac{1}{s^2_{\beta}}$ *s* 2 *β* m_t^4 v^2 $\big[\Delta X_t$ $M_S^{\rm DR}$ *S* $\hat{X}_t^{\overline{\rm DR}}\hat{\mu}^2-2\frac{\Delta M_S}{\sqrt{\overline{\rm DR}}}$ $M_S^{\rm DR}$ *S* $\left(\hat{X}_t^{\overline{\rm DR}}\right)^2\hat{\mu}^2$

 \triangleright solves both problems by construction

Diagrammatic calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by

$$
\begin{split} (M_h^2)_{\text{FD}} &= m_h^2 - \hat{\Sigma}_{hh}^{\text{MSSM}}(M_h^2) = \\ &= m_h^2 - \hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) + \hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) \hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) + \ldots \end{split}
$$

EFT calculation

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $λ(M_t)$ via

$$
(M_h^2)_{\text{EFT}} = v^2 \lambda_{\text{OS}} = v^2 \lambda (M_t) - v^2 \delta \lambda = \text{ (finite parts only)}
$$

= $v^2 \lambda (M_t) - \frac{\delta T}{v} - \delta M_h^2 + \lambda \delta v^2 - \delta \lambda^{(2)} v^2 =$
= $v_{\text{MS}}^2 \lambda (M_t) + \frac{T^{\text{SM}}}{v} - \Sigma_{hh}^{\text{SM}} (M_h^2) - \delta \lambda^{(2)} v^2 =$
= $v_{\text{MS}}^2 \lambda (M_t) + \frac{T^{\text{SM}}}{v} - \Sigma_{hh}^{\text{SM}} (m_h^2) - \delta \lambda^{(2)} v^2 + \Sigma_{hh}^{\text{SM}} (m_h^2) (\dots) + \dots$

Hybrid approach in FeynHiggs

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $λ(M_t)$ via

$$
\begin{split} (M_h^2)_{\rm FH} &= \\ &= m_h^2 - \underbrace{\hat{\Sigma}_{hh}^{\rm MSSM}(M_h^2)}_{\rm FO\ result} + \underbrace{[v_{\overline{\rm MS}}^2\lambda(M_t)]_{\rm logs}}_{\rm EFT\ result} + \underbrace{[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)]_{\rm logs}}_{\rm subtraction\ term} = \\ &= m_h^2 + \underbrace{[v_{\overline{\rm MS}}^2\lambda(M_t)]_{\rm logs}}_{\rm loss} - \underbrace{[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)]_{\rm nolog}}_{\rm loss} - \underbrace{[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)]_{\rm nolog}}_{\rm noise} + \ldots \end{split}
$$

[Intro](#page-2-0) FH with [DR input](#page-4-0) [Calculation of pole mass](#page-9-0) [Comparison to](#page-14-0) SUSYHD [Eff. THDM](#page-29-0) [Conclusion](#page-33-0)

Comparison of logarithmic terms

$$
(M^2_h)^{\rm{logs}}_{\rm{EFT}} = \left[v^2_{\overline{\rm{MS}}} \lambda(M_t) \right]_{\rm{logs}} - \hat{\Sigma}^{\rm{SM}\prime}_{hh}(m^2_h) \left[v^2_{\overline{\rm{MS}}} \lambda(M_t) \right]_{\rm{logs}} + \ldots
$$

$$
(M_h^2)_{\rm FH}^{\rm logs} = \left[v_{\overline{\rm MS}}^2 \lambda(M_t)\right]_{\rm logs} + \left[\hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2)\right]_{\rm logs} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm nolog}
$$

$$
- \left[\hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2)\right]_{\rm logs + nologs} \left[v_{\overline{\rm MS}}^2 \lambda(M_t)\right]_{\rm logs} + \dots
$$

In heavy SUSY limit $\hat{\Sigma}_{hh}^{\text{MSSM}} \simeq \hat{\Sigma}_{hh}^{\text{SM}} + \hat{\Sigma}_{hh}^{\text{SUSY}} \rightarrow$ difference is

$$
\Delta M_h^2 = \left[\hat{\Sigma}_{hh}^{\text{SUSY}} (m_h^2) \right]_{\text{logs}} \left[\hat{\Sigma}_{hh}^{\text{MSSM}} (m_h^2) \right]_{\text{nolog}}
$$

$$
- \hat{\Sigma}_{hh}^{\text{SUSY}} (m_h^2) \left[v_{\overline{\text{MS}}}^2 \lambda(M_t) \right]_{\text{logs}} + \dots
$$

 M_S [GeV]

- \blacktriangleright different renormalization schemes
- \blacktriangleright different extraction of pole mass
- \triangleright small differences in EFT calculations
- ^I different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_S)$ terms
- \triangleright non-logarithmic terms

 \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass
- \triangleright small differences in EFT calculations
- ^I different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_S)$ terms
- \triangleright non-logarithmic terms

 \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations
- ^I different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_S)$ terms
- \triangleright non-logarithmic terms
- \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ^I different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_S)$ terms
- \triangleright non-logarithmic terms
- \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta \geq 5$ \checkmark
- \triangleright $\mathcal{O}(v/M_S)$ terms
- \triangleright non-logarithmic terms

 \blacktriangleright ...?

−→ **overall very good agreement**

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta \geq 5$ \checkmark
- \triangleright $\mathcal{O}(v/M_S)$ terms \rightarrow for $M_S \gtrsim 1$ TeV negligible \checkmark
- \triangleright non-logarithmic terms

$$
\blacktriangleright \dots?
$$

−→ nearly constant difference for high scales

Origin

Different parametrization of non-logarithmic terms

Three ways to parametrize top Yukawa coupling in FO result

$$
\blacktriangleright\ M_t/v\to \texttt{FeynHiggs with running} \texttt{MT = 0}
$$

$$
\blacktriangleright \overline{m}_t/v \to \texttt{FeynHiggs} \text{ with running} \texttt{MT = 1}
$$

$$
\quad \text{ } \blacktriangleright \; y_t^{\overline{\mathrm{MS}}} = \overline{m}_t / v_{\overline{\mathrm{MS}}} \rightarrow \text{SUSYHD}
$$

Equivalent at 2L order, but induces differences at higher order

 \rightarrow explains constant difference almost completely

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta \geq 5$ \checkmark
- \triangleright $\mathcal{O}(v/M_S)$ terms \rightarrow for $M_S \gtrsim 1$ TeV negligible \checkmark
- non-logarithmic terms \rightarrow sizeable differences due to different parametrization of top Yukawa coupling ✓
- \blacktriangleright ...? \rightarrow nothing significant \checkmark

\downarrow **Differences between** FeynHiggs **and** SUSYHD **(completely) understood** ?!

 $\overline{}$ $\overline{1}$

Uncertainty estimate of SUSYHD

1. EFT uncertainty

- $\mathcal{O}(v/M_S)$ terms
- estimated by $v/M_S \cdot (1L \text{ correction})$
- ok for $M_S \geq 1$ TeV \checkmark
- 2. SM uncertainty:
	- higher order corrections to pole mass extraction
	- estimated by (de)activating higher order corrections to *y^t* and *δλ*
	- probably also ok (haven't checked) (✓)
- 3. SUSY uncertainty:
	- higher order threshold corrections
	- estimated by variation of matching scale $1/2 < Q/M_S < 2$
	- does not capture non-log terms

Comparison for runningMT=0 (OS top mass)

Rough estimate

Uncertainty of ∼ 2 GeV seems to be realistic for high scales and nearly maximal stop mixing

> $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ \downarrow

Needed

More complete 2L calculation and explicit 3L calculation

 M_t — M_t — M_{t} — M_t-

 \blacktriangleright Full dependence on effective couplings (thresholds and 2L RGEs)

Effective Lagrangians

$$
\mathcal{L}_{\text{THDM}} = ... - V_{\text{THDM}}(H_u, H_d) - h_t \epsilon_{ij} \bar{t}_R Q_L^i H_u^j - h_t^l \bar{t}_R Q_L H_d
$$

 \rightarrow 9 effective couplings

$$
\mathcal{L}_{\text{THDM+EWinos}} = ... - \frac{1}{\sqrt{2}} H_u^{\dagger} \left(\hat{g}_{2uu} \sigma^a \tilde{W}^a + \hat{g}_{1uu} \tilde{B} \right) \tilde{\mathcal{H}}_u \n- \frac{1}{\sqrt{2}} H_d^{\dagger} \left(\hat{g}_{2dd} \sigma^a \tilde{W}^a - \hat{g}_{1dd} \tilde{B} \right) \tilde{\mathcal{H}}_d \n- \frac{1}{\sqrt{2}} (-i H_d^T \sigma_2) \left(\hat{g}_{2du} \sigma^a \tilde{W}^a + \hat{g}_{1du} \tilde{B} \right) \tilde{\mathcal{H}}_u \n- \frac{1}{\sqrt{2}} (-i H_u^T \sigma_2) \left(\hat{g}_{2ud} \sigma^a \tilde{W}^a - \hat{g}_{1ud} \tilde{B} \right) \tilde{\mathcal{H}}_d \n+ h.c. - V_{\text{THDM}} (H_u, H_d),
$$

 \rightarrow 17 effective couplings

[Intro](#page-2-0) FH with [DR input](#page-4-0) [Calculation of pole mass](#page-9-0) [Comparison to](#page-14-0) SUSYHD [Eff. THDM](#page-29-0) [Conclusion](#page-33-0)

► Running from M_S to $M_A \to \Delta \hat{\Sigma}_{11}, \Delta \hat{\Sigma}_{12}, \Delta \hat{\Sigma}_{22}, e.g.$

$$
\Delta \hat{\Sigma}_{11} = v^2 \left(3\lambda_1 c_\beta^2 + (\lambda_3 + \lambda_4 + \lambda_5) s_\beta^2 + 6\lambda_6 s_\beta c_\beta \right) (Q = M_A) - 1L,2L subtraction terms
$$

- ► Running from M_A to $m_t \to \Delta \hat{\Sigma}_{22} = \lambda(m_t) v^2 / s^2_\beta$ (as in high *M^A* case)
- **►** still issue with definition of t_{β} :

$$
\underbrace{t_{\beta}^{\rm MSSM}(m_t)}_{\rm FH}\leftrightarrow \underbrace{t_{\beta}^{\rm MSSM}(M_S)\leftrightarrow t_{\beta}^{\rm THDM}(M_A)}_{\rm EFT}
$$

idea: change renormalization scale of t_β in diagrammatic result

$$
t_{\beta}(M_t) = t_{\beta}(M_S) + \Delta t_{\beta}
$$

[Intro](#page-2-0) FH with [DR input](#page-4-0) [Calculation of pole mass](#page-9-0) [Comparison to](#page-14-0) SUSYHD [Eff. THDM](#page-29-0) [Conclusion](#page-33-0) Current status Running \rightarrow result not yet trustworthy

Conclusion

- Newly implemented fixed-order $\overline{DR} \rightarrow OS$ conversion \rightarrow more reliable results
- \triangleright Momentum dependence of SUSY contributions to Higgs self-energy induces terms not present in pure EFT calculation
- \triangleright Parametrization of non-logarithmic terms has sizeable effect for large stop-mixing
- ▶ Apart of these effects excellent agreement of FeynHiggs with SUSYHD found

How to proceed

- \triangleright Reach conclusion about uncertainty estimates
- \blacktriangleright Finish effective THDM calculation

The OS vev-counterterm is given by

$$
\delta v^2 = v^2 \left[\frac{\delta M_W^2}{M_W^2} + \frac{c_w^2}{s_w^2} \left(\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right) - \frac{\delta e^2}{e^2} \right] \frac{\mathcal{O}(\alpha_s, \alpha_t)}{\mathcal{O}(\alpha_s)} \n= v^2 \left(-\hat{\Sigma}_{hh}^{(1)'}(m_h^2) + \text{SM corrections} \right).
$$

The Higgs pole mass is calculated via

$$
M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) + \Sigma_{hh}^{(1)'}(m_h^2)\Sigma_{hh}^{(1)}(m_h^2) + \dots
$$

The renormalized two-loop self-energy reads

$$
\hat{\Sigma}_{hh}^{(2)}(0) = \Sigma_{hh}^{(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{(1)}(m_h^2) \cdot \delta v^2 + \dots =
$$

$$
= \Sigma_{hh}^{(2)}(0) - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \frac{\delta v^2}{v^2} + \dots =
$$

$$
= \Sigma_{hh}^{(2)}(0) + \hat{\Sigma}_{hh}^{(1)}(m_h^2) \hat{\Sigma}_{hh}^{(1)'}(m_h^2) + \dots
$$

$$
t_{\beta}^{\text{THDM}}(M_S) = t_{\beta}^{\text{MSSM}} \left\{ 1 + \frac{1}{4} k h_t^2 (\hat{A}_t - \hat{\mu}/t_\beta) (\hat{A}_t + \hat{\mu} t_\beta) \right\}
$$

\n
$$
h_t^{\text{THDM}}(M_S) = h_t^{\text{MSSM}} \left\{ 1 + k \left[\frac{4}{3} g_3^2 (1 - \hat{A}_t) - \frac{1}{4} h_t^2 \hat{A}_t^2 \right] \right\}
$$

\n
$$
(h_t')^{\text{THDM}}(M_S) = h_t^{\text{MSSM}} k \left[\frac{4}{3} g_3^2 \hat{\mu} + \frac{1}{4} h_t^2 \hat{A}_t \hat{\mu} \right]
$$

\n
$$
y_t^{\text{SM}}(M_A) = \left(h_t^{\text{THDM}} s_{\beta^{\text{THDM}}} + (h_t')^{\text{THDM}} c_{\beta^{\text{THDM}}} \right) \cdot \left\{ 1 - \frac{3}{8} k (h_t c_\beta - h_t' s_\beta)^2 \right\}
$$

\n
$$
X_t^{\overline{\text{DR}}}(M_S) = X_t^{\text{OS}} \left\{ 1 + \left[\frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} (1 - \hat{X}_t^2) \right] \ln \frac{M_S^2}{m_t^2} - \frac{3}{16\pi} \frac{\alpha_t}{t_\beta^2} (1 - \hat{Y}_t^2) \ln \frac{M_S^2}{M_A^2} \right\}
$$