Reconciling EFT and hybrid calculations

Henning Bahl

in collaboration with Sven Heinemeyer, Wolfgang Hollik and Georg Weiglein

KUTS workshop 24.1.2017, Aachen

	FH with $\overline{\mathrm{DR}}$ input			
00	00000	0000000	00000	00

Introduction

FeynHiggs with $\overline{\mathrm{DR}}$ input

Calculation of pole mass

Comparison to SUSYHD

Conclusion

Intro ●0	FH with $\overline{\mathrm{DR}}$ input 00000	$\begin{array}{c} {\rm Comparison \ to \ SUSYHD} \\ {\rm 00000} \end{array}$	

- ► EFT calculations allow to resum large logarithms \rightarrow should be accurate for high SUSY scale M_{Susy}
- miss however terms $\propto v/M_{\rm Susy}$
- ► diagrammatic calculation expected to be more accurate for low M_{Susy} (\lesssim few TeV)

Goal

Combine both approaches to get precise results for both regimes.

If not stated otherwise all plots with parameters

$$\tan \beta = 10, \ M_{\text{soft}} = \mu = M_A \equiv M_{\text{Susy}}, \ A_{b,c,s,e,\mu,\tau} = 0$$

Intro	FH with DR input	Comparison to SUSYHD	
00			

Current status

FeynHiggs resummation procedures at the very similar level of accuracy as pure EFT calculations

expected to see correspondence for high scales, but so far still large discrepancies could be observed

Discussions mainly about

- $\blacktriangleright \ \overline{\mathrm{DR}} \leftrightarrow \mathrm{OS} \ \mathrm{conversion}$
- terms induced by momentum dependence of Higgs self-energy

FH with DR input ●0000	Comparison to SUSYHD 00000	

FeynHiggs uses mixed OS/\overline{DR} scheme \rightarrow to use \overline{DR} input parameters conversion necessary

Procedure so far

- $\blacktriangleright \ m^{\overline{\mathrm{DR}}}_{\tilde{t}_{1,2}}, X^{\overline{\mathrm{DR}}}_t, X^{\overline{\mathrm{DR}}}_b, X^{\overline{\mathrm{DR}}}_b \overset{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} M_{\tilde{t}_{1,2}}, X^{\mathrm{OS}}_t, X^{\mathrm{OS}}_b$
- ► Forget about $m_{\tilde{t}_{1,2}}^{\overline{\text{DR}}}, X_t^{\overline{\text{DR}}}, X_b^{\overline{\text{DR}}}$, use $M_{\tilde{t}_{1,2}}, X_t^{\text{OS}}, X_b^{\text{OS}}$ as 'new' input parameters
- ▶ No conversion of μ , M_A , $M_{\tilde{b}_{1,2}}$, ...

FH with $\overline{\mathrm{DR}}$ input 00000	$\begin{array}{c} \text{Comparison to SUSYHD} \\ \text{00000} \end{array}$	

Two problems with this approach

- 1. Conversion induces terms beyond 2L level
- 2. X_t , entering in resummation procedure, is calculated by

$$\begin{split} X_t^{\overline{\mathrm{DR}},\mathrm{EFT}} = & X_t^{\mathrm{OS}} \left[1 + \left(\frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} \left(1 - \hat{X}_t^2 \right) \right) \ln \left(\frac{M_S^2}{m_t^2} \right) \right] . \\ \Rightarrow & X_t^{\overline{\mathrm{DR}},\mathrm{EFT}} \neq X_t^{\overline{\mathrm{DR}}} \end{split}$$

FH with DR input	Comparison to SUSYHD	
00000		

How big are these effects?

Change renormalization of $X_t, M_{\tilde{t}_{1,2}}$ from OS to $\overline{\text{DR}}$ scheme and compare.

also set $X_t^{\overline{\mathrm{DR}},\mathrm{EFT}} = X_t^{\overline{\mathrm{DR}}}$

both problems solved by construction \downarrow

 practical implementation: reparametrization of final result (fixed-order conversion)

Diagrammatic calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by

$$\begin{split} (M_h^2)_{\rm FD} &= m_h^2 - \hat{\Sigma}_{hh}^{\rm MSSM}(M_h^2) = \\ &= m_h^2 - \hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) + \hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) + \dots \end{split}$$

FH with $\overline{\mathrm{DR}}$ input	Calculation of pole mass	Comparison to SUSYHD	
	000000		

EFT calculation

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $\lambda(M_t)$ via

$$\begin{split} (M_h^2)_{\rm EFT} &= v^2 \lambda_{\rm OS} = v^2 \lambda(M_t) - v^2 \delta \lambda = \text{ (finite parts only)} \\ &= v^2 \lambda(M_t) - \frac{\delta T}{v} - \delta M_h^2 + \lambda \delta v^2 + \ldots = \\ &= v_{\rm \overline{MS}}^2 \lambda(M_t) + \frac{\tilde{T}^{\rm SM}}{v} - \tilde{\Sigma}_{hh}^{\rm SM}(M_h^2) + \ldots = \\ &= v_{\rm \overline{MS}}^2 \lambda(M_t) + \frac{\tilde{T}^{\rm SM}}{v} - \tilde{\Sigma}_{hh}^{\rm SM}(m_h^2) + \tilde{\Sigma}_{hh}^{\rm SM\prime}(m_h^2) \Big(\ldots \Big) + \ldots \end{split}$$

Hybrid approach in FeynHiggs

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $\lambda(M_t)$ via

$$\begin{split} (M_h^2)_{\rm FH} &= \\ &= m_h^2 - \underbrace{\hat{\Sigma}_{hh}^{\rm MSSM}(M_h^2)}_{\rm FO\ result} + \underbrace{\left[v_{\rm MS}^2\lambda(M_t)\right]_{\rm logs}}_{\rm EFT\ result} + \underbrace{\left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm logs}}_{\rm subtraction\ term} = \\ &= m_h^2 + \left[v_{\rm \overline{MS}}^2\lambda(M_t)\right]_{\rm logs} - \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \left(\left[v_{\rm \overline{MS}}^2\lambda(M_t)\right]_{\rm logs} - \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm nolog}\right) + \dots \end{split}$$

Comparison of logarithmic terms

$$\begin{split} (M_h^2)_{\rm EFT}^{\rm logs} &= \left[v_{\rm \overline{MS}}^2 \lambda(M_t) \right]_{\rm logs} - \tilde{\Sigma}_{hh}^{\rm SM\prime}(m_h^2) \left[v_{\rm \overline{MS}}^2 \lambda(M_t) \right]_{\rm logs} + \dots \\ (M_h^2)_{\rm FH}^{\rm logs} &= \left[v_{\rm \overline{MS}}^2 \lambda(M_t) \right]_{\rm logs} + \left[\hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \right]_{\rm logs} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) \right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \left[v_{\rm \overline{MS}}^2 \lambda(M_t) \right]_{\rm logs} + \dots \end{split}$$

In heavy SUSY limit $\hat{\Sigma}_{hh}^{\text{MSSM}} \simeq \hat{\Sigma}_{hh}^{\text{SM}} + \hat{\Sigma}_{hh}^{\text{nonSM}}$. Therefore

$$\begin{split} \Delta_{p^2}^{\text{logs}} \equiv & (M_h^2)_{\text{FH}}^{\text{logs}} - (M_h^2)_{\text{EFT}}^{\text{logs}} = \\ & = \left[\hat{\Sigma}_{hh}^{\text{nonSM}\prime}(m_h^2) \right]_{\text{logs}} \left[\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) \right]_{\text{nolog}} \\ & - \hat{\Sigma}_{hh}^{\text{nonSM}\prime}(m_h^2) \left[v_{\overline{\text{MS}}}^2 \lambda(M_t) \right]_{\text{logs}} + \dots \end{split}$$

Very similar for non-logarithmic terms.

At strict two-loop level

$$\begin{split} (M_h^2)_{\rm FD} = & m_h^2 - \hat{\Sigma}_{hh}^{\rm MSSM,(1)}(m_h^2) - \hat{\Sigma}_{hh}^{\rm MSSM,(2)}(m_h^2) \\ &+ \left(\hat{\Sigma}_{hh}^{\rm nonSM,(1)\prime}(m_h^2) + \hat{\Sigma}_{hh}^{\rm SM,(1)\prime}(m_h^2) \right) \hat{\Sigma}_{hh}^{\rm MSSM,(1)}(m_h^2). \end{split}$$

The renormalized two-loop self-energy reads

$$\begin{split} \hat{\Sigma}_{hh}^{\text{MSSM},(2)}(0) &= \Sigma_{hh}^{\text{MSSM},(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{\text{MSSM},(1)}(m_h^2) \cdot (\delta v^2)^{\text{MSSM}} + \dots = \\ &= \Sigma_{hh}^{\text{MSSM},(2)}(0) - \hat{\Sigma}_{hh}^{\text{MSSM},(1)}(m_h^2) \frac{(\delta v^2)^{\text{MSSM}}}{v^2} + \dots \end{split}$$

In the decoupling limit, we verified by explicit calculation

$$\frac{(\delta v^2)^{\text{MSSM}}}{v^2} = \frac{(\delta v^2)^{\text{SM}}}{v^2} - \hat{\Sigma}_{hh}^{\text{nonSM},(1)\prime}(m_h^2)$$

FH with DR input	Calculation of pole mass	Comparison to SUSYHD	
	0000000		

Observation

2L subloop renormalization cancels 2L term induced by momentum dependence of non SM contributions to Higgs self-energy

- ▶ Argument holds for all 2L contributions
- ► Full 2L calculation however not availabe \rightarrow induced terms of e.g. $\mathcal{O}(\alpha_t \alpha)$ are not compensated
- ▶ Might also holds for higher loop orders

Explicit derivation of terms induced by momentum dependence allows to investigate their numerical significance.

- different renormalization schemes
- different extraction of pole mass
- ▶ small differences in EFT calculations
- \blacktriangleright different renormalization of $\tan\beta$
- $\mathcal{O}(v/M_{\rm Susy})$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- different extraction of pole mass
- ▶ small differences in EFT calculations
- \blacktriangleright different renormalization of $\tan\beta$
- $\mathcal{O}(v/M_{\rm Susy})$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- ▶ small differences in EFT calculations
- \blacktriangleright different renormalization of $\tan\beta$
- $\mathcal{O}(v/M_{\rm Susy})$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- ▶ small differences in EFT calculations \rightarrow negligible ✓ SUSYHD by default uses NNNLO for $y_t(M_t) \rightarrow$ deactivated for all comparison plots
- \blacktriangleright different renormalization of $\tan\beta$
- $\mathcal{O}(v/M_{\rm Susy})$ terms
- non-logarithmic terms
- ► ...?

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- ▶ small differences in EFT calculations \rightarrow negligible ✓ SUSYHD by default uses NNNLO for $y_t(M_t) \rightarrow$ deactivated for all comparison plots
- ► different renormalization of $\tan \beta$ → negligible for $\tan \beta = 10$ ✓
- $\mathcal{O}(v/M_{\rm Susy})$ terms
- non-logarithmic terms

- \longrightarrow overall very good agreement
 - \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
 - \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
 - ▶ small differences in EFT calculations
 - ► different renormalization of $\tan \beta$ → negligible for $\tan \beta = 10$ ✓
 - $\mathcal{O}(v/M_{\text{Susy}})$ terms \rightarrow negligible for $M_{\text{Susy}} \gtrsim 1$ TeV \checkmark
 - non-logarithmic terms

► ...?

- \longrightarrow overall very good agreement
 - \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
 - \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
 - ▶ small differences in EFT calculations
 - ► different renormalization of $\tan \beta$ → negligible for $\tan \beta = 10$ ✓
 - ► $\mathcal{O}(v/M_{\text{Susy}})$ terms \rightarrow negligible for $M_{\text{Susy}} \gtrsim 1$ TeV \checkmark
 - ▶ non-logarithmic terms \rightarrow different parametrization of y_t explains remaining differences
 - ► ...?

- \longrightarrow overall very good agreement
 - \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
 - \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
 - ▶ small differences in EFT calculations
 - ► different renormalization of $\tan \beta$ → negligible for $\tan \beta = 10$ ✓
 - ► $\mathcal{O}(v/M_{\text{Susy}})$ terms \rightarrow negligible for $M_{\text{Susy}} \gtrsim 1$ TeV \checkmark
 - ▶ non-logarithmic terms \rightarrow different parametrization of y_t explains remaining differences
 - ...? \rightarrow nothing significant

\longrightarrow overall very good agreement

- \blacktriangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- ▶ small differences in EFT calculations \rightarrow negligible ✓ SUSYHD by default uses NNNLO for $y_t(M_t) \rightarrow$ deactivated for all comparison plots
- ► different renormalization of $\tan \beta$ → negligible for $\tan \beta = 10$ ✓
- ► $\mathcal{O}(v/M_{\text{Susy}})$ terms \rightarrow negligible for $M_{\text{Susy}} \gtrsim 1$ TeV \checkmark
- ▶ non-logarithmic terms \rightarrow different parametrization of y_t explains remaining differences
- ▶ ...? → nothing significant

₩

Differences between EFT and hybrid calculations completely understood?!

 $M_{\rm Susy}$ [GeV]

FH with $\overline{\mathrm{DR}}$ input 00000	$\begin{array}{c} {\rm Comparison \ to \ SUSYHD} \\ {\rm 00000} \end{array}$	Conclusion ●0

Conclusion

- ▶ Naive $\overline{\text{DR}} \rightarrow \text{OS}$ conversion induces large higher order terms
- Momentum dependence of SUSY contributions to Higgs self-energy induces terms not present in pure EFT calculation
- ► Taking into account these effects → excellent agreement of FeynHiggs with SUSYHD found
- Remaining differences can largely be explained by different parametrizations of non-logarithmic terms

What's next for FeynHiggs

Next version: FeynHiggs 2.13.0

- Improved calculation of EWPO (2L corrections to M_W)
- Implementation of improved 1L thresholds (degenerate case, additional terms in effective EWino-Higgsino-Higgs couplings)
- Allow for looplevel < 2 combined with loglevel > 0

To come later:

- ▶ Improved $\overline{\text{DR}} \to \text{OS}$ conversion (option of renormalizing X_t in the $\overline{\text{DR}}$ scheme)
- ▶ Improved handling of momentum dependence
- ▶ ... (→ Peter's and Sebastian's talks)

The OS vev-counterterm is given by

$$\begin{split} \delta v^2 &= v^2 \left[\frac{\delta M_W^2}{M_W^2} + \frac{c_w^2}{s_w^2} \left(\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right) - \frac{\delta e^2}{e^2} \right] \stackrel{\mathcal{O}(\alpha_s, \alpha_t)}{=} \\ &= v^2 \left(-\hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) + \text{ SM corrections} \right). \end{split}$$

The Higgs pole mass is calculated via

$$M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) + \Sigma_{hh}^{(1)\prime}(m_h^2)\Sigma_{hh}^{(1)}(m_h^2) + \dots$$

The renormalized two-loop self-energy reads

$$\begin{split} \hat{\Sigma}_{hh}^{(2)}(0) &= \Sigma_{hh}^{(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{(1)}(m_h^2) \cdot \delta v^2 + \dots = \\ &= \Sigma_{hh}^{(2)}(0) - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \frac{\delta v^2}{v^2} + \dots = \\ &= \Sigma_{hh}^{(2)}(0) + \hat{\Sigma}_{hh}^{(1)}(m_h^2) \hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) + \dots \end{split}$$

 \longrightarrow nearly constant difference for high scales

Origin

Different parametrization of non-logarithmic terms

Three ways to parametrize top Yukawa coupling in FO result

•
$$M_t/v \rightarrow \text{FeynHiggs with runningMT} = 0$$

•
$$\overline{m}_t/v \rightarrow \text{FeynHiggs with runningMT}$$
 = 1

•
$$y_t^{\overline{\mathrm{MS}}} = \overline{m}_t / v_{\overline{\mathrm{MS}}} \to \mathrm{SUSYHD}$$

Equivalent at 2L order, but induces differences at higher order

 \rightarrow explains constant difference almost completely

Uncertainty estimate of SUSYHD

1. EFT uncertainty

- $\mathcal{O}(v/M_S)$ terms
- estimated by $v/M_S \cdot (1L \text{ correction})$
- 2. SM uncertainty:
 - higher order corrections to pole mass extraction
 - estimated by (de) activating higher order corrections to y_t and $\delta\lambda$
- 3. SUSY uncertainty:
 - higher order threshold corrections
 - estimated by variation of matching scale $1/2 < Q/M_S < 2$

Uncertainty estimate of FeynHiggs

- 1. Scale variation:
 - variation of renormalization scale between $1/2M_t$ and $2M_t$
- 2. Renormalization scheme dependence:
 - switching between OS top mass and $\overline{\mathrm{MS}}$ top mass
- 3. $\tan \beta$ enhanced correction
 - (de)activating resummation of bottom Yukawa coupling