Reconciling EFT and hybrid calculations

Henning Bahl

in collaboration with Sven Heinemeyer, Wolfgang Hollik and Georg Weiglein

> KUTS workshop 24.1.2017, Aachen

[Introduction](#page-2-0)

[FeynHiggs](#page-4-0) with \overline{DR} input

[Calculation of pole mass](#page-9-0)

[Comparison to](#page-16-0) SUSYHD

[Conclusion](#page-28-0)

- \triangleright EFT calculations allow to resum large logarithms \rightarrow should be accurate for high SUSY scale M_{Susy}
- In miss however terms $\propto v/M_{\text{Susv}}$
- \triangleright diagrammatic calculation expected to be more accurate for low $M_{\text{Susy}} \ (\lesssim \text{few} \text{TeV})$

Goal

Combine both approaches to get precise results for both regimes.

If not stated otherwise all plots with parameters

$$
\tan \beta = 10, \ \ M_{\text{soft}} = \mu = M_A \equiv M_{\text{Susy}}, \ \ A_{b,c,s,e,\mu,\tau} = 0
$$

Current status

FeynHiggs resummation procedures at the very similar level of accuracy as pure EFT calculations

 $\overline{1}$ y expected to see correspondence for high scales, but so far still large discrepancies could be observed

 $\overline{1}$

Discussions mainly about

- $\overline{DR} \leftrightarrow \overline{OR}$ conversion
- \triangleright terms induced by momentum dependence of Higgs self-energy

FeynHiggs uses mixed OS/\overline{DR} scheme \rightarrow to use $\overline{\rm DR}$ input parameters conversion necessary

Procedure so far

- $\blacktriangleright m_{\tilde{t}_{1,2}}^{\text{DR}}, X_t^{\text{DR}}, X_b^{\text{DR}}$ $\stackrel{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} M_{\tilde{t}_{1,2}}, X_t^{\text{OS}}, X_b^{\text{OS}}$
- Forget about $m_{\tilde{t}_{1,2}}^{\text{DR}}, X_t^{\text{DR}}, X_b^{\text{DR}}, \text{ use } M_{\tilde{t}_{1,2}}, X_t^{\text{OS}}, X_b^{\text{OS}}$ as 'new' input parameters
- \triangleright No conversion of μ , M_A , $M_{\tilde{b}_{1,2}}$, ...

Two problems with this approach

- 1. Conversion induces terms beyond 2L level
- 2. X_t , entering in resummation procedure, is calculated by

$$
X_t^{\overline{\text{DR}}, \text{EFT}} = X_t^{\text{OS}} \left[1 + \left(\frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} \left(1 - \hat{X}_t^2 \right) \right) \ln \left(\frac{M_S^2}{m_t^2} \right) \right].
$$

$$
\Rightarrow X_t^{\overline{\text{DR}}, \text{EFT}} \neq X_t^{\overline{\text{DR}}}
$$

How big are these effects?

Change renormalization of X_t , $M_{\tilde{t}_{1,2}}$ from OS to DR scheme and compare.

also set $X_t^{\text{DR,EFT}} = X_t^{\overline{\text{DR}}}$

⇓ both problems solved by construction

 \triangleright practical implementation: reparametrization of final result (fixed-order conversion)

Diagrammatic calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by

$$
\begin{split} (M_h^2)_{\text{FD}} &= m_h^2 - \hat{\Sigma}_{hh}^{\text{MSSM}}(M_h^2) = \\ &= m_h^2 - \hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) + \hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) \hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) + \ldots \end{split}
$$

EFT calculation

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $λ(M_t)$ via

$$
(M_h^2)_{\text{EFT}} = v^2 \lambda_{\text{OS}} = v^2 \lambda (M_t) - v^2 \delta \lambda = \text{(finite parts only)}
$$

= $v^2 \lambda (M_t) - \frac{\delta T}{v} - \delta M_h^2 + \lambda \delta v^2 + \dots =$
= $v_{\overline{\text{MS}}}^2 \lambda (M_t) + \frac{\tilde{T}^{\text{SM}}}{v} - \tilde{\Sigma}_{hh}^{\text{SM}} (M_h^2) + \dots =$
= $v_{\overline{\text{MS}}}^2 \lambda (M_t) + \frac{\tilde{T}^{\text{SM}}}{v} - \tilde{\Sigma}_{hh}^{\text{SM}} (m_h^2) + \tilde{\Sigma}_{hh}^{\text{SM}} (m_h^2) (\dots) + \dots$

Hybrid approach in FeynHiggs

Calculate $\lambda(M_t)$ by RGE running. Extract pole mass out of $λ(M_t)$ via

$$
\begin{split} (M_h^2)_{\rm FH} &= \\ &= m_h^2 - \underbrace{\hat{\Sigma}_{hh}^{\rm MSSM}(M_h^2)}_{\rm FO\ result} + \underbrace{[v_{\overline{\rm MS}}^2\lambda(M_t)]_{\rm logs}}_{\rm EFT\ result} + \underbrace{[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)]_{\rm logs}}_{\rm subtraction\ term} = \\ &= m_h^2 + \underbrace{[v_{\overline{\rm MS}}^2\lambda(M_t)]_{\rm logs}}_{\rm loss} - \underbrace{[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)]_{\rm nolog}}_{\rm loss} - \underbrace{[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)]_{\rm nolog}}_{\rm noise} + \ldots \end{split}
$$

Comparison of logarithmic terms

$$
\begin{split} (M_h^2)_{\rm EFT}^{\rm logs} &= \left[v_{\overline{\rm MS}}^2 \lambda(M_t)\right]_{\rm logs} - \tilde{\Sigma}_{hh}^{\rm SM\prime}(m_h^2) \left[v_{\overline{\rm MS}}^2 \lambda(M_t)\right]_{\rm logs} + \dots \\ (M_h^2)_{\rm FH}^{\rm logs} &= \left[v_{\overline{\rm MS}}^2 \lambda(M_t)\right]_{\rm logs} + \left[\hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2)\right]_{\rm logs} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2)\right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm MSSM\prime}(m_h^2) \left[v_{\overline{\rm MS}}^2 \lambda(M_t)\right]_{\rm logs} + \dots \end{split}
$$

In heavy SUSY limit $\hat{\Sigma}_{hh}^{\text{MSSM}} \simeq \hat{\Sigma}_{hh}^{\text{SM}} + \hat{\Sigma}_{hh}^{\text{nonSM}}$. Therefore

$$
\begin{split} \Delta_{p^2}^{\mathrm{logs}} \equiv & (M_h^2)_{\mathrm{FH}}^{\mathrm{logs}} - (M_h^2)_{\mathrm{EFT}}^{\mathrm{logs}} = \\ & = \Bigl[\hat{\Sigma}_{hh}^{\mathrm{nonSM}\prime}(m_h^2) \Bigr]_{\mathrm{logs}} \left[\hat{\Sigma}_{hh}^{\mathrm{MSSM}}(m_h^2) \right]_{\mathrm{nolog}} \\ & - \hat{\Sigma}_{hh}^{\mathrm{nonSM}\prime}(m_h^2) \left[v_{\overline{\mathrm{MS}}}^2 \lambda(M_t) \right]_{\mathrm{logs}} + \ldots \end{split}
$$

Very similar for non-logarithmic terms.

At strict two-loop level

$$
(M_h^2)_{\text{FD}} = m_h^2 - \hat{\Sigma}_{hh}^{\text{MSSM},(1)}(m_h^2) - \hat{\Sigma}_{hh}^{\text{MSSM},(2)}(m_h^2) + \left(\hat{\Sigma}_{hh}^{\text{nonSM},(1)\prime}(m_h^2) + \hat{\Sigma}_{hh}^{\text{SM},(1)\prime}(m_h^2)\right)\hat{\Sigma}_{hh}^{\text{MSSM},(1)}(m_h^2).
$$

The renormalized two-loop self-energy reads

$$
\hat{\Sigma}_{hh}^{\text{MSSM},(2)}(0) = \Sigma_{hh}^{\text{MSSM},(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{\text{MSSM},(1)}(m_h^2) \cdot (\delta v^2)^{\text{MSSM}} + ... =
$$

= $\Sigma_{hh}^{\text{MSSM},(2)}(0) - \hat{\Sigma}_{hh}^{\text{MSSM},(1)}(m_h^2) \frac{(\delta v^2)^{\text{MSSM}}}{v^2} + ...$

In the decoupling limit, we verified by explicit calculation

$$
\frac{(\delta v^2)^{\text{MSSM}}}{v^2} = \frac{(\delta v^2)^{\text{SM}}}{v^2} - \hat{\Sigma}_{hh}^{\text{nonSM},(1)\prime}(m_h^2)
$$

Observation

2L subloop renormalization cancels 2L term induced by momentum dependence of non SM contributions to Higgs self-energy

- \triangleright Argument holds for all 2L contributions
- \blacktriangleright Full 2L calculation however not availabe \rightarrow induced terms of e.g. $\mathcal{O}(\alpha_t \alpha)$ are not compensated
- \triangleright Might also holds for higher loop orders

Explicit derivation of terms induced by momentum dependence allows to investigate their numerical significance.

- \blacktriangleright different renormalization schemes
- \blacktriangleright different extraction of pole mass
- \triangleright small differences in EFT calculations
- **I** different renormalization of tan *β*
- \blacktriangleright $\mathcal{O}(v/M_{\text{Susv}})$ terms
- \triangleright non-logarithmic terms
- \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \blacktriangleright different extraction of pole mass
- \triangleright small differences in EFT calculations
- ^I different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_{\text{Susv}})$ terms
- \triangleright non-logarithmic terms
- \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations
- **I** different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_{\text{Susv}})$ terms
- \triangleright non-logarithmic terms
- \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations \rightarrow negligible \checkmark SUSYHD by default uses NNNLO for $y_t(M_t) \rightarrow$ deactivated for all comparison plots
- ^I different renormalization of tan *β*
- \triangleright $\mathcal{O}(v/M_{\text{Susv}})$ terms
- \triangleright non-logarithmic terms
- \blacktriangleright ...?

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- small differences in EFT calculations \rightarrow negligible \checkmark SUSYHD by default uses NNNLO for $y_t(M_t) \rightarrow$ deactivated for all comparison plots
- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta = 10 \checkmark$
- \triangleright $\mathcal{O}(v/M_{\text{Susv}})$ terms
- \triangleright non-logarithmic terms

$$
\blacktriangleright \dots?
$$

18 / 23

- −→ **overall very good agreement**
	- \triangleright different renormalization schemes \rightarrow under control \checkmark
	- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
	- \triangleright small differences in EFT calculations
	- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta = 10 \checkmark$
	- $\triangleright \mathcal{O}(v/M_{\text{Susv}})$ terms \rightarrow negligible for $M_{\text{Susv}} \geq 1$ TeV \checkmark
	- \triangleright non-logarithmic terms

- −→ **overall very good agreement**
	- \triangleright different renormalization schemes \rightarrow under control \checkmark
	- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
	- \triangleright small differences in EFT calculations
	- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta = 10 \checkmark$
	- $\triangleright \mathcal{O}(v/M_{\text{Susv}})$ terms \rightarrow negligible for $M_{\text{Susv}} \geq 1$ TeV \checkmark
	- ightharpoon-logarithmic terms \rightarrow different parametrization of y_t explains remaining differences
	- \blacktriangleright ...?
- −→ **overall very good agreement**
	- \triangleright different renormalization schemes \rightarrow under control \checkmark
	- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
	- \triangleright small differences in EFT calculations
	- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta = 10 \checkmark$
	- $\triangleright \mathcal{O}(v/M_{\text{Susv}})$ terms \rightarrow negligible for $M_{\text{Susv}} \geq 1$ TeV \checkmark
	- ightharpoon-logarithmic terms \rightarrow different parametrization of y_t explains remaining differences
	- \blacktriangleright ...? \rightarrow nothing significant

−→ **overall very good agreement**

- \triangleright different renormalization schemes \rightarrow under control \checkmark
- \triangleright different extraction of pole mass \rightarrow effect isolated \checkmark
- \triangleright small differences in EFT calculations \rightarrow negligible \checkmark SUSYHD by default uses NNNLO for $y_t(M_t) \rightarrow$ deactivated for all comparison plots
- ^I different renormalization of tan *β* \rightarrow negligible for tan $\beta = 10 \checkmark$
- $\triangleright \mathcal{O}(v/M_{\text{Susv}})$ terms \rightarrow negligible for $M_{\text{Susv}} \geq 1$ TeV \checkmark
- ightharpoon-logarithmic terms \rightarrow different parametrization of y_t explains remaining differences
- \blacktriangleright ...? \rightarrow nothing significant

⇓

Differences between EFT and hybrid calculations completely understood?!

 M_{Susy} [GeV]

Conclusion

- \triangleright Naive $\overline{\text{DR}} \to \text{OS}$ conversion induces large higher order terms
- \triangleright Momentum dependence of SUSY contributions to Higgs self-energy induces terms not present in pure EFT calculation
- \blacktriangleright Taking into account these effects \rightarrow excellent agreement of FeynHiggs with SUSYHD found
- Remaining differences can largely be explained by different parametrizations of non-logarithmic terms

What's next for FeynHiggs

Next version: FeynHiggs 2.13.0

- Improved calculation of EWPO (2L corrections to M_W)
- \blacktriangleright Implementation of improved 1L thresholds (degenerate case, additional terms in effective EWino-Higgsino-Higgs couplings)
- Allow for looplevel < 2 combined with loglevel > 0

To come later:

- Improved $\overline{DR} \rightarrow OS$ conversion (option of renormalizing X_t in the $\overline{\rm DR}$ scheme)
- \blacktriangleright Improved handling of momentum dependence
- \blacktriangleright ... (\rightarrow Peter's and Sebastian's talks)

The OS vev-counterterm is given by

$$
\delta v^2 = v^2 \left[\frac{\delta M_W^2}{M_W^2} + \frac{c_w^2}{s_w^2} \left(\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right) - \frac{\delta e^2}{e^2} \right] \frac{\mathcal{O}(\alpha_s, \alpha_t)}{\equiv}
$$

= $v^2 \left(-\hat{\Sigma}_{hh}^{(1)'} (m_h^2) + \text{SM corrections} \right).$

The Higgs pole mass is calculated via

$$
M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) + \Sigma_{hh}^{(1)'}(m_h^2)\Sigma_{hh}^{(1)}(m_h^2) + \dots
$$

The renormalized two-loop self-energy reads

$$
\hat{\Sigma}_{hh}^{(2)}(0) = \Sigma_{hh}^{(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{(1)}(m_h^2) \cdot \delta v^2 + \dots =
$$

$$
= \Sigma_{hh}^{(2)}(0) - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \frac{\delta v^2}{v^2} + \dots =
$$

$$
= \Sigma_{hh}^{(2)}(0) + \hat{\Sigma}_{hh}^{(1)}(m_h^2) \hat{\Sigma}_{hh}^{(1)'}(m_h^2) + \dots
$$

−→ nearly constant difference for high scales

Origin

Different parametrization of non-logarithmic terms

Three ways to parametrize top Yukawa coupling in FO result

$$
\blacktriangleright\ M_t/v\to\texttt{FeynHiggs with running} M\texttt{T}\ =\ \texttt{0}
$$

$$
\blacktriangleright \overline{m}_t/v \to \texttt{FeynHiggs} \text{ with running} \texttt{MT = 1}
$$

$$
\quad \text{ } \blacktriangleright \; y_t^{\overline{\mathrm{MS}}} = \overline{m}_t / v_{\overline{\mathrm{MS}}} \rightarrow \text{SUSYHD}
$$

Equivalent at 2L order, but induces differences at higher order

 \rightarrow explains constant difference almost completely

Uncertainty estimate of SUSYHD

1. EFT uncertainty

- $\mathcal{O}(v/M_S)$ terms
- estimated by v/M_S ·(1L correction)
- 2. SM uncertainty:
	- higher order corrections to pole mass extraction
	- estimated by (de)activating higher order corrections to *y^t* and *δλ*
- 3. SUSY uncertainty:
	- higher order threshold corrections
	- estimated by variation of matching scale $1/2 < Q/M_S < 2$

Uncertainty estimate of FeynHiggs

- 1. Scale variation:
	- variation of renormalization scale between $1/2M_t$ and $2M_t$
- 2. Renormalization scheme dependence:
	- switching between OS top mass and $\overline{\text{MS}}$ top mass
- 3. tan *β* enhanced correction
	- (de)activating resummation of bottom Yukawa coupling