Resummation for low M_A & uncertainty estimates

Henning Bahl

Max-Planck-Institut für Physik, München

KUTS workshop 25.1.2018, Paris

Intro - low M_A	Low M_A	Low M_A - benchmarks		

Introduction low M_A

Low M_A

Low M_A benchmark scenarios

Introduction - Uncertainty estimate

Uncertainty estimate

Conclusion

Low M_A : Current status

Resummation routines built into FH assume $M_A = M_{\text{SUSY}}$ \rightarrow what if $M_{\text{SUSY}} \gg M_t$ but $M_A \sim M_t$?

- ▶ Need to consider effective THDM for correct resummation
- \blacktriangleright Haber & Hempfling (1993), Lee & Wagner (2015), ...

Low-tanb-high scenario

 μ = 1.5 TeV, M_2 = 2 TeV, $A_{b,\ldots}$ = 2 TeV, $M_{\rm SUSY}$ and X_t chosen to get M_h = 125 GeV

EFTs for low M_A

 $M_{\rm SUSY}, M_{\chi}$ — $M_{\rm SUSY}$ — $M_{\rm SUSY}$ — $M_{\rm SUSY}$ THDM+EWinos THDM THDM+EWinos *M*_A------SM+EWinos THDM *M*_x------*M*_A------SMSMSM *M_t*_____ *M_t*_____ *M_t*_____

+ gluino threshold (not shown), $M_{\chi} \sim M_1, M_2, \mu$

EFT calculation

- ▶ all possible hierarchies taken into account
 - THDM type III $\rightarrow 12$ effective couplings $(\lambda_{1..7}, h_t, h'_t)$
 - THDM type III + EWinos \rightarrow 20 effective couplings $(\lambda_{1..7}, h_t, h'_t$ + gaugino-Higgsino-Higgs couplings)
- ▶ full 2L running for all effective couplings (RGEs via SARAH)
- ▶ full 1L threshold corrections for all effective couplings
- $\mathcal{O}(\alpha_s \alpha_t)$ threshold corrections for λ_i 's

Matching to fixed order calculation

• Running from M_{SUSY} to $M_A \to \Delta \hat{\Sigma}_{11}, \Delta \hat{\Sigma}_{12}, \Delta \hat{\Sigma}_{22}$, e.g.

$$\Delta \hat{\Sigma}_{11} = \left[M_A^2 s_\beta^2 + v^2 \left(3\lambda_1 c_\beta^2 + (\lambda_3 + \lambda_4 + \lambda_5) s_\beta^2 + 6\lambda_6 s_\beta c_\beta \right) \right]_{Q=M_A}$$

– subtraction terms

► Running from M_A to $M_t \to \Delta \hat{\Sigma}_{22} = \lambda(m_t) v^2 / c_{\alpha}^2$ (as done for $M_A = M_{\text{SUSY}}$)

Matching to fixed order calculation II

Normalization of Higgs doublets

MSSM and THDM Higgs doublets have not the same normalization

▶ LSZ theorem yields (at the 1L level)

$$\begin{pmatrix} \Phi_1^{\text{THDM}} \\ \Phi_2^{\text{THDM}} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 + \frac{1}{2}\Delta\Sigma'_{11} & \frac{1}{2}\Delta\Sigma'_{12} \\ \frac{1}{2}\Delta\Sigma'_{12} & 1 + \frac{1}{2}\Delta\Sigma'_{22} \end{pmatrix}}_{=U_{\Delta\Phi}} \begin{pmatrix} \Phi_1^{\text{MSSM}} \\ \Phi_2^{\text{MSSM}} \end{pmatrix}$$

with $\Delta \Sigma'_{ij} = \Sigma^{\rm MSSM\prime}_{ij} - \Sigma^{\rm THDM\prime}_{ij}$

$$\Rightarrow \Delta_{\mathrm{MSSM}}^{-1}(p^2) = U_{\Delta\Phi}^T \Delta_{\mathrm{THDM}}^{-1}(p^2) U_{\Delta\Phi}$$

▶ pole masses do not depend on absolute field normalization → not important for pure EFT calculation

Matching to fixed order calculation III

Hybrid calculation in FeynHiggs:

$$\begin{split} \Delta_{\mathrm{FH}}^{-1}(p^2) &= \\ &= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hh}^{\mathrm{logs}} & \hat{\Sigma}_{hH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hH}^{\mathrm{logs}} \\ \hat{\Sigma}_{hH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{hH}^{\mathrm{logs}} & p^2 - m_H^2 + \hat{\Sigma}_{HH}^{\mathrm{FO}}(p^2) + \Delta \Sigma_{HH}^{\mathrm{logs}} \end{pmatrix} \end{split}$$

with $\Delta \Sigma_{ij}^{\text{logs}} = \Sigma_{ij}^{\text{EFT}} - \Sigma_{ij}^{\text{sub}}$

"Relative" normalization important for

- correct merging of EFT result (THDM normalization) with fixed order result (MSSM renormalization)
- calculation of 1L and 2L subtraction terms

Matching to fixed order calculation IV

How to implement different normalization? \rightarrow finite field normalization in fixed-order calculation

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 + \frac{1}{2}\delta^{(1)}Z_{11} + \frac{1}{2}\Delta^{(2)}Z_{11} & \frac{1}{2}\delta^{(1)}Z_{12} + \frac{1}{2}\Delta^{(2)}Z_{12} \\ \frac{1}{2}\delta^{(1)}Z_{12} + \frac{1}{2}\Delta^{(2)}Z_{12} & 1 + \frac{1}{2}\delta^{(1)}Z_{22} + \frac{1}{2}\Delta^{(2)}Z_{22} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix},$$

$$\Delta Z_{ij} = \delta^{(2)}Z_{ij} - \frac{1}{4}\left(\delta^{(1)}Z_{ij}\right)^2$$

• choose
$$\delta^{(1)} Z_{ij} \big|_{\text{fin}} = \Delta \Sigma'_{ij}$$

► $\delta^{(2)}Z_{ij}$ drops out completely → 2L relation between Φ^{MSSM} and Φ^{THDM} not needed

Affect on
$$\tan \beta$$

 $\delta^{(1)}t_{\beta} = \frac{1}{2}t_{\beta} \left(\delta Z_{22}^{(1)} - \delta Z_{11}^{(1)}\right) + \frac{1}{2} \left(1 - t_{\beta}^2\right) \delta Z_{12}^{(1)}$

- finite field normalization changes definition of t_{β}
- ▶ renormalization scale of fixed-order calculation by default chosen to be M_t
- scale of THDM $\rightarrow M_A$

$$\begin{split} t_{\beta}^{\text{MSSM}}(M_t) &= t_{\beta}^{\text{THDM}}(M_A) \cdot \\ & \cdot \left[1 - \frac{y_t^2}{(4\pi)^2 s_{\beta}^2} \left(\frac{3}{2} \ln \frac{M_A^2}{M_t^2} + \frac{1}{4} (\hat{A}_t - \hat{\mu}/t_{\beta}) (\hat{A}_t + \hat{\mu}t_{\beta}) \right) \right] \end{split}$$

Comparison with FH w/o eff. THDM: $\tan \beta$ scan

Comparison with FH w/o eff. THDM: M_A scan

Comparison with FH w/o eff. THDM: $X_t^{\overline{\text{DR}}}$ scan

Comparison with MhEFT: M_A scan

Comparison with MhEFT: $X_t^{\overline{\text{DR}}}$ scan

Differences observed in Lee & Wagner?

- ▶ In FH 2.10.2 log resummation was not very advanced (no EW contributions, no NNLL, ...).
- Resummation assumed $M_A = M_{Susy}$
- ► Lee & Wagner used OS parameters as input, but set $M_A = M_{\text{SUSY}}$ in conversion

$$\begin{split} X_t^{\overline{\mathrm{DR}}}(M_{\mathrm{SUSY}}) &= X_t^{\mathrm{OS}} \Bigg\{ 1 + \left[\frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} \left(1 - \hat{X}_t^2 \right) \right] \ln \frac{M_{\mathrm{SUSY}}^2}{M_t^2} \\ &- \frac{3}{16\pi} \frac{\alpha_t}{t_\beta^2} \left(1 - \hat{Y}_t^2 \right) \ln \frac{M_{\mathrm{SUSY}}^2}{M_A^2} \\ &+ \ldots \Bigg\} \end{split}$$

low-tanb-high scenario

LHCHXSWG benchmark scenario defined by

$$\hat{X}_t^{\text{OS}} = \begin{cases} 2 & \tan\beta \le 2 \\ 0.0375 \tan^2 \beta - 0.7 \tan \beta + 3.25 & 2 < \tan \beta \le 8.6 \\ 0 & 8.6 < \tan \beta \end{cases}$$

•
$$\mu = 1.5 \text{ TeV}, M_2 = 2 \text{ TeV}, M_1 \approx 0.5 M_2, M_3 = M_{\text{SUSY}}$$

•
$$A_{b,c,s,u,d} = 2$$
 TeV

- $M_{\rm SUSY}$ chosen such that $M_h \sim 125 \text{ GeV}$ (and $M_{\rm SUSY} \lesssim 100 \text{ TeV}$)
- defined using using FH 2.10.4

low-tanb-high scenario (\overline{DR})

 \Rightarrow need to define new benchmark scenario

new proposal (a)

$$\hat{X}_t^{\overline{\mathrm{DR}}} = \begin{cases} \sqrt{6} & \tan\beta \leq 3\\ \frac{\sqrt{6}}{49}(\tan\beta - 10) & 3 < \tan\beta \leq 10\\ 0 & 10 < \tan\beta \end{cases}$$

► $\mu = 300 \text{ GeV}, M_2 = 600 \text{ GeV}, M_1 \approx 0.5M_2, M_3 = M_{\text{SUSY}}$

•
$$A_{b,c,s,u,d} = 0$$
 TeV

- $M_{\rm SUSY}$ chosen such that $M_h \sim 125 \text{ GeV}$ (and $M_{\rm SUSY} \lesssim 10^{16} \text{ GeV}$)
- \blacktriangleright defined at the moment by using using FH with eff. THDM and <code>MhEFT</code>

Intro - low M_A	Low M_A	Low M_A - benchmarks		Conclusion
		000000		

new proposal (a)

new proposal (b)

- $\blacktriangleright \ A_t^{\overline{\mathrm{DR}}} = 0$
- $\mu = 300 \text{ GeV}, \ M_2 = 600 \text{ GeV}, \ M_1 \approx 0.5 M_2, \ M_3 = 3 \text{ TeV}$
- $A_{b,c,s,u,d} = 0$ TeV
- $M_{\rm SUSY}$ chosen such that $M_h \sim 125$ GeV (and $M_{\rm SUSY} \lesssim 10^{16}$ GeV)
- \blacktriangleright defined at the moment by using using FH with eff. THDM and MhEFT

Intro - low M_A	Low M_A	Low M_A - benchmarks		Conclusion
		00000		

new proposal (b)

Uncertainties - status up to now

FeynHiggs

- ▶ variation of renormalization scale between $M_t/2$ and $2M_t$
- change of renormalization scheme; switch between OS top mass and SM MS top mass
- ► deactivating the resummation of bottom Yukawa coupling SUSYHD
 - ▶ variation of matching scale between $M_{\rm SUSY}/2$ and $2M_{\rm SUSY}$
 - switching between NNLO and NNNLO top Yukawa coupling
 - estimate of suppressed terms, $\mathcal{O}(M_t/M_{\rm SUSY})$

Discussion so far restricted to single scale scenario $(\tan \beta = 10)$

tro - low M_A Low M_A Low M_A - benchmarks Intro - unc. Uncertainty estimate Conclusion

Last KUTS: tons of discussions about

FeynHiggs: different contributions for $\hat{X}_t^{\overline{\text{DR}}} = \sqrt{6}$

Uncertainty estimate

00000

Missing piece in FeynHiggs

No estimate of logarithmic uncertainty so far

- ▶ $g(M_{\text{SUSY}})$ typically decreases with rising M_{SUSY}
- logarithms increase
- $g(M_t)$ stays constant

compensation between logarithms and non-logarithmic piece not taken into account in FeynHiggs

One idea under discussion: Build upon uncertainty estimate of pure EFT calculation

Uncertainty based on EFT estimate

Estimate uncertainty in two step procedure:

- 1. uncertainty of EFT calculation
 - change between $y_t^{\overline{\text{MS}},2\text{L}} \leftrightarrow y_t^{\overline{\text{MS}},3\text{L}}$
 - variation of matching scale between $M_{\rm SUSY}/2$ and $2M_{\rm SUSY}$
 - reparametrization of threshold in terms of MSSM couplings
- 2. uncertainty of suppressed terms and SM contributions
 - change of renormalization scheme; switch between OS top mass and SM $\overline{\rm MS}$ top mass
 - deactivating the resummation of bottom Yukawa coupling

Uncertainty based on EFT estimate for $\hat{X}_t^{\overline{\text{DR}}} = \sqrt{6}$

Comparison to SUSYHD

solid: $X_t^{\overline{\rm DR}}=0;$ dashed: $X_t^{\overline{\rm DR}}/M_{\rm SUSY}=\sqrt{6}$

Conclusion

Low M_A scenario:

- ▶ upcoming extension of FH with effective THDM
- ▶ important to take different normalizations of Higgs doublets into account
- ▶ eff. THDM only relevant for very low $\tan \beta$
- ▶ time to update low-tanb-high scenario

Uncertainty estimate:

- \blacktriangleright no estimate of logarithmic uncertainty in FH so far
- compensation between logarithmic and non-logarithmic terms leads to reduce uncertainty

Matching to fixed order calculation V

$$\begin{split} \hat{\Sigma}_{hh}^{(2)}(0)\Big|_{\delta Z} &= \Sigma_{hh}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z} - \frac{e}{2s_W M_W} \left(T_h^{(2),\mathrm{sub}}\Big|_{\delta Z} + \frac{1}{2}s_\beta^2 T_h^{(1)}\delta^{(1)} Z_{hh}\right) \\ \hat{\Sigma}_{hH}^{(2)}(0)\Big|_{\delta Z} &= \Sigma_{hH}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z} - \frac{e}{2s_W M_W} \left(T_H^{(2),\mathrm{sub}}\Big|_{\delta Z} + \frac{1}{2}s_\beta^2 T_H^{(1)}\delta^{(1)} Z_{hh}\right) \\ \hat{\Sigma}_{HH}^{(2)}(0)\Big|_{\delta Z} &= \Sigma_{HH}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z} - \Sigma_{AA}^{(2),\mathrm{sub}}(0)\Big|_{\delta Z}, \end{split}$$

Results for M_H : tan β scan

Results for M_H : M_A scan

Comparison with MhEFT: $\tan\beta$ scan

Appendix 00000000

Influence of low M_A on extraction of top Yukawa coupling

Results for M_H : tan β scan

Results for M_H : M_A scan

shift in low-tanb-high scenario (\overline{DR})

