Update on large-log resummation

Henning Bahl

2nd International FeynHiggs Meeting 29.11.2016, Munich

00 00000 00000 00000 0000 0000 0000		FH with $\overline{\mathrm{DR}}$ input			Eff. THDM	
	00	00000	00000	0000000000	0000	0

Introduction

- FeynHiggs with $\overline{\mathrm{DR}}$ input
- Calculation of pole mass
- Comparison to SUSYHD
- Effective THDM
- Conclusion

Intro	FH with $\overline{\mathrm{DR}}$ input	Comparison to SUSYHD	Eff. THDM	
0				

- ▶ EFT calculations allow to resum large logarithms → should be accurate for high SUSY scale M_S
- misses however terms $\propto v/M_S$
- diagrammatic calculation expected to be more accurate for low M_S (\lesssim few TeV)

Goal

Combine both approaches to get precise results for both regimes.

If not stated otherwise all plots with parameters

$$\tan \beta = 10, \ M_{\text{soft}} = \mu = M_A \equiv M_S, \ A_{b,c,s,e,\mu,\tau} = 0$$

Intro	FH with $\overline{\mathrm{DR}}$ input			Eff. THDM	
00	00000	00000	0000000000	0000	0

Current status

FeynHiggs resummation procedures at the very similar level of accuracy as pure EFT calculations

expected to see correspondence for high scales, but so far still large discrepancies could be observed

Discussions mainly about

- $\blacktriangleright \ \overline{\mathrm{DR}} \leftrightarrow \mathrm{OS} \ \mathrm{conversion}$
- terms induced by momentum dependence of Higgs self-energy

	FH with DR input	Calculation of pole mass	Comparison to SUSYHD	Eff. THDM	Conclusion
00	●0000	00000	0000000000	0000	0

FeynHiggs uses mixed OS/\overline{DR} scheme \rightarrow to use \overline{DR} input parameters conversion necessary

Procedure so far

- $\blacktriangleright \ m_{\tilde{t}_{1,2}}^{\overline{\mathrm{DR}}}, X_t^{\overline{\mathrm{DR}}}, X_b^{\overline{\mathrm{DR}}} \overset{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} M_{\tilde{t}_{1,2}}, X_t^{\mathrm{OS}}, X_b^{\mathrm{OS}}$
- ► Forget about $m_{\tilde{t}_{1,2}}^{\overline{\text{DR}}}, X_t^{\overline{\text{DR}}}, X_b^{\overline{\text{DR}}}$, use $M_{\tilde{t}_{1,2}}, X_t^{\text{OS}}, X_b^{\text{OS}}$ as 'new' input parameters
- ▶ No conversion of μ , M_A , $M_{\tilde{b}_{1,2}}$, ...

FH with $\overline{\mathrm{DR}}$ input	Comparison to SUSYHD	Eff. THDM	
0000			

Two problems with this approach

- 1. Conversion induces terms beyond 2L level
- 2. X_t , entering in resummation procedure, is calculated by

$$\begin{split} X_t^{\overline{\mathrm{DR}},\mathrm{EFT}} = & X_t^{\mathrm{OS}} \left[1 + \left(\frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} \left(1 - \hat{X}_t^2 \right) \right) \ln \left(\frac{M_S^2}{m_t^2} \right) \right] . \\ \Rightarrow & X_t^{\overline{\mathrm{DR}},\mathrm{EFT}} \neq X_t^{\overline{\mathrm{DR}}} \end{split}$$

	FH with DR input			Eff. THDM	
00	00000	00000	0000000000	0000	0

Alternative method: fixed-order conversion Set $X_t^{\overline{\text{DR}}} = X_t^{\text{OS}} = X_t^{\overline{\text{DR}},\text{EFT}}$, add missed 2L terms by hand. e.g. $(\hat{X}_t = X_t / M_S, \hat{\mu} = \mu / M_S)$ $\hat{\Sigma}_{\phi_1\phi_1}^{1\mathrm{L}} = 2k \frac{1}{s_a^2} \frac{m_t^4}{v^2} \hat{\mu}^2 \left(\hat{X}_t^{\mathrm{OS}}\right)^2$ $\Big| X_t^{\rm OS} = X_t^{\overline{\rm DR}} + k \Delta X_t, \quad M_S^{\rm OS} = M_S^{\overline{\rm DR}} + k \Delta M_S$ $2k\frac{1}{s_{\sigma}^{2}}\frac{m_{t}^{4}}{v^{2}}\hat{\mu}^{2}\left(\hat{X}_{t}^{\overline{\mathrm{DR}}}\right)^{2}+4k^{2}\frac{1}{s_{\sigma}^{2}}\frac{m_{t}^{4}}{v^{2}}\left[\frac{\Delta X_{t}}{M^{\overline{\mathrm{DR}}}}\hat{X}_{t}^{\overline{\mathrm{DR}}}\hat{\mu}^{2}-2\frac{\Delta M_{S}}{M^{\overline{\mathrm{DR}}}}\left(\hat{X}_{t}^{\overline{\mathrm{DR}}}\right)^{2}\hat{\mu}^{2}\right]$

solves both problems by construction

Diagrammatic calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by

$$\begin{split} (M_h^2)_{\rm FD} &= m_h^2 - \hat{\Sigma}_{hh}^{\rm MSSM}(M_h^2) = \\ &= m_h^2 - \hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) + \hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) + \dots \end{split}$$

EFT calculation

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $\lambda(M_t)$ via

$$\begin{split} (M_h^2)_{\rm EFT} &= v^2 \lambda_{\rm OS} = v^2 \lambda(M_t) - v^2 \delta \lambda = \text{ (finite parts only)} \\ &= v^2 \lambda(M_t) - \frac{\delta T}{v} - \delta M_h^2 + \lambda \delta v^2 - \delta \lambda^{(2)} v^2 = \\ &= v_{\rm \overline{MS}}^2 \lambda(M_t) + \frac{T^{\rm SM}}{v} - \Sigma_{hh}^{\rm SM}(M_h^2) - \delta \lambda^{(2)} v^2 = \\ &= v_{\rm \overline{MS}}^2 \lambda(M_t) + \frac{T^{\rm SM}}{v} - \Sigma_{hh}^{\rm SM}(m_h^2) - \delta \lambda^{(2)} v^2 + \Sigma_{hh}^{\rm SM\prime}(m_h^2) \Big(\dots\Big) + \dots \end{split}$$

Hybrid approach in FeynHiggs

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $\lambda(M_t)$ via

$$\begin{split} (M_h^2)_{\rm FH} &= \\ &= m_h^2 - \underbrace{\hat{\Sigma}_{hh}^{\rm MSSM}(M_h^2)}_{\rm FO\ result} + \underbrace{\left[v_{\rm MS}^2\lambda(M_t)\right]_{\rm logs}}_{\rm EFT\ result} + \underbrace{\left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm logs}}_{\rm subtraction\ term} = \\ &= m_h^2 + \left[v_{\rm \overline{MS}}^2\lambda(M_t)\right]_{\rm logs} - \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \left(\left[v_{\rm \overline{MS}}^2\lambda(M_t)\right]_{\rm logs} - \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm nolog}\right) + \dots \end{split}$$

IntroFH with DRCalculation of pole massComparison to SUSYHDEff. THDMConclusion000000000000000000000000

Comparison of logarithmic terms

$$(M_h^2)_{\rm EFT}^{\rm logs} = \left[v_{\rm \overline{MS}}^2 \lambda(M_t) \right]_{\rm logs} - \hat{\Sigma}_{hh}^{\rm SM\prime}(m_h^2) \left[v_{\rm \overline{MS}}^2 \lambda(M_t) \right]_{\rm logs} + \dots$$

$$\begin{split} (M_h^2)_{\rm FH}^{\rm logs} &= \left[v_{\overline{\rm MS}}^2 \lambda(M_t) \right]_{\rm logs} + \left[\hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \right]_{\rm logs} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) \right]_{\rm nolog} \\ &- \left[\hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \right]_{\rm logs+nologs} \left[v_{\overline{\rm MS}}^2 \lambda(M_t) \right]_{\rm logs} + \dots \end{split}$$

In heavy SUSY limit $\hat{\Sigma}_{hh}^{\text{MSSM}} \simeq \hat{\Sigma}_{hh}^{\text{SM}} + \hat{\Sigma}_{hh}^{\text{SUSY}} \rightarrow \text{difference is}$

$$\begin{split} \Delta M_h^2 &= \left[\hat{\Sigma}_{hh}^{\rm SUSY\prime}(m_h^2) \right]_{\rm logs} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) \right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm SUSY\prime}(m_h^2) \left[v_{\overline{\rm MS}}^2 \lambda(M_t) \right]_{\rm logs} + \dots \end{split}$$

- different renormalization schemes
- different extraction of pole mass
- ▶ small differences in EFT calculations
- different renormalization of $\tan \beta$
- $\mathcal{O}(v/M_S)$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- different extraction of pole mass
- ▶ small differences in EFT calculations
- different renormalization of $\tan \beta$
- $\mathcal{O}(v/M_S)$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- ▶ small differences in EFT calculations
- different renormalization of $\tan \beta$
- $\mathcal{O}(v/M_S)$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \blacktriangleright small differences in EFT calculations \rightarrow negligible \checkmark
- different renormalization of $\tan \beta$
- $\mathcal{O}(v/M_S)$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \blacktriangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ► different renormalization of $\tan \beta$ → negligible for $\tan \beta \gtrsim 5$ ✓
- $\mathcal{O}(v/M_S)$ terms
- ▶ non-logarithmic terms
- ► ...?

FH with $\overline{\mathrm{DR}}$ input	Comparison to SUSYHD	Eff. THDM	
	000000000		

FH with $\overline{\mathrm{DR}}$ input	Comparison to SUSYHD	Eff. THDM	
	000000000		

\longrightarrow overall very good agreement

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \blacktriangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ► different renormalization of $\tan \beta$ → negligible for $\tan \beta \gtrsim 5$ ✓
- $\mathcal{O}(v/M_S)$ terms \rightarrow for $M_S \gtrsim 1$ TeV negligible \checkmark
- non-logarithmic terms
- ► ...?

 \longrightarrow nearly constant difference for high scales

00 00000 00000 00000 0000 0		FH with $\overline{\mathrm{DR}}$ input		Comparison to SUSYHD	Eff. THDM	
	00	00000	00000	000000000	0000	0

Origin

Different parametrization of non-logarithmic terms

Three ways to parametrize top Yukawa coupling in FO result

•
$$M_t/v \rightarrow \text{FeynHiggs with runningMT} = 0$$

•
$$\overline{m}_t/v \rightarrow \text{FeynHiggs with runningMT}$$
 = 1

•
$$y_t^{\overline{\mathrm{MS}}} = \overline{m}_t / v_{\overline{\mathrm{MS}}} \to \mathrm{SUSYHD}$$

Equivalent at 2L order, but induces differences at higher order

 \rightarrow explains constant difference almost completely

	FH with $\overline{\mathrm{DR}}$ input		Comparison to SUSYHD	Eff. THDM	
00	00000	00000	0000000000	0000	0

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \blacktriangleright small differences in EFT calculations \rightarrow negligible \checkmark
- ► different renormalization of $\tan \beta$ → negligible for $\tan \beta \gtrsim 5$ ✓
- $\mathcal{O}(v/M_S)$ terms \rightarrow for $M_S \gtrsim 1$ TeV negligible \checkmark
- ▶ non-logarithmic terms \rightarrow sizeable differences due to different parametrization of top Yukawa coupling \checkmark
- ▶ ...? → nothing significant \checkmark

Differences between FeynHiggs and SUSYHD (completely) understood ?!

Uncertainty estimate of SUSYHD

1. EFT uncertainty

- $\mathcal{O}(v/M_S)$ terms
- estimated by $v/M_S \cdot (1L \text{ correction})$
- ok for $M_S \gtrsim 1$ TeV \checkmark
- 2. SM uncertainty:
 - higher order corrections to pole mass extraction
 - estimated by (de) activating higher order corrections to y_t and $\delta\lambda$
 - probably also ok (haven't checked) (\checkmark)
- 3. SUSY uncertainty:
 - higher order threshold corrections
 - estimated by variation of matching scale $1/2 < Q/M_S < 2$
 - does not capture non-log terms $\pmb{\varkappa}$

Comparison for runningMT=0 (OS top mass)

00 00000 00000 0000 0000 0		FH with $\overline{\mathrm{DR}}$ input		Comparison to SUSYHD	Eff. THDM	
	00	00000	00000	0000000000	0000	0

Rough estimate

Uncertainty of $\sim 2~{\rm GeV}$ seems to be realistic for high scales and nearly maximal stop mixing

Needed

More complete 2L calculation and explicit 3L calculation

► Full dependence on effective couplings (thresholds and 2L RGEs)

Effective Lagrangians

$$\mathcal{L}_{\text{THDM}} = \dots - V_{\text{THDM}}(H_u, H_d) - h_t \epsilon_{ij} \bar{t}_R Q_L^i H_u^j - h_t' \bar{t}_R Q_L H_d$$

 \rightarrow 9 effective couplings

$$\mathcal{L}_{\text{THDM+EWinos}} = \dots - \frac{1}{\sqrt{2}} H_u^{\dagger} \left(\hat{g}_{2uu} \sigma^a \tilde{W}^a + \hat{g}_{1uu} \tilde{B} \right) \tilde{\mathcal{H}}_u - \frac{1}{\sqrt{2}} H_d^{\dagger} \left(\hat{g}_{2dd} \sigma^a \tilde{W}^a - \hat{g}_{1dd} \tilde{B} \right) \tilde{\mathcal{H}}_d - \frac{1}{\sqrt{2}} (-iH_d^T \sigma_2) \left(\hat{g}_{2du} \sigma^a \tilde{W}^a + \hat{g}_{1du} \tilde{B} \right) \tilde{\mathcal{H}}_u - \frac{1}{\sqrt{2}} (-iH_u^T \sigma_2) \left(\hat{g}_{2ud} \sigma^a \tilde{W}^a - \hat{g}_{1ud} \tilde{B} \right) \tilde{\mathcal{H}}_d + h.c. - V_{\text{THDM}} (H_u, H_d),$$

 \rightarrow 17 effective couplings

IntroFH with DR inputCalculation of pole massComparison to SUSYHDEff. THDMConclusion00000000000000000000000

• Running from M_S to $M_A \to \Delta \hat{\Sigma}_{11}, \Delta \hat{\Sigma}_{12}, \Delta \hat{\Sigma}_{22}$, e.g.

$$\Delta \hat{\Sigma}_{11} = v^2 \left(3\lambda_1 c_{\beta}^2 + (\lambda_3 + \lambda_4 + \lambda_5) s_{\beta}^2 + 6\lambda_6 s_{\beta} c_{\beta} \right) (Q = M_A) - 1L, 2L \text{ subtraction terms}$$

- ► Running from M_A to $m_t \to \Delta \hat{\Sigma}_{22} = \lambda(m_t) v^2 / s_\beta^2$ (as in high M_A case)
- still issue with definition of t_{β} :

$$\underbrace{t^{\mathrm{MSSM}}_{\beta}(m_t)}_{\mathrm{FH}} \leftrightarrow \underbrace{t^{\mathrm{MSSM}}_{\beta}(M_S) \leftrightarrow t^{\mathrm{THDM}}_{\beta}(M_A)}_{\mathrm{EFT}}$$

 \blacktriangleright idea: change renormalization scale of t_β in diagrammatic result

$$t_{\beta}(M_t) = t_{\beta}(M_S) + \Delta t_{\beta}$$

Conclusion

- ▶ Newly implemented fixed-order DR → OS conversion
 → more reliable results
- Momentum dependence of SUSY contributions to Higgs self-energy induces terms not present in pure EFT calculation
- Parametrization of non-logarithmic terms has sizeable effect for large stop-mixing
- ► Apart of these effects excellent agreement of FeynHiggs with SUSYHD found

How to proceed

- ▶ Reach conclusion about uncertainty estimates
- ▶ Finish effective THDM calculation

The OS vev-counterterm is given by

$$\begin{split} \delta v^2 &= v^2 \left[\frac{\delta M_W^2}{M_W^2} + \frac{c_w^2}{s_w^2} \left(\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right) - \frac{\delta e^2}{e^2} \right] \stackrel{\mathcal{O}(\alpha_s, \alpha_t)}{=} \\ &= v^2 \left(-\hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) + \text{ SM corrections} \right). \end{split}$$

The Higgs pole mass is calculated via

$$M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) + \Sigma_{hh}^{(1)\prime}(m_h^2)\Sigma_{hh}^{(1)}(m_h^2) + \dots$$

The renormalized two-loop self-energy reads

$$\begin{split} \hat{\Sigma}_{hh}^{(2)}(0) &= \Sigma_{hh}^{(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{(1)}(m_h^2) \cdot \delta v^2 + \dots = \\ &= \Sigma_{hh}^{(2)}(0) - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \frac{\delta v^2}{v^2} + \dots = \\ &= \Sigma_{hh}^{(2)}(0) + \hat{\Sigma}_{hh}^{(1)}(m_h^2) \hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) + \dots \end{split}$$

(

$$\begin{split} t_{\beta}^{\text{THDM}}(M_{S}) = & t_{\beta}^{\text{MSSM}} \Biggl\{ 1 + \frac{1}{4} k h_{t}^{2} (\hat{A}_{t} - \hat{\mu}/t_{\beta}) (\hat{A}_{t} + \hat{\mu}t_{\beta}) \Biggr\} \\ h_{t}^{\text{THDM}}(M_{S}) = & h_{t}^{\text{MSSM}} \Biggl\{ 1 + k \Biggl[\frac{4}{3} g_{3}^{2} (1 - \hat{A}_{t}) - \frac{1}{4} h_{t}^{2} \hat{A}_{t}^{2} \Biggr] \Biggr\} \\ h_{t}')^{\text{THDM}}(M_{S}) = & h_{t}^{\text{MSSM}} k \Biggl[\frac{4}{3} g_{3}^{2} \hat{\mu} + \frac{1}{4} h_{t}^{2} \hat{A}_{t} \hat{\mu} \Biggr] \\ y_{t}^{\text{SM}}(M_{A}) = & \Biggl(h_{t}^{\text{THDM}} s_{\beta^{\text{THDM}}} + (h_{t}')^{\text{THDM}} c_{\beta^{\text{THDM}}} \Biggr) \cdot \\ & \Biggl\{ 1 - \frac{3}{8} k \left(h_{t} c_{\beta} - h_{t}' s_{\beta} \right)^{2} \Biggr\} \\ X_{t}^{\overline{\text{DR}}}(M_{S}) = & X_{t}^{\text{OS}} \Biggl\{ 1 + \Biggl[\frac{\alpha_{s}}{\pi} - \frac{3 \alpha_{t}}{16 \pi} (1 - \hat{X}_{t}^{2}) \Biggr] \ln \frac{M_{S}^{2}}{m_{t}^{2}} \\ & - \frac{3}{16 \pi} \frac{\alpha_{t}}{t_{\beta}^{2}} (1 - \hat{Y}_{t}^{2}) \ln \frac{M_{S}^{2}}{M_{A}^{2}} \Biggr\} \end{split}$$