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MSSM Higgs sector

I In the MSSM, we have at 5 physical Higgs bosons.
I tree-level mass eigenstates

(obtained via diagonalization of mass matrices):
• CP-even h and H
• CP-odd A
• charged H±

I loop corrections lead to mixing between h and H
and A in case of CP-violation (and Goldstone boson G0)
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How to we determine the Higgs pole masses?

1. Calculate Higgs self-energies

→ most work intensive

2. Construct inverse Higgs propagator matrix

→ trivial

3. Find poles of inverse propagator matrix

→ straightforward??
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1. Calculate Higgs self-energies

Hybrid approach of FeynHiggs:

Σ̂ij(p2) = Σ̂(1)
ij (p2) + Σ̂(2)

ij (0)
∣∣
g=g’=0 + higher-order logs

I 1L and 2L self-energies obtained in diagrammatic
fixed-order approach

I approximation of vanishing electroweak gauge couplings
and external momentum @ 2L
(p2 6= 0 can be included for QCD corrections)

I large logarithms resummed in EFT approach
(full LL+NLL, O(αs, αt) NNLL)
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2. Construct inverse Higgs propagator matrix

i∆−1
hH(p2) =

(
p2 −m2

h + Σ̂hh(p2) Σ̂hH(p2)
Σ̂hH(p2) p2 −m2

H + Σ̂HH(p2)

)

General remarks:
I Discussion here restricted to 2× 2 mixing between CP even

states h and H
(but also applies for 3× 3 mixing)

I Pole masses labelled by Mh1 ≤Mh2(≤Mh3)
I Mh → h-like state, MH → H-like state
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3. Find poles of inverse propagator matrix

Have to solve

det
(
∆−1

hH(p2)
)

= 0

How to solve this equation?
1. Numerical determination
2. Fixed-order determination
3. Numerical determination with finite field renormalization
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Numerical pole determination

I Conceptionally very easy
I “Just” have to employ numerical algorithm

Solutions:

M2
h1

= m2
h − Σ̂(1)

hh (m2
h)− Σ̂(2)

hh (0)
∣∣
g=g’=0

+ Σ̂(1)′
hh (m2

h)Σ̂(1)
hh (m2

h) +

(
Σ̂(1)

hH(m2
h)
)2

m2
h −m2

H

+ . . .

M2
h2

determined by same equation with (h↔ H)
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Problems of numerical pole determination

For MSUSY �Mt, we have

Σ̂(1) = Σ̂(1),SM + Σ̂(1),nonSM

Comparison between EFT and hybrid approach showed
I Σ̂(1),nonSM′

hh (m2
h)Σ̂(1)

hh (m2
h) is cancelled by parts of subloop

renormalization contained in Σ̂(2)
hh (0)

∣∣
g=g’=0

I cancellation incomplete, since terms are included at
different orders of accuracy

I similar incomplete cancellation at higher orders

→ easy to solve in decoupling limit, but what’s for low MA?
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First proposed solution: Fixed-order determination

Determination of h-like state:
1. Expand i∆−1

hH around 1L solution(
M

(1)
h

)2
= m2

h − Σ̂(1)
hh (m2

h)
2. Get eigenvalues of expanded matrix(

i∆−1,h−exp
hH (p2)

)
jk

= (p2 −m2
j )δjk + Σ̂(1)

jk (m2
h) + Σ̂(2)

jk (0) + ∆logs
jk

−
[
Σ̂(1)′

jk (m2
h)Σ̂(1)

hh (m2
h)
]

g=g’=0
,

3. Pick h-like eigenvalue corresponding to
M2

h = m2
h − Σ̂(1)

hh (m2
h) + . . .

other eigenvalue would be m2
H − Σ̂(1)

HH
(m2

h
) + . . .

Determination of H-like state analogously, just have to h↔ H
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Assement of the numerical pole determination

I brought hybrid and EFT approach to much better
agreement

I faster since no numerical pole search is required

→ everything fine?
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But: MH125 scenario

I new benchmark scenario under development in the
LHCHXSWG

I parameters:

MSUSY = 2 TeV, MQ̃3
= MŨ3

= 700 GeV,
µ = 6 TeV, M1 = 675 GeV, M2 = 1 TeV, M3 = 2.5 TeV,
At = 450 GeV, Ab,c,s,u,d = 0.

I scan over MH± and tan β

Mh2 is suppossed to play role of SM-like Higgs boson
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But: MH125 scenario
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What’s going on?
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Solid lines: “right” solutions; dashed lines: “wrong” solutions
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Assement of the fixed-order pole determination

I Algorithm works as wanted
I 2L truncation, however, introduces “unphysical” jumps
I Could be associated with high theoretical uncertainty

→ Still unsatisfying, can we find better method?
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What is the origin of the observed cancellation?

I uncancelled terms originate from p2 dependence of
non-SM contributions to 1L self-energies

Σ̂(p2) = Σ(p2) + δZ (p2 −m2)− δm2 =
= ΣnonSM(p2) + ΣSM(p2)

+ δZ (p2 −m2)− δm2 +O(v/MSUSY) =

= ΣnonSM(m2) +
(
ΣnonSM′(m2) + δZ

)
(p2 −m2)

+ ΣSM(p2)− δm2 +O(v/MSUSY)

I higher derivatives of Σ̂nonSM suppressed by v/MSUSY

→ p2 dep. of “heavy” contributions ∼ field (re)normalization
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Change of field normalization
Field (re)normalization
Should drop out if calculating physical observables order by
order!

Prevent numerical det. from inducing terms ∝ Σ̂nonSM′(m2) by:
I chosing δZ = −Σ̂nonSM′(m2), i.e.:

δ(1)Zhh = −Σ̂nonSM′
hh (0)

δ(1)ZhH = −Σ̂nonSM′
hH (0)

...

I can be evaluated at arbitrary momentum �MSUSY
I evaluating at zero convenient
→ no unphysical thresholds are introduced
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MH125 scenario
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Comparison to other methods

Compare in the limit MA �Mt:
I numerical pole determination:

M2
h1 = . . .+ Σ̂(1)′

hh (m2
h)Σ̂hh(m2

h) + . . .

I fixed-order determination:

M2
h1 = . . .+

[
Σ̂SM,(1)′

hh (m2
h)Σ̂(1)

hh (m2
h)
]

g=g’=0
+ . . .

I numerical pole determination with finite field
renormalization:

M2
h1 = . . .+ Σ̂SM,(1)′

hh (m2
h)Σ̂hh(m2

h) + . . .
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Implications for high-scale scenario
all SUSY particles at common scale MSUSY, tan β = 10. Solid: XDR
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Implications for high-scale scenario
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Further implications

Definition of tan β:
I finite field renormalization affects definition of tan β:

tan βMSSM(µR)→ tan βTHDM(Mt)
I prevent this by introducing independent finite tan β

counterterm
I also have to introduce finite counterterms for

mixing angles α, βn, βc

Z matrix connecting physical and tree-level mass states:
I definition would change from MSSM to THDM
I prevent this by using numerical pole determination without

finite field renormalization for Z matrix
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Further implications - scale variation
all SUSY particles at common scale MSUSY, tan β = 4. Solid: XDR

t = 0; dashed: XDR
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Compared three different methods to determine Higgs pole
masses:
1. Numerial pole determination:

• Conceptionally easy 3
• Incomplete cancellation of higher order

“field-normalization-like” terms 7

2. Fixed-order pole determination:
• Complete cancellation 3
• Can lead to jumps in Higgs mass predictions 7

3. Numerial pole det. with finite field renormalization:
• Complete cancellation 3
• No jumps 3
• Better agreement with pure EFT calculations for high

scales 3
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