Precise MSSM Higgs mass prediction combining diagrammatic and EFT calculations

Henning Bahl

Elementary Particle Physics Seminar December 14, 2017 Universität Würzburg

Current situation:

 \triangleright no direct evidence for BSM physics at LHC yet BSM models constrained by

- \blacktriangleright direct searches
- \triangleright indirect constraints \rightarrow precision observables

One of the most common BSM models: MSSM

- \triangleright Higgs sector of MSSM corresponds to a THDM type II
- \triangleright Two Higgs doublets results in five physical Higgs states: h , *H*, *A*, *H*^{\pm}
- ► A gneral THDM type II has 9 free parameters \rightarrow SUSY reduces these to 2 (M_A and tan $\beta = v_2/v_1$)

Special feature of MSSM

Mass of lightest \mathcal{CP} -even Higgs M_h is calculable in terms of model parameters \Rightarrow can be used as a precision observable

► at tree-level $M_h^2 \simeq M_Z^2 \cos(2\beta)^2 \leq M_Z^2$

 $\blacktriangleright M_h$ is however heavily affected by loop corrections (up to $\sim 100\%$)

To fully profit from experimental precision, higher order calculations are needed. Two standard approaches:

- \blacktriangleright Fixed-order techniques
- \blacktriangleright Effective field theories

Fixed-order techniques

- \blacktriangleright diagrammatic approach status: $\mathcal{O}(\text{full } 1\text{L}, \alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2)$
- \triangleright effective potential approach status: same + partial three-loop results
- \rightarrow precise for low SUSY scales, but for high scales large logarithms appear, $\ln(M_{\text{SUSY}}/M_t)$, spoiling convergence of perturbative expansion

EFT calculation

- integrate out all SUSY particles \rightarrow SM as EFT
- \blacktriangleright Higgs self-coupling fixed at matching scale $\lambda(M_{\text{SUSY}}) = \frac{1}{4}(g^2 + g_y^2) + ...$
- \triangleright status: full LL+NLL, $\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)$ NNLL
- \rightarrow precise for high SUSY scales (logs resummed), but for low scales $\mathcal{O}(M_t/M_{\text{SUSY}})$ terms are important

How to deal with intermediary SUSY scales?

For sparticles in the LHC range, both logs and suppressed terms might be relevant. We could try to improve

- \triangleright fixed-order calculation \rightarrow need to calculate more three- and two-loop corrections,
- \triangleright EFT calculation \rightarrow need to include higher-dimensional operators into calculation.

or ...

↓

Hybrid approach

Combine both approaches to get precise results for both regimes

Such an approach is implemented e.g. in FeynHiggs [HB, T. Hahn, S. Heinemeyer, W. Hollik, S. Paßehr, H. Rzehak, G. Weiglein]

Procedure in FeynHiggs

- 1. Calculation of diagrammatic fixed-order self-energies $\hat{\Sigma}_{hh}$
- 2. Calculation of EFT prediction $2\lambda(M_t)v^2$
- 3. Add non-logarithmic terms contained in fixed-order result and the logarithms contained in EFT result

$$
\hat{\Sigma}_{hh}(m_h^2) \longrightarrow \left[\hat{\Sigma}_{hh}(m_h^2)\right]_{\text{nolog}} - \left[2v^2\lambda(M_t)\right]_{\text{log}}
$$

In practice, this is achieved by using subtraction terms.

Additional complication:

FH by default uses OS scheme, for EFT calculation however DR parameters needed (i.e. X_t^{DR})

 \rightarrow 1L log only conversion of X_t sufficient

Development history (and talk outline)

- \blacktriangleright First implementation: $\mathcal{O}(\alpha_s, \alpha_t)$ LL and NLL resummation [Hahn et. al. (2013)]
- \blacktriangleright Improvement of EFT calculation: full LL and NLL and $\mathcal{O}(\alpha_s, \alpha_t)$ NNLL resummation, gaugino thresholds [HB & W. Hollik (2016)]
- \triangleright Comparison to pure EFT calculations: handling of \overline{DR} input, improved pole mass determination [HB, S. Heinemeyer, W. Hollik, G. Weiglein (2017)]
- \blacktriangleright More complicated mass hierarchies: THDM as low-energy EFT [HB & W. Hollik (in preparation)]

[Intro](#page-1-0) **[Impr. of EFT calc.](#page-8-0)** [Comp. to pure EFT code](#page-11-0) [Low](#page-22-0) M_A M_A [Conclusion & Outlook](#page-36-0) **ooooooo**oooo **oo**

Inclusion of electroweak contributions

- \triangleright included at the LL+NLL level (full SM 2L RGEs, full 1L thresholds)
- include electroweak 1L corrections to SM $\overline{\text{MS}}$ top mass, used in the diagrammatic calculation

Separate gaugino thresholds

^I Separate threshold for EWinos (neutralinos/charginos) and gluino

[Intro](#page-1-0) **[Impr. of EFT calc.](#page-8-0)** [Comp. to pure EFT code](#page-11-0) [Low](#page-22-0) M_A M_A [Conclusion & Outlook](#page-36-0) **oooooooo**oooo **oo**

Inclusion of NNLL resummation

 \triangleright 2L threshold for λ , 3L RGEs

↓ This work brought EFT calculation in FeynHiggs to same level of accuracy as pure EFT calculations

Next step: Comparison to pure EFT calculations

- \Rightarrow expected to see agreement with EFT codes for high scales, but at this time large discrepancies could be observed Two main origins found
	- $\overline{DR} \leftrightarrow \overline{OR}$ conversion
	- \triangleright determination of Higgs propagator pole

We focused on single scale scenario:

 $\tan \beta = 10$, $M_{\text{soft}} = \mu = M_A \equiv M_{\text{Susy}}$, $A_{b,c,s,e,\mu,\tau} = 0$

FeynHiggs mixed OS/\overline{DR} scheme \leftrightarrow EFT codes typically \overline{DR}

 \rightarrow for comparison parameter conversion necessary

Especially relevant: stop mixing parameter *X^t* (large impact on Higgs mass, large logarithms in conversion)

Procedure at this time

- \blacktriangleright X_t^{DR} $\stackrel{\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)}{\longrightarrow} X_t^{\text{OS}}$
- \blacktriangleright Forget about X_t^{DR} , use X_t^{OS} as 'new' input parameter

Problem: result contains resummed logarithms

 \rightarrow conversion induces additional logarithms not present in a genuine $\overline{\rm DR}$ calculation

 \rightarrow solution: optional \overline{DR} renormalization of fixed-order result

How is the pole mass determined?

EFT calculation

$$
p^{2} - 2\lambda(M_{t})v^{2} + \hat{\Sigma}_{hh}^{SM}(p^{2}) = 0
$$

\n
$$
\rightarrow (M_{h}^{2})_{EFT} = 2\lambda(M_{t})v^{2} - \hat{\Sigma}_{hh}^{SM}(m_{h}^{2})
$$

\n
$$
- \hat{\Sigma}_{hh}^{SM}(m_{h}^{2}) [2\lambda(M_{t})v^{2} - \hat{\Sigma}_{hh}^{SM}(m_{h}^{2}) - m_{h}^{2}] + ...
$$

Hybrid calculation

In limit $M_A \gg M_Z$ Higgs pole mass is determined by $p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\text{MSSM}}(p^2) - [2v^2\lambda(M_t)]_{\text{log}} - [\hat{\Sigma}_{hh}(m_h^2)]_{\text{log}} = 0$ $\rightarrow (M_h^2)_{\text{FH}} = m_h^2 + [2v^2\lambda(M_t)]_{\text{log}} - [\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)]_{\text{nolog}}$ $-\left[\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)\left(\left[2v^2\lambda(M_t)\right]_{\text{log}}-\left[\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)\right]_{\text{nolog}}\right)\right]$ $+ \ldots$

Comparison of logarithmic terms

In decoupling limit, we can split up MSSM self-energy

$$
\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2) = \hat{\Sigma}_{hh}^{\text{SM}}(m_h^2) + \hat{\Sigma}_{hh}^{\text{nonSM}}(m_h^2).
$$

We straightforwardly obtain

$$
\Delta^{\log} \equiv (M_h^2)_{\text{FH}}^{\log} - (M_h^2)_{\text{EFT}}^{\log}
$$

=
$$
\left[\hat{\Sigma}_{hh}^{\text{nonSM} \prime}(m_h^2)\right]_{\log} \left[\hat{\Sigma}_{hh}^{\text{MSSM}}(m_h^2)\right]_{\text{nolog}}
$$

-
$$
\hat{\Sigma}_{hh}^{\text{nonSM} \prime}(m_h^2) \left[2v^2\lambda(M_t)\right]_{\log} + \dots
$$

Very similar for non-logarithmic terms.

Observation

vev counterterm appearing in 2L subloop-renormalization cancels 2L terms in Δ^{\log}

$$
\frac{(\delta v^2)^{\text{MSSM}}}{v^2} = \frac{(\delta v^2)^{\text{SM}}}{v^2} - \hat{\Sigma}_{hh}^{\text{nonSM},(1)\prime}(m_h^2) + \mathcal{O}(v/M_{\text{SUSY}})
$$

- \triangleright Argument holds for all 2L contributions
- \blacktriangleright Full 2L calculation however not available \rightarrow induced terms of e.g. $\mathcal{O}(\alpha_t \alpha)$ are not compensated
- \blacktriangleright Likely also holds for higher loop orders

↓ adapted determination of Higgs propagator pole to avoid these terms (truncate expansion around tree-level mass)

Comparison to SUSYHD as exemplary EFT code

[J.P. Vega, G. Villadoro]

−→ **overall very good agreement**

Remaining differences

- \triangleright derivation for small scales due to suppressed terms not captured in EFT framework
- \triangleright constant shift due to different parametrizations of non-logarithmic terms (i.e. top mass and vev)

Comparison of uncertainty estimates

FeynHiggs

- \triangleright variation of renormalization scale between $M_t/2$ and $2M_t$
- change of renormalization scheme; switch between OS top mass and SM $\overline{\text{MS}}$ top mass
- \triangleright deactivating the resummation of bottom Yukawa coupling SUSYHD
	- \triangleright variation of matching scale between $M_{\text{SUSY}}/2$ and $2M_{\text{SUSY}}$
	- \triangleright switching between NNLO and NNNLO top Yukawa coupling
	- \triangleright estimate of suppressed terms, $\mathcal{O}(M_t/M_{\text{SUSY}})$

What is about more complicated hierarchies?

Assumption so far

All sfermions and non-SM Higgs share common mass scale

Therefore, prediction might be unreliable e.g. if

- \triangleright one stop is much lighter than the other [Espinosa & Navarro (2001)]
- \triangleright non SM Higgs are much lighter than sfermions [Haber & Hempfling (1993), Lee & Wagner (2015)]

^I ...

What is about more complicated hierarchies?

Assumption so far

All sfermions and non-SM Higgs share common mass scale

Therefore, prediction might be unreliable e.g. if

- \triangleright one stop is much lighter than the other [Espinosa & Navarro (2001)]
- \triangleright non SM Higgs are much lighter than sfermions [Haber & Hempfling (1993), Lee & Wagner (2015)]

^I ...

 \rightarrow Low-energy THDM is needed for correct resummation

 $M_{\chi} = M_1 = M_2 = \mu$; additional freely variable gluino threshold not shown

EFT calculation

- \triangleright all possible hierarchies taken into account
	- THDM type III \rightarrow 12 effective couplings $(\lambda_{1..7}, h_t, h'_t)$
	- THDM type $III + EWinos \rightarrow 20$ effective couplings $(\lambda_{1..7}, h_t, h'_t +$ gaugino-Higgsino-Higgs couplings)
- \triangleright full 2L running for all effective couplings (RGEs via SARAH)
- \triangleright full 1L threshold corrections for all effective couplings
- $\triangleright \mathcal{O}(\alpha_s \alpha_t)$ threshold corrections for λ_i 's
- \rightarrow most precise EFT calculation available

[Intro](#page-1-0) [Impr. of EFT calc.](#page-8-0) [Comp. to pure EFT code](#page-11-0) [Low](#page-22-0) *M[A](#page-29-0)* [Conclusion & Outlook](#page-36-0)

Matching to fixed order calculation

► Running from M_{SUSY} to $M_A \to \Delta \hat{\Sigma}_{11}, \Delta \hat{\Sigma}_{12}, \Delta \hat{\Sigma}_{22}, e.g.$

$$
\Delta \hat{\Sigma}_{11} = \left[M_A^2 s_\beta^2 + v^2 \left(3\lambda_1 c_\beta^2 + (\lambda_3 + \lambda_4 + \lambda_5) s_\beta^2 + 6\lambda_6 s_\beta c_\beta \right) \right]_{Q=M_A}
$$

− subtraction terms

► Running from M_A to $M_t \to \Delta \hat{\Sigma}_{22} = \lambda(m_t) v^2 / c_{\alpha}^2$ (as done for $M_A = M_{\text{SUSY}}$)

Matching to fixed order calculation II

Normalization of Higgs doublets

MSSM and THDM Higgs doublets have not the same normalization

 \triangleright LSZ theorem yields (at the 1L level)

$$
\begin{pmatrix} \Phi_1^{\text{THDM}} \\ \Phi_2^{\text{THDM}} \end{pmatrix} = \underbrace{\begin{pmatrix} 1+\frac{1}{2}\Delta\Sigma'_{11} & \frac{1}{2}\Delta\Sigma'_{12} \\ \frac{1}{2}\Delta\Sigma'_{12} & 1+\frac{1}{2}\Delta\Sigma'_{22} \end{pmatrix}}_{=\textit{U}_{\Delta\Phi}} \begin{pmatrix} \Phi_1^{\text{MSSM}} \\ \Phi_2^{\text{MSSM}} \end{pmatrix}
$$

with
$$
\Delta \Sigma'_{ij} = \Sigma^{\text{MSSM}}_{ij} - \Sigma^{\text{THDM}}_{ij}
$$

\n $\Rightarrow \Delta^{\text{-1}}_{\text{MSSM}}(p^2) = U^T_{\Delta \Phi} \Delta^{\text{-1}}_{\text{THDM}}(p^2) U_{\Delta \Phi}$

• pole masses do not depend on absolute field normalization \rightarrow not important for pure EFT calculation

[Intro](#page-1-0) [Impr. of EFT calc.](#page-8-0) [Comp. to pure EFT code](#page-11-0) [Low](#page-22-0) *M[A](#page-29-0)* [Conclusion & Outlook](#page-36-0)

Matching to fixed order calculation III

Hybrid calculation in FeynHiggs:

$$
\begin{split} &\Delta_{\text{FH}}^{-1}(p^2) = \\ &= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\text{FO}}(p^2) + \Delta \Sigma_{hh}^{\text{logs}} & \hat{\Sigma}_{hH}^{\text{FO}}(p^2) + \Delta \Sigma_{hH}^{\text{logs}} \\ \hat{\Sigma}_{hH}^{\text{FO}}(p^2) + \Delta \Sigma_{hH}^{\text{logs}} & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{\text{FO}}(p^2) + \Delta \Sigma_{HH}^{\text{logs}} \end{pmatrix} \end{split}
$$

with $\Delta \Sigma_{ij}^{\text{logs}} = \Sigma_{ij}^{\text{EFT}} - \Sigma_{ij}^{\text{sub}}$

"Relative" normalization important for

- ▶ correct merging of EFT result (THDM normalization) with fixed order result (MSSM renormalization)
- \triangleright calculation of 1L and 2L subtraction terms

[Intro](#page-1-0) [Impr. of EFT calc.](#page-8-0) [Comp. to pure EFT code](#page-11-0) $\overline{Low M_A}$ $\overline{Low M_A}$ $\overline{Low M_A}$ $\overline{Low M_A}$ $\overline{Low M_A}$ [Conclusion & Outlook](#page-36-0) 00000000 000 000000000 00

Matching to fixed order calculation IV

How to implement different normalization? \rightarrow finite field normalization in fixed-order calculation

$$
\begin{aligned}\n\left(\begin{matrix} \Phi_1\\ \Phi_2 \end{matrix}\right) &\rightarrow \left(\begin{matrix} 1+\frac{1}{2}\delta^{(1)}Z_{11}+\frac{1}{2}\Delta^{(2)}Z_{11}&\frac{1}{2}\delta^{(1)}Z_{12}+\frac{1}{2}\Delta^{(2)}Z_{12}\\ \frac{1}{2}\delta^{(1)}Z_{12}+\frac{1}{2}\Delta^{(2)}Z_{12}&1+\frac{1}{2}\delta^{(1)}Z_{22}+\frac{1}{2}\Delta^{(2)}Z_{22}\end{matrix}\right)\left(\begin{matrix} \Phi_1\\ \Phi_2\end{matrix}\right),\\ \Delta Z_{ij} &\sigma^{(2)}Z_{ij}-\frac{1}{4}\left(\delta^{(1)}Z_{ij}\right)^2\n\end{aligned}
$$

\n- choose
$$
\delta^{(1)}Z_{ij}\big|_{\text{fin}} = \Delta \Sigma'_{ij}
$$
\n- $\delta^{(2)}Z_{ij}$ drops out completely
\n- \rightarrow 2L relation between Φ^{MSSM} and Φ^{THDM} not needed
\n- \rightarrow definition of $\tan \beta$ is changed
\n- $t_{\beta}^{\text{MSSM}}(M_t) \xrightarrow{\delta Z}\big|_{\text{fin}_{\succ}} t_{\beta}^{\text{THDM}}(M_A)$
\n

Results I: *M^A* scan

Results II: tan *β* scan

[Intro](#page-1-0) [Impr. of EFT calc.](#page-8-0) [Comp. to pure EFT code](#page-11-0) $\begin{array}{ccc} Low\ M_A & Conclusion\ \&\ Outlook\ \no). \end{array}$ $\begin{array}{ccc} Low\ M_A & Conclusion\ \&\ Outlook\ \no). \end{array}$ $\begin{array}{ccc} Low\ M_A & Conclusion\ \&\ Outlook\ \no). \end{array}$ $\begin{array}{ccc} Low\ M_A & Conclusion\ \&\ Outlook\ \no). \end{array}$ $\begin{array}{ccc} Low\ M_A & Conclusion\ \&\ Outlook\ \no). \end{array}$

Results III: low-tanb-high scenario (DR)

 $\mu = 1.5$ TeV, $M_2 = 2$ TeV, $A_{b...} = 2$ TeV, M_{SUSY} and X_t chosen to get $M_h = 125$ GeV

Results IV: shift in low-tanb-high scenario (DR)

 \rightarrow need to define new benchmark scenario (LHCHXSWG)

Results for *M^H* I

How important is the eff. THDM, when *H* plays role of SM Higgs?

[Intro](#page-1-0) [Impr. of EFT calc.](#page-8-0) [Comp. to pure EFT code](#page-11-0) $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$ $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$ $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$ $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$ $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$ $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$ $\begin{array}{cc} Low M_A & Conclusion & Outlook \\ 0000000 & 000 & 0000000000 \end{array}$

Results for *M^H* II

 \rightarrow negligible in these scenarios

Conclusion

- \triangleright SM-like Higgs mass is an important constraint on MSSM parameter space
- \triangleright To gain precise prediction for all SUSY scales, we combined
	- state-of-the-art fixed-order calculation
	- state-of-the-art EFT calculation
- \triangleright Optional $\overline{\text{DR}}$ renorm. and improved pole determination
	- \rightarrow excellent agreement of FeynHiggs with pure EFT codes found for high scales
- \triangleright For low M_A , implemented effective THDM as EFT \rightarrow Large numerical effects

⇓

For multi-scale scenarios, proper EFT treatment is essential

Outlook

- If For each hierarchy the same steps are always repeated:
	- define EFTs
	- calculate RGEs and threshold corrections
	- merge with diagrammatic calculation (calculate subtraction terms)
	- \rightarrow automatizing these steps would allow for a precise predicition for arbitrary hierarchies
- application to other observable and models

[Appendix](#page-38-0)
000000000

Need to determine poles of inverse propagator matrix

$$
\Delta^{-1}(p^2) =
$$
\n
$$
= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{(1)}(p^2) + \hat{\Sigma}_{hh}^{(2)}(0) & \hat{\Sigma}_{hH}^{(1)}(p^2) + \hat{\Sigma}_{hH}^{(2)}(0) \\ \hat{\Sigma}_{hH}^{(1)}(p^2) + \hat{\Sigma}_{hH}^{(2)}(0) & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{(1)}(p^2) + \hat{\Sigma}_{HH}^{(2)}(0) \end{pmatrix}
$$

At 1L level $M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) \rightarrow$ expand around 1L solution ⇒ determine poles of

$$
\Delta_{hh}^{-1}(p^2) = p^2 - m_h^2 + \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \hat{\Sigma}_{hh}^{(2)}(0) - \left[\hat{\Sigma}_{hh}^{(1)'}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0}
$$

\n
$$
\Delta_{hH}^{-1}(p^2) = + \hat{\Sigma}_{hH}^{(1)}(m_h^2) + \hat{\Sigma}_{hH}^{(2)}(0) - \left[\hat{\Sigma}_{hH}^{(1)'}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0}
$$

\n
$$
\Delta_{HH}^{-1}(p^2) = p^2 - m_H^2 + \hat{\Sigma}_{HH}^{(1)}(m_h^2) + \hat{\Sigma}_{HH}^{(2)}(0) - \left[\hat{\Sigma}_{HH}^{(1)'}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g_Y=0}
$$

For determination of M_H expand around $M_H^2 = m_H^2 - \hat{\Sigma}_{HH}^{(1)}(m_H^2)$

[Appendix](#page-38-0)
000000000

[Appendix](#page-38-0)
000000000

Effective Lagrangians

$$
\mathcal{L}_{\text{THDM}} = \dots - V_{\text{THDM}}(H_u, H_d) - h_t \epsilon_{ij} \bar{t}_R Q_L^i H_u^j - h_t' \bar{t}_R Q_L H_d
$$

\n
$$
\rightarrow 12 \text{ effective couplings } (\lambda_{1..7}, h_t, h_t')
$$

$$
\mathcal{L}_{\text{THDM+EWinos}} = ... - \frac{1}{\sqrt{2}} H_u^{\dagger} \left(\hat{g}_{2uu} \sigma^a \tilde{W}^a + \hat{g}_{1uu} \tilde{B} \right) \tilde{\mathcal{H}}_u \n- \frac{1}{\sqrt{2}} H_d^{\dagger} \left(\hat{g}_{2dd} \sigma^a \tilde{W}^a - \hat{g}_{1dd} \tilde{B} \right) \tilde{\mathcal{H}}_d \n- \frac{1}{\sqrt{2}} (-i H_d^T \sigma_2) \left(\hat{g}_{2du} \sigma^a \tilde{W}^a + \hat{g}_{1du} \tilde{B} \right) \tilde{\mathcal{H}}_u \n- \frac{1}{\sqrt{2}} (-i H_u^T \sigma_2) \left(\hat{g}_{2ud} \sigma^a \tilde{W}^a - \hat{g}_{1ud} \tilde{B} \right) \tilde{\mathcal{H}}_d \n+ h.c. - V_{\text{THDM}} (H_u, H_d),
$$

 \rightarrow 20 effective couplings

[Appendix](#page-38-0)
000000000

