Update on large log resummation in FeynHiggs

Henning Bahl

Max-Planck-Institut für Physik, München

Higgs Days 20.9.2017, Santander

			Low M_A	
00	0000000	00	000000000000000000000000000000000000000	0

Introduction

Next FH version

Single-scale scenario

Low M_A

Conclusion

Intro ●0		Low M_A 000000000000000000000000000000000000	

- ► EFT calculations allow to resum large logarithms → should be accurate for high SUSY scale M_{Susy}
- miss however terms $\propto v/M_{\rm Susy}$
- diagrammatic calculation expected to be more accurate for low M_{Susy} (\lesssim few TeV)

Goal

Combine both approaches to get precise results for both regimes.

Intro				
00	0000000	00	000000000000000000000000000000000000000	

Procedure in FeynHiggs

- 1. calculate fixed-order corrections
- 2. subtract logarithms already contained in fixed-order result
- 3. resum logarithms using EFT approach
- 4. add resummed logarithms to fixed-order result

Current status

- ► fixed-order \rightarrow full 1L + $\mathcal{O}\left(\alpha_s(\alpha_t + \alpha_b), (\alpha_t + \alpha_b)^2\right)$
- ► EFT → full LL+NLL, $\mathcal{O}(\alpha_s \alpha_t, \alpha_t^2)$ NNLL, intermediary EWino threshold

FeynHiggs 2.14.0

implements changes discussed in [HB Heinemeyer Hollik Weiglein 1706.00346]

- \blacktriangleright optional $\overline{\rm DR}$ renormalization of stop sector
- ▶ improved calculation of pole masses/Z factors
- ▶ small improvements of resummation routines
 - now $v_{\overline{\text{MS}}}$ is used
 - improved 2L subtraction term for runningMT = 1 (MS top mass)

Optional $\overline{\mathrm{DR}}$ renormalization of stop sector

So far

- ▶ FH uses OS scheme for renormalization of stop sector
- ▶ 1L parameter conversion in case of $\overline{\text{DR}}$ input parameters

 \clubsuit conversion not adequate for result containing resummed logs

Therefore

- \blacktriangleright optional $\overline{\rm DR}$ renormalization of stop sector
- automatically active if parameter $Qt \neq 0$
- ▶ for sbottom sector still a parameter conversion is used

Improved calculation of pole masses/Z factors I

For $M_A \gg M_Z$, we have to solve $p^2 - m_h^2 + \hat{\Sigma}_{hh}(p^2) = 0$

$$\Rightarrow M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(m_h^2) + \hat{\Sigma}_{hh}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2) + \dots$$

- ▶ non-SM contributions to $\hat{\Sigma}_{hh}^{(1)'}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)$ are cancelled by subloop-renormalization in $\hat{\Sigma}_{hh}^{(2)}(m_h^2) \rightarrow \text{vev-CT}$
- ▶ holds generally at 2L (probably also at higher orders)
- ▶ but FH includes $\hat{\Sigma}_{hh}^{(2)}$ only for vanishing electroweak couplings \rightarrow incomplete cancellation

Solution easy for $M_A \gg M_Z$, but what to do for $M_A \sim M_Z$?

Improved calculation of pole masses/Z factors II

Need to determine poles of inverse propagator matrix

$$\begin{aligned} \Delta^{-1}(p^2) &= \\ &= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{(1)}(p^2) + \hat{\Sigma}_{hh}^{(2)}(0) & \hat{\Sigma}_{hH}^{(1)}(p^2) + \hat{\Sigma}_{hH}^{(2)}(0) \\ \hat{\Sigma}_{hH}^{(1)}(p^2) + \hat{\Sigma}_{hH}^{(2)}(0) & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{(1)}(p^2) + \hat{\Sigma}_{HH}^{(2)}(0) \end{pmatrix} \end{aligned}$$

At 1L level $M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \rightarrow$ expand around 1L solution \Rightarrow determine poles of

$$\begin{split} \Delta_{hh}^{-1}(p^2) &= p^2 - m_h^2 + \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \hat{\Sigma}_{hh}^{(2)}(0) - \left[\hat{\Sigma}_{hh}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0} \\ \Delta_{hH}^{-1}(p^2) &= + \hat{\Sigma}_{hH}^{(1)}(m_h^2) + \hat{\Sigma}_{hH}^{(2)}(0) - \left[\hat{\Sigma}_{hH}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0} \\ \Delta_{HH}^{-1}(p^2) &= p^2 - m_H^2 + \hat{\Sigma}_{HH}^{(1)}(m_h^2) + \hat{\Sigma}_{HH}^{(2)}(0) - \left[\hat{\Sigma}_{HH}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0} \end{split}$$

For determination of M_H expand around $M_H^2 = m_H^2 - \hat{\Sigma}_{HH}^{(1)}(m_H^2)$

Comparison to SUSYHD for single-scale scenario

Low M_A : Current status

Resummation routines built into FH assume $M_A = M_{\text{SUSY}}$ \rightarrow what if $M_{\text{SUSY}} \gg M_t$ but $M_A \sim M_t$?

- ▶ Need to consider effective THDM for correct resummation
- \blacktriangleright Haber & Hempfling (1993), Lee & Wagner (2015), ...

Low-tanb-high scenario

 $\mu = 1.5$ TeV, $M_2 = 2$ TeV, $A_{b,..} = 2$ TeV, $M_{\rm SUSY}$ and X_t chosen to get $M_h = 125~{\rm GeV}$

 $M_{\chi} = M_1 = M_2 = \mu$

EFT calculation

- ▶ all possible hierarchies taken into account
 - THDM type III $\rightarrow 12$ effective couplings $(\lambda_{1..7}, h_t, h'_t)$
 - THDM type III + EWinos \rightarrow 20 effective couplings $(\lambda_{1..7}, h_t, h'_t + \text{gaugino-Higgs couplings})$
- ▶ full 2L running for all effective couplings (RGEs via SARAH)
- ▶ full 1L threshold corrections for all effective couplings
- $\mathcal{O}(\alpha_s \alpha_t)$ threshold corrections for λ_i 's

Matching to fixed order calculation

• Running from M_{SUSY} to $M_A \to \Delta \hat{\Sigma}_{11}, \Delta \hat{\Sigma}_{12}, \Delta \hat{\Sigma}_{22}$, e.g.

$$\Delta \hat{\Sigma}_{11} = \left[M_A^2 s_\beta^2 + v^2 \left(3\lambda_1 c_\beta^2 + (\lambda_3 + \lambda_4 + \lambda_5) s_\beta^2 + 6\lambda_6 s_\beta c_\beta \right) \right]_{Q=M_A}$$

– subtraction terms

► Running from M_A to $M_t \to \Delta \hat{\Sigma}_{22} = \lambda(m_t) v^2 / c_{\alpha}^2$ (as done for $M_A = M_{\text{SUSY}}$)

Matching to fixed order calculation II

Normalization of Higgs doublets

MSSM and THDM Higgs doublets have not the same normalization

▶ LSZ theorem yields (at the 1L level)

$$\begin{pmatrix} \Phi_1^{\text{THDM}} \\ \Phi_2^{\text{THDM}} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 + \frac{1}{2}\Delta\Sigma'_{11} & \frac{1}{2}\Delta\Sigma'_{12} \\ \frac{1}{2}\Delta\Sigma'_{12} & 1 + \frac{1}{2}\Delta\Sigma'_{22} \end{pmatrix}}_{=U_{\Delta\Phi}} \begin{pmatrix} \Phi_1^{\text{MSSM}} \\ \Phi_2^{\text{MSSM}} \end{pmatrix}$$

with $\Delta \Sigma'_{ij} = \Sigma^{\rm MSSM}_{ij} - \Sigma^{\rm THDM}_{ij}$

$$\Rightarrow \Delta_{\mathrm{MSSM}}^{-1}(p^2) = U_{\Delta\Phi}^T \Delta_{\mathrm{THDM}}^{-1}(p^2) U_{\Delta\Phi}$$

▶ pole masses do not depend on absolute field normalization → not important for pure EFT calculation

Matching to fixed order calculation III

Hybrid calculation in FeynHiggs:

$$\begin{split} \Delta_{\mathrm{FH}}^{-1}(p^2) &= \\ &= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hh}^{\mathrm{logs}} & \hat{\Sigma}_{hH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hH}^{\mathrm{logs}} \\ & \hat{\Sigma}_{hH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hH}^{\mathrm{logs}} & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{HH}^{\mathrm{logs}} \end{pmatrix} \end{split}$$

with $\Delta \Sigma_{ij}^{\text{logs}} = \Sigma_{ij}^{\text{EFT}} - \Sigma_{ij}^{\text{sub}}$

"Relative" normalization important for

- correct merging of EFT result (THDM normalization) with fixed order result (MSSM renormalization)
- calculation of 1L and 2L subtraction terms

Matching to fixed order calculation IV

How to implement different normalization? \rightarrow finite field normalization in fixed-order calculation

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 + \frac{1}{2}\delta^{(1)}Z_{11} + \frac{1}{2}\Delta^{(2)}Z_{11} & \frac{1}{2}\delta^{(1)}Z_{12} + \frac{1}{2}\Delta^{(2)}Z_{12} \\ \frac{1}{2}\delta^{(1)}Z_{12} + \frac{1}{2}\Delta^{(2)}Z_{12} & 1 + \frac{1}{2}\delta^{(1)}Z_{22} + \frac{1}{2}\Delta^{(2)}Z_{22} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix},$$

$$\Delta Z_{ij} = \delta^{(2)}Z_{ij} - \frac{1}{4}\left(\delta^{(1)}Z_{ij}\right)^2$$

• choose
$$\delta^{(1)} Z_{ij} \big|_{\text{fin}} = \Delta \Sigma_{ij}$$

► $\delta^{(2)}Z_{ij}$ drops out completely → 2L relation between Φ^{MSSM} and Φ^{THDM} not needed

Affect on $\tan\beta$

$$\delta^{(1)}t_{\beta} = \frac{1}{2}t_{\beta}\left(\delta Z_{22}^{(1)} - \delta Z_{11}^{(1)}\right) + \frac{1}{2}\left(1 - t_{\beta}^2\right)\delta Z_{12}^{(1)}$$

- ▶ finite field normalization changes definition of t_β
- \blacktriangleright renormalization scale of fixed-order calculation by default chosen to be M_t
- scale of THDM $\rightarrow M_A$

$$\begin{split} t_{\beta}^{\text{MSSM}}(M_t) &= t_{\beta}^{\text{THDM}}(M_A) \cdot \\ & \cdot \left[1 - \frac{y_t^2}{(4\pi)^2 s_{\beta}^2} \left(\frac{3}{2} \ln \frac{M_A^2}{M_t^2} + \frac{1}{4} (\hat{A}_t - \hat{\mu}/t_{\beta}) (\hat{A}_t + \hat{\mu}t_{\beta}) \right) \right] \end{split}$$

$\tan \beta$ definition ($M_A = M_{SUSY}$, fixed-order only)

 $\tan\beta$

$\tan \beta$ definition $(M_A \ll M_{\text{SUSY}}, \text{ fixed-order only})$

Results I: $\tan \beta$ scan

00 00000000 00 00000000000000 0		Low M_A	
		000000000000000000000000000000000000000	

Results II: M_A scan

Results III: $X_t^{\overline{\mathrm{DR}}}$ scan

X_t conversion

For fixed-order calculation OS renormalization can be used
To combine with EFT calculation conversion of X_t needed
For low M_A extra log appear in 1L conversion:

$$\tilde{X}_{t}(M_{\rm SUSY}) = X_{t}^{\rm OS} \left\{ 1 + \left[\frac{\alpha_{s}}{\pi} - \frac{3\alpha_{t}}{16\pi} (1 - \hat{X}_{t}^{2}) \right] \ln \frac{M_{\rm SUSY}^{2}}{M_{t}^{2}} - \frac{3}{16\pi} \frac{\alpha_{t}}{t_{\beta}^{2}} (1 - \hat{Y}_{t}^{2}) \ln \frac{M_{\rm SUSY}^{2}}{M_{A}^{2}} \right\}$$

 $\hat{X}_t = \hat{A}_t - \hat{\mu}/t_\beta, \quad \hat{Y}_t = \hat{A}_t + \hat{\mu}t_\beta$

00 00000000 00 00000000000000 0		Low M_A	
		000000000000000000000000000000000000000	

Results IV: X_t^{OS} scan

 \rightarrow 1L conversion not reliable for low M_A , better use $\overline{\text{DR}}$ scheme

Differences observed in Lee & Wagner?

- ▶ In FH 2.10.2 log resummation was not very advanced (no EW contributions, no NNLL, ...).
- Resummation assumed $M_A = M_{Susy}$
- ► Lee & Wagner used OS parameters as input, but set $M_A = M_{\text{SUSY}}$ in conversion

Comparison with MhEFT: M_A scan

Comparison with MhEFT and SUSYHD: $X_t^{\overline{\text{DR}}}$ scan

Results for M_H : tan β scan

Results for M_H : M_A scan

Conclusion

Next version: FeynHiggs 2.14.0

- \blacktriangleright optional $\overline{\rm DR}$ renormalization of stop sector
- ▶ improved calculation of pole masses/Z factors
- ► small improvements of resummation routines Single-scale SUSY:
 - ▶ good agreement between various codes
- ▶ time to look at scenarios with more mass scales Low M_A scenario:
 - ▶ upcoming extension of FH with effective THDM
 - important to take different normalizations of Higgs doublets into account
 - ▶ eff. THDM only relevant for very low $\tan \beta$
 - ▶ time to update low-tanb-high scenario

The OS vev-counterterm is given by

$$\delta v^2 = v^2 \left[\frac{\delta M_W^2}{M_W^2} + \frac{c_w^2}{s_w^2} \left(\frac{\delta M_Z^2}{M_Z^2} - \frac{\delta M_W^2}{M_W^2} \right) - \frac{\delta e^2}{e^2} \right] \stackrel{\mathcal{O}(\alpha_s, \alpha_t)}{=} \\ = v^2 \left(-\hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) + \text{ SM corrections} \right).$$

The Higgs pole mass is calculated via

$$M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) + \Sigma_{hh}^{(1)\prime}(m_h^2)\Sigma_{hh}^{(1)}(m_h^2) + \dots$$

The renormalized two-loop self-energy reads

$$\begin{split} \hat{\Sigma}_{hh}^{(2)}(0) &= \Sigma_{hh}^{(2)}(0) + \frac{\partial}{\partial v^2} \hat{\Sigma}_{hh}^{(1)}(m_h^2) \cdot \delta v^2 + \dots = \\ &= \Sigma_{hh}^{(2)}(0) - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \frac{\delta v^2}{v^2} + \dots = \\ &= \Sigma_{hh}^{(2)}(0) + \hat{\Sigma}_{hh}^{(1)}(m_h^2) \hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) + \dots \end{split}$$

 \longrightarrow nearly constant difference for high scales

Origin

Different parametrization of non-logarithmic terms

Three ways to parametrize top Yukawa coupling in FO result

•
$$M_t/v \rightarrow \text{FeynHiggs with runningMT} = 0$$

•
$$\overline{m}_t/v \rightarrow \text{FeynHiggs with runningMT}$$
 = 1

•
$$y_t^{\overline{\mathrm{MS}}} = \overline{m}_t / v_{\overline{\mathrm{MS}}} \to \mathrm{SUSYHD}$$

Equivalent at 2L order, but induces differences at higher order

Uncertainty estimate of SUSYHD

1. EFT uncertainty

- $\mathcal{O}(v/M_S)$ terms
- estimated by $v/M_S \cdot (1L \text{ correction})$
- 2. SM uncertainty:
 - higher order corrections to pole mass extraction
 - estimated by (de) activating higher order corrections to y_t and $\delta\lambda$
- 3. SUSY uncertainty:
 - higher order threshold corrections
 - estimated by variation of matching scale $1/2 < Q/M_S < 2$

Uncertainty estimate of FeynHiggs

- 1. Scale variation:
 - variation of renormalization scale between $1/2M_t$ and $2M_t$
- 2. Renormalization scheme dependence:
 - switching between OS top mass and $\overline{\mathrm{MS}}$ top mass
- 3. $\tan \beta$ enhanced correction
 - (de)activating resummation of bottom Yukawa coupling

$\substack{ \operatorname{Appendix} \\ \operatorname{ooooooooooo} \\ }$

Matching to fixed order calculation V

$$\begin{split} \hat{\Sigma}_{hh}^{(2)}(0)\Big|_{\delta Z} &= \Sigma_{hh}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z} - \frac{e}{2s_W M_W} \left(T_h^{(2),\mathrm{sub}}\Big|_{\delta Z} + \frac{1}{2}s_\beta^2 T_h^{(1)}\delta^{(1)} Z_{hh}\right) \\ \hat{\Sigma}_{hH}^{(2)}(0)\Big|_{\delta Z} &= \Sigma_{hH}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z} - \frac{e}{2s_W M_W} \left(T_H^{(2),\mathrm{sub}}\Big|_{\delta Z} + \frac{1}{2}s_\beta^2 T_H^{(1)}\delta^{(1)} Z_{hh}\right) \\ \hat{\Sigma}_{HH}^{(2)}(0)\Big|_{\delta Z} &= \Sigma_{HH}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z} - \Sigma_{AA}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z}, \end{split}$$

Comparison with MhEFT: $\tan\beta$ scan

Appendix 0000000000

Influence of low M_A on extraction of top Yukawa coupling

