Precise MSSM Higgs mass prediction combining diagrammatic and EFT calculations

Henning Bahl

Elementary Particle Physics Seminar December 14, 2017 Universität Würzburg

Intro	Impr. of EFT calc.	Comp. to pure EFT code	Low M_A	Conclusion & Outlook
000000				

Current situation:

▶ no direct evidence for BSM physics at LHC yet BSM models constrained by

- direct searches
- indirect constraints \rightarrow precision observables

One of the most common BSM models: MSSM

- ▶ Higgs sector of MSSM corresponds to a THDM type II
- ▶ Two Higgs doublets results in five physical Higgs states: $h,\,H,\,A,\,H^\pm$
- ► A gneral THDM type II has 9 free parameters \rightarrow SUSY reduces these to 2 (M_A and $\tan \beta = v_2/v_1$)

Intro			Low M_A	Conclusion & Outlook
000000	000	0000000000	0000000000000	00

Special feature of MSSM

Mass of lightest CP-even Higgs M_h is calculable in terms of model parameters \Rightarrow can be used as a precision observable

▶ at tree-level $M_h^2 \simeq M_Z^2 \cos(2\beta)^2 \le M_Z^2$

► M_h is however heavily affected by loop corrections (up to ~ 100%)

To fully profit from experimental precision, higher order calculations are needed. Two standard approaches:

- ▶ Fixed-order techniques
- ▶ Effective field theories

Intro			Low M_A	Conclusion & Outlook
0000000	000	0000000000	0000000000000	00

Fixed-order techniques

- diagrammatic approach status: $\mathcal{O}(\text{full 1L}, \alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2)$
- effective potential approach
 status: same + partial three-loop results
- → precise for low SUSY scales, but for high scales large logarithms appear, $\ln(M_{SUSY}/M_t)$, spoiling convergence of perturbative expansion

Intro 0000000	Impr. of EFT calc. 000	Comp. to pure EFT code	Low M_A 000000000000000000000000000000000000	Conclusion & Outlook 00

EFT calculation

- \blacktriangleright integrate out all SUSY particles \rightarrow SM as EFT
- ► Higgs self-coupling fixed at matching scale $\lambda(M_{\rm SUSY}) = \frac{1}{4}(g^2 + g_y^2) + \dots$
- ► status: full LL+NLL, $\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)$ NNLL
- \rightarrow precise for high SUSY scales (logs resummed), but for low scales $\mathcal{O}(M_t/M_{\text{SUSY}})$ terms are important

How to deal with intermediary SUSY scales?

For sparticles in the LHC range, both logs and suppressed terms might be relevant. We could try to improve

- ▶ fixed-order calculation → need to calculate more three- and two-loop corrections,
- ► EFT calculation → need to include higher-dimensional operators into calculation.

or ...

\downarrow

Hybrid approach

Combine both approaches to get precise results for both regimes

Such an approach is implemented e.g. in FeynHiggs [HB, T. Hahn, S. Heinemeyer, W. Hollik, S. Paßehr, H. Rzehak, G. Weiglein]

Procedure in FeynHiggs

- 1. Calculation of diagrammatic fixed-order self-energies $\hat{\Sigma}_{hh}$
- 2. Calculation of EFT prediction $2\lambda(M_t)v^2$
- 3. Add non-logarithmic terms contained in fixed-order result and the logarithms contained in EFT result

$$\hat{\Sigma}_{hh}(m_h^2) \longrightarrow [\hat{\Sigma}_{hh}(m_h^2)]_{\text{nolog}} - [2v^2\lambda(M_t)]_{\log}$$

In practice, this is achieved by using subtraction terms.

Additional complication:

<code>FH</code> by default uses OS scheme, for EFT calculation however $\overline{\text{DR}}$ parameters needed (i.e. $X_t^{\overline{\text{DR}}}$)

 \rightarrow 1L log only conversion of X_t sufficient

Development history (and talk outline)

- First implementation: $\mathcal{O}(\alpha_s, \alpha_t)$ LL and NLL resummation [Hahn et. al. (2013)]
- Improvement of EFT calculation: full LL and NLL and $\mathcal{O}(\alpha_s, \alpha_t)$ NNLL resummation, gaugino thresholds [HB & W. Hollik (2016)]
- Comparison to pure EFT calculations: handling of DR input, improved pole mass determination [HB, S. Heinemeyer, W. Hollik, G. Weiglein (2017)]
- More complicated mass hierarchies: THDM as low-energy EFT [HB & W. Hollik (in preparation)]

Inclusion of electroweak contributions

- included at the LL+NLL level (full SM 2L RGEs, full 1L thresholds)
- ▶ include electroweak 1L corrections to SM MS top mass, used in the diagrammatic calculation

Separate gaugino thresholds

 Separate threshold for EWinos (neutralinos/charginos) and gluino

Inclusion of NNLL resummation

▶ 2L threshold for λ , 3L RGEs

This work brought EFT calculation in FeynHiggs to same level of accuracy as pure EFT calculations

Next step: Comparison to pure EFT calculations

- \Rightarrow expected to see agreement with EFT codes for high scales, but at this time large discrepancies could be observed Two main origins found
 - $\blacktriangleright \ \overline{\mathrm{DR}} \leftrightarrow \mathrm{OS} \ \mathrm{conversion}$
 - determination of Higgs propagator pole

We focused on single scale scenario: $\tan \beta = 10, \ M_{\text{soft}} = \mu = M_A \equiv M_{\text{Susy}}, \ A_{b,c,s,e,\mu,\tau} = 0$

	Impr. of EFT calc.	Comp. to pure EFT code	Low M_A	Conclusion & Outlook
0000000		000000000		

FeynHiggs mixed OS/\overline{DR} scheme \leftrightarrow EFT codes typically \overline{DR}

 \rightarrow for comparison parameter conversion necessary

Especially relevant: stop mixing parameter X_t (large impact on Higgs mass, large logarithms in conversion)

Procedure at this time

- $\blacktriangleright X_t^{\overline{\mathrm{DR}}} \stackrel{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} X_t^{\mathrm{OS}}$
- ▶ Forget about $X_t^{\overline{\text{DR}}}$, use X_t^{OS} as 'new' input parameter

Problem: result contains resummed logarithms

 \rightarrow conversion induces additional logarithms not present in a genuine $\overline{\rm DR}$ calculation

 \rightarrow solution: optional $\overline{\text{DR}}$ renormalization of fixed-order result

	Impr. of EFT calc.	Comp. to pure EFT code	Low M_A	Conclusion & Outlook
0000000	000	000000000	0000000000000	00

How is the pole mass determined?

EFT calculation

$$\begin{split} p^2 &- 2\lambda(M_t)v^2 + \hat{\Sigma}_{hh}^{\rm SM}(p^2) = 0 \\ &\to (M_h^2)_{\rm EFT} = 2\lambda(M_t)v^2 - \hat{\Sigma}_{hh}^{\rm SM}(m_h^2) \\ &- \hat{\Sigma}_{hh}^{\rm SM\prime}(m_h^2) \left[2\lambda(M_t)v^2 - \hat{\Sigma}_{hh}^{\rm SM}(m_h^2) - m_h^2 \right] + \dots \end{split}$$

Hybrid calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by $p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\text{MSSM}}(p^2) - [2v^2\lambda(M_t)]_{\log} - [\hat{\Sigma}_{hh}(m_h^2)]_{\log} = 0$ $\rightarrow (M_h^2)_{\text{FH}} = m_h^2 + [2v^2\lambda(M_t)]_{\log} - [\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)]_{\text{nolog}}$ $- \hat{\Sigma}_{hh}^{\text{MSSM}'}(m_h^2) \left([2v^2\lambda(M_t)]_{\log} - [\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)]_{\text{nolog}} \right)$ $+ \dots$

Comparison of logarithmic terms

In decoupling limit, we can split up MSSM self-energy

$$\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) = \hat{\Sigma}_{hh}^{\text{SM}}(m_h^2) + \hat{\Sigma}_{hh}^{\text{nonSM}}(m_h^2).$$

We straightforwardly obtain

$$\begin{split} \Delta^{\log} &\equiv (M_h^2)_{\rm FH}^{\log} - (M_h^2)_{\rm EFT}^{\log} \\ &= \left[\hat{\Sigma}_{hh}^{\rm nonSM\prime}(m_h^2) \right]_{\log} \left[\hat{\Sigma}_{hh}^{\rm MSSM}(m_h^2) \right]_{\rm nolog} \\ &- \hat{\Sigma}_{hh}^{\rm nonSM\prime}(m_h^2) \left[2v^2 \lambda(M_t) \right]_{\log} + \dots \end{split}$$

Very similar for non-logarithmic terms.

		Comp. to pure EFT code	Low M_A	Conclusion & Outlook
0000000	000	000000000	0000000000000	00

Observation

vev counterterm appearing in 2L subloop-renormalization cancels 2L terms in Δ^{\log}

$$\frac{(\delta v^2)^{\text{MSSM}}}{v^2} = \frac{(\delta v^2)^{\text{SM}}}{v^2} - \hat{\Sigma}_{hh}^{\text{nonSM},(1)\prime}(m_h^2) + \mathcal{O}(v/M_{\text{SUSY}})$$

- ▶ Argument holds for all 2L contributions
- ► Full 2L calculation however not available \rightarrow induced terms of e.g. $\mathcal{O}(\alpha_t \alpha)$ are not compensated
- ▶ Likely also holds for higher loop orders

adapted determination of Higgs propagator pole to avoid these terms (truncate expansion around tree-level mass)

Comparison to SUSYHD as exemplary EFT code

[J.P. Vega, G. Villadoro]

Impr. of EFT calc. 000	Comp. to pure EFT code 000000000000	Low M_A 000000000000000000000000000000000000	Conclusion & Outlook 00

\longrightarrow overall very good agreement

Remaining differences

- derivation for small scales due to suppressed terms not captured in EFT framework
- constant shift due to different parametrizations of non-logarithmic terms (i.e. top mass and vev)

Comparison of uncertainty estimates

FeynHiggs

- ▶ variation of renormalization scale between $M_t/2$ and $2M_t$
- change of renormalization scheme; switch between OS top mass and SM MS top mass
- ► deactivating the resummation of bottom Yukawa coupling SUSYHD
 - ▶ variation of matching scale between $M_{\rm SUSY}/2$ and $2M_{\rm SUSY}$
 - switching between NNLO and NNNLO top Yukawa coupling
 - estimate of suppressed terms, $\mathcal{O}(M_t/M_{\rm SUSY})$

What is about more complicated hierarchies?

Assumption so far

All sfermions and non-SM Higgs share common mass scale

Therefore, prediction might be unreliable e.g. if

- ► one stop is much lighter than the other [Espinosa & Navarro (2001)]
- non SM Higgs are much lighter than sfermions [Haber & Hempfling (1993), Lee & Wagner (2015)]

► ...

What is about more complicated hierarchies?

Assumption so far

All sfermions and non-SM Higgs share common mass scale

Therefore, prediction might be unreliable e.g. if

- ► one stop is much lighter than the other [Espinosa & Navarro (2001)]
- non SM Higgs are much lighter than sfermions [Haber & Hempfling (1993), Lee & Wagner (2015)]

▶ ..

 \rightarrow Low-energy THDM is needed for correct resummation

 $M_{\chi} = M_1 = M_2 = \mu;$ additional freely variable gluino threshold not shown

EFT calculation

- ▶ all possible hierarchies taken into account
 - THDM type III \rightarrow 12 effective couplings $(\lambda_{1..7}, h_t, h'_t)$
 - THDM type III + EWinos \rightarrow 20 effective couplings $(\lambda_{1..7}, h_t, h'_t + \text{gaugino-Higgsino-Higgs couplings})$
- ▶ full 2L running for all effective couplings (RGEs via SARAH)
- ▶ full 1L threshold corrections for all effective couplings
- $\mathcal{O}(\alpha_s \alpha_t)$ threshold corrections for λ_i 's
- \rightarrow most precise EFT calculation available

Matching to fixed order calculation

• Running from M_{SUSY} to $M_A \to \Delta \hat{\Sigma}_{11}, \Delta \hat{\Sigma}_{12}, \Delta \hat{\Sigma}_{22}$, e.g.

$$\Delta \hat{\Sigma}_{11} = \left[M_A^2 s_\beta^2 + v^2 \left(3\lambda_1 c_\beta^2 + (\lambda_3 + \lambda_4 + \lambda_5) s_\beta^2 + 6\lambda_6 s_\beta c_\beta \right) \right]_{Q=M_A}$$

– subtraction terms

► Running from M_A to $M_t \to \Delta \hat{\Sigma}_{22} = \lambda(m_t) v^2 / c_{\alpha}^2$ (as done for $M_A = M_{\text{SUSY}}$)

Matching to fixed order calculation II

Normalization of Higgs doublets

MSSM and THDM Higgs doublets have not the same normalization

▶ LSZ theorem yields (at the 1L level)

$$\begin{pmatrix} \Phi_1^{\text{THDM}} \\ \Phi_2^{\text{THDM}} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 + \frac{1}{2}\Delta\Sigma'_{11} & \frac{1}{2}\Delta\Sigma'_{12} \\ \frac{1}{2}\Delta\Sigma'_{12} & 1 + \frac{1}{2}\Delta\Sigma'_{22} \end{pmatrix}}_{=U_{\Delta\Phi}} \begin{pmatrix} \Phi_1^{\text{MSSM}} \\ \Phi_2^{\text{MSSM}} \end{pmatrix}$$

with $\Delta \Sigma'_{ij} = \Sigma^{\rm MSSM\prime}_{ij} - \Sigma^{\rm THDM\prime}_{ij}$

$$\Rightarrow \Delta_{\mathrm{MSSM}}^{-1}(p^2) = U_{\Delta\Phi}^T \Delta_{\mathrm{THDM}}^{-1}(p^2) U_{\Delta\Phi}$$

▶ pole masses do not depend on absolute field normalization → not important for pure EFT calculation

Impr. of EFT calc.	Comp. to pure EFT code	Low M_A	Conclusion & Outlook
		00000000000000000	

Matching to fixed order calculation III

Hybrid calculation in FeynHiggs:

$$\begin{split} &\Delta_{\mathrm{FH}}^{-1}(p^2) = \\ &= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hh}^{\mathrm{logs}} & \hat{\Sigma}_{hH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hH}^{\mathrm{logs}} \\ & \hat{\Sigma}_{hH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hH}^{\mathrm{logs}} & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{HH}^{\mathrm{logs}} \end{pmatrix} \end{split}$$

with $\Delta \Sigma_{ij}^{\text{logs}} = \Sigma_{ij}^{\text{EFT}} - \Sigma_{ij}^{\text{sub}}$

"Relative" normalization important for

- correct merging of EFT result (THDM normalization) with fixed order result (MSSM renormalization)
- calculation of 1L and 2L subtraction terms

Matching to fixed order calculation IV

How to implement different normalization? \rightarrow finite field normalization in fixed-order calculation

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} \to \begin{pmatrix} 1 + \frac{1}{2}\delta^{(1)}Z_{11} + \frac{1}{2}\Delta^{(2)}Z_{11} & \frac{1}{2}\delta^{(1)}Z_{12} + \frac{1}{2}\Delta^{(2)}Z_{12} \\ \frac{1}{2}\delta^{(1)}Z_{12} + \frac{1}{2}\Delta^{(2)}Z_{12} & 1 + \frac{1}{2}\delta^{(1)}Z_{22} + \frac{1}{2}\Delta^{(2)}Z_{22} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix},$$

$$\Delta Z_{ij} = \delta^{(2)}Z_{ij} - \frac{1}{4}\left(\delta^{(1)}Z_{ij}\right)^2$$

• choose
$$\delta^{(1)}Z_{ij}\big|_{\text{fin}} = \Delta \Sigma'_{ij}$$

			Low M_A	Conclusion & Outlook
0000000	000	0000000000	0000000000000	00

Results I: M_A scan

		Impr. of EFT calc. 000	Comp. to pure EFT code 0000000000	Low M_A 000000000000000000000000000000000000	Conclusion & Outlook 00
--	--	---------------------------	--------------------------------------	--	----------------------------

Results II: $\tan \beta$ scan

Results III: low-tanb-high scenario (\overline{DR})

 μ = 1.5 TeV, M_2 = 2 TeV, $A_{b,\ldots}$ = 2 TeV, $M_{\rm SUSY}$ and X_t chosen to get M_h = 125 GeV

 \rightarrow need to define new benchmark scenario (LHCHXSWG)

Results for M_H I

How important is the eff. THDM, when H plays role of SM Higgs?

Results for M_H II

 \rightarrow negligible in these scenarios

Impr. of EFT calc. 000	Comp. to pure EFT code	Low M_A 000000000000000000000000000000000000	Conclusion & Outlook •0

Conclusion

- SM-like Higgs mass is an important constraint on MSSM parameter space
- ▶ To gain precise prediction for all SUSY scales, we combined
 - state-of-the-art fixed-order calculation
 - state-of-the-art EFT calculation
- \blacktriangleright Optional $\overline{\mathrm{DR}}$ renorm. and improved pole determination
 - \rightarrow excellent agreement of FeynHiggs with pure EFT codes found for high scales
- ► For low M_A , implemented effective THDM as EFT → Large numerical effects

₩

For multi-scale scenarios, proper EFT treatment is essential

Impr. of EFT calc. 000	Comp. to pure EFT code	Low M_A 000000000000000000000000000000000000	Conclusion & Outlook $0 \bullet$

Outlook

- ▶ For each hierarchy the same steps are always repeated:
 - define EFTs
 - calculate RGEs and threshold corrections
 - merge with diagrammatic calculation (calculate subtraction terms)
 - \rightarrow automatizing these steps would allow for a precise predicition for arbitrary hierarchies
- ▶ application to other observable and models

Need to determine poles of inverse propagator matrix

$$\Delta^{-1}(p^2) = \begin{cases} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{(1)}(p^2) + \hat{\Sigma}_{hh}^{(2)}(0) & \hat{\Sigma}_{hH}^{(1)}(p^2) + \hat{\Sigma}_{hH}^{(2)}(0) \\ \hat{\Sigma}_{hH}^{(1)}(p^2) + \hat{\Sigma}_{hH}^{(2)}(0) & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{(1)}(p^2) + \hat{\Sigma}_{HH}^{(2)}(0) \end{cases}$$

At 1L level $M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \rightarrow$ expand around 1L solution \Rightarrow determine poles of

$$\begin{split} \Delta_{hh}^{-1}(p^2) &= p^2 - m_h^2 + \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \hat{\Sigma}_{hh}^{(2)}(0) - \left[\hat{\Sigma}_{hh}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0} \\ \Delta_{hH}^{-1}(p^2) &= + \hat{\Sigma}_{hH}^{(1)}(m_h^2) + \hat{\Sigma}_{hH}^{(2)}(0) - \left[\hat{\Sigma}_{hH}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0} \\ \Delta_{HH}^{-1}(p^2) &= p^2 - m_H^2 + \hat{\Sigma}_{HH}^{(1)}(m_h^2) + \hat{\Sigma}_{HH}^{(2)}(0) - \left[\hat{\Sigma}_{HH}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0} \end{split}$$

For determination of M_{H} expand around $M_{H}^{2}=m_{H}^{2}-\hat{\Sigma}_{HH}^{(1)}(m_{H}^{2})$

 $\substack{ \mathrm{Appendix} \\ \mathrm{000000000} }$

 $\substack{ \mathrm{Appendix} \\ \mathrm{000000000} }$

Effective Lagrangians

$$\mathcal{L}_{\text{THDM}} = \dots - V_{\text{THDM}}(H_u, H_d) - h_t \epsilon_{ij} \bar{t}_R Q_L^i H_u^j - h_t' \bar{t}_R Q_L H_d$$

$$\rightarrow 12 \text{ effective couplings } (\lambda_{1..7}, h_t, h_t')$$

$$\mathcal{L}_{\text{THDM}+\text{EWinos}} = \dots - \frac{1}{\sqrt{2}} H_u^{\dagger} \left(\hat{g}_{2uu} \sigma^a \tilde{W}^a + \hat{g}_{1uu} \tilde{B} \right) \tilde{\mathcal{H}}_u$$

$$- \frac{1}{\sqrt{2}} H_d^{\dagger} \left(\hat{g}_{2dd} \sigma^a \tilde{W}^a - \hat{g}_{1dd} \tilde{B} \right) \tilde{\mathcal{H}}_d$$

$$- \frac{1}{\sqrt{2}} (-i H_d^T \sigma_2) \left(\hat{g}_{2du} \sigma^a \tilde{W}^a + \hat{g}_{1du} \tilde{B} \right) \tilde{\mathcal{H}}_u$$

$$- \frac{1}{\sqrt{2}} (-i H_u^T \sigma_2) \left(\hat{g}_{2ud} \sigma^a \tilde{W}^a - \hat{g}_{1ud} \tilde{B} \right) \tilde{\mathcal{H}}_d$$

$$+ h.c. - V_{\text{THDM}} (H_u, H_d),$$

 \rightarrow 20 effective couplings

