Precise prediction of MSSM Higgs boson masses combining fixed-order and effective field theory calculations

Henning Bahl

PhD defense 21.9.2018, Garching Current situation:

 Higgs discovery at LHC fixed last free parameter of the Standard Model (SM),

 $M_h = 125.08 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{sys.}) \text{GeV}$

- However still open questions which can not be solved within the SM
 - \rightarrow Need beyond SM physics
- ▶ No direct evidence for beyond SM physics at LHC so far

Beyond SM models constrained by

- Direct searches
- ▶ Indirect constraints \rightarrow precision observables

One of the most common models of beyond the SM physics Minimal Supersymmetric Standard Model

- Builds upon the concept of Supersymmetry (SUSY) relating bosons and fermions
- ▶ Each SM particle is associated with a superpartner
- Superpartner has same couplings but its spin is shift by 1/2

MSSM Higgs sector: 2 Higgs doublets

- Corresponds to a type II Two-Higgs-doublet model (THDM)
- Two Higgs doublets results in five physical Higgs states:
 CP-even: h, H; CP-odd: A; Charged: H[±]
- SUSY reduces Higgs potential parameters to 2 non-SM parameters (M_A and $\tan \beta = v_2/v_1$)

SM-like Higgs mass	Comp. to EFT approach	Low M_A	
00000			

Special feature of MSSM

Mass of lightest CP-even Higgs M_h is calculable in terms of model parameters \Rightarrow can be used as a precision observable

- \blacktriangleright At tree-level $M_h^2 \simeq M_Z^2 \cos(2\beta)^2 \leq M_Z^2$
- M_h is however heavily affected by loop corrections (up to ~ 100%)
- \rightarrow Higher order calculations are essential

Two standard approaches:

- ► Fixed-order techniques
- ► Effective field theories

Fixed-order approach

Calculate Higgs self-energy diagrams:

Status: full 1L, $\mathcal{O}(\alpha_s(\alpha_b + \alpha_t), (\alpha_b + \alpha_t)^2)$ 2L, partial 3L

- \rightarrow Precise for low SUSY scales \checkmark
- But: For high scales large logarithms appear, $\ln(M_{\rm SUSY}/M_t)$, spoiling convergence of perturbative expansion \checkmark

EFT calculation

- \blacktriangleright Integrate out all SUSY particles \rightarrow SM as EFT
- ► Higgs self-coupling fixed at matching scale $\lambda(M_{\rm SUSY}) = \frac{1}{4}(g^2 + g_y^2)\cos^2 2\beta + \dots$
- $\blacktriangleright\,$ Run λ down to electroweak scale using SM RGEs

► Calculate Higgs mass in effective SM: $M_h^2 = 2\lambda(M_t)v^2 + ...$ Status: full LL+NLL, $\mathcal{O}(\alpha_s, \alpha_t, \alpha_b)$ NNLL

 \rightarrow Precise for high SUSY scales (logarithms resummed) \checkmark

But: Inaccurate for low scales (misses $\mathcal{O}(M_t/M_{\rm SUSY})$ terms) \checkmark

How to deal with intermediary SUSY scales?

► For superpartners in the LHC range, both large logarithms and $\mathcal{O}(M_t/M_{\rm SUSY})$ terms might be relevant

Hybrid approach

Combine both approaches to get precise results for both regimes

- First calculation based on existing state-of-the-art fixed-order result:
 - $\mathcal{O}(\alpha_s, \alpha_t)$ LL and NLL resummation [Hahn et. al. (2013)]
 - Implemented into public code FeynHiggs

Hybrid approach

- 1. Calculate diagrammatic fixed-order self-energies, e.g. $\hat{\Sigma}_{hh}$
- 2. Calculate EFT result $2\lambda(M_t)v^2$
- 3. Add non-logarithmic terms contained in fixed-order result and the logarithms contained in EFT result

$$\hat{\Sigma}_{hh} \longrightarrow \hat{\Sigma}_{hh} + \Delta_{hh}^{\rm EFT}$$

with

$$\Delta_{hh}^{\rm EFT} = -\left[\hat{\Sigma}_{hh}\right]_{\rm log} - \left[2v^2\lambda(M_t)\right]_{\rm log}$$

Additional complication:

Fixed-order calculation uses mixed OS/ $\overline{\text{DR}}$ scheme, for EFT calculation however $\overline{\text{DR}}$ parameters needed (i.e. $X_t^{\overline{\text{DR}}}$)

 \rightarrow 1L log only conversion of X_t sufficient

Improvement of EFT calculation

▶ Inclusion of electroweak contributions

- Included at the LL+NLL level (full SM 2L RGEs, full 1L threshold corrections)
- Include electroweak 1L corrections to SM $\overline{\text{MS}}$ top mass, used in the fixed-order calculation
- ▶ Separate thresholds for EWinos and gluino
- ▶ Inclusion of $\mathcal{O}(\alpha_s, \alpha_t)$ NNLL resummation
 - 2L threshold correction for λ , 3L RGEs

Example result – Inclusion of NNLL resummation

Same logarithmic accuracy as pure EFT calculations

Comparison to pure EFT calculations

For large SUSY scales, suppressed terms are negligible \Rightarrow Expect to see agreement with EFT codes for high scales

✗ Large discrepancies could be observed

Two main origins found:

- $\blacktriangleright \ \overline{\mathrm{DR}} \leftrightarrow \mathrm{OS} \ \mathrm{conversion}$
- Determination of Higgs propagator pole

Focus on single scale scenario: $\tan \beta = 10$, $M_A = M_{\chi} = M_{Susy}$

	Comp. to EFT approach $0 \bullet 00$	

Hybrid approach uses OS/\overline{DR} scheme \leftrightarrow EFT calculations \overline{DR}

 \rightarrow For comparison parameter conversion necessary

Especially relevant: stop mixing parameter X_t (large impact on Higgs mass, large logarithms in conversion)

Conversion:

- $\blacktriangleright X_t^{\overline{\mathrm{DR}}} \xrightarrow{1L} X_t^{\mathrm{OS}}$
- ▶ Forget about $X_t^{\overline{\text{DR}}}$, use X_t^{OS} as "new" input parameter

Problem: result contains resummed logarithms

- \rightarrow Conversion induces additional logarithms not present in a genuine $\overline{\rm DR}$ calculation
- \Rightarrow Implemented optional $\overline{\mathrm{DR}}$ ren. of fixed-order result

Pole mass determination

In the decoupling limit $M_A \gg M_t$, we have to solve

$$p^2 - m_h^2 + \hat{\Sigma}_{hh}(p^2) + \Delta_{hh}^{\text{EFT}} = 0$$

- Numerical solution induces terms beyond order of fixed-order calculation
- Part of these terms would cancel in a more complete calculation

Adapted determination of Higgs propagator pole to avoid these terms (truncate expansion around tree-level mass)

Comparison to SUSYHD as exemplary EFT code

[J.P. Vega, G. Villadoro]

 \longrightarrow Good agreement for $M_{\rm SUSY} > 1$ TeV

Resummation for low M_A

Assumption so far

Fermion superpartners and heavy Higgs bosons share common mass scale

In case of $M_A \ll M_{\rm SUSY}$, SM is not the right EFT anymore

↓ Low-energy THDM is needed for full resummation of $\ln(M_{\rm SUSY}/M_A)$

 $M_{\chi} = M_1 = M_2 = \mu;$ Additional freely variable gluino threshold not shown

EFT calculation

- ▶ All possible hierarchies taken into account
 - THDM type III \rightarrow 12 effective couplings $(\lambda_{1..7}, h_t, h'_t)$
 - THDM type III + EWinos \rightarrow 20 effective couplings $(\lambda_{1..7}, h_t, h'_t + \text{gaugino-Higgsino-Higgs couplings})$
- ▶ Full 2L running for all effective couplings (RGEs via SARAH)
- ▶ Full 1L threshold corrections for all effective couplings
- $\mathcal{O}(\alpha_s \alpha_t)$ threshold corrections for λ_i 's
- \rightarrow Most precise EFT calculation available

Combination with fixed-order calculation

 $\mathcal{CP}\text{-}\mathrm{even}$ Higgs masses are zeros of

$$\begin{aligned} \Delta_{\text{hybrid}}^{-1}(p^2) &= \\ &= \begin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}(p^2) + \Delta_{hh}^{\text{EFT}} & \hat{\Sigma}_{hH}(p^2) + \Delta_{hH}^{\text{EFT}} \\ \hat{\Sigma}_{hH}(p^2) + \Delta_{hH}^{\text{EFT}} & p^2 - m_H^2 + \hat{\Sigma}_{HH}(p^2) + \Delta_{HH}^{\text{EFT}} \end{pmatrix} \end{aligned}$$

with
$$\Delta_{ij}^{\text{EFT}} = \hat{\Sigma}_{ij}^{\text{EFT}} - \hat{\Sigma}_{ij}^{\text{sub}}$$

Important: "Relative" normalization of Higgs doublets

- Combination of EFT result (THDM normalization) with fixed order result (MSSM renormalization)
 → Implemented by means of finite field renormalization
- Calculation of 1L and 2L subtraction terms

Scan over M_A

Conclusion

- SM-like Higgs mass is an important constraint on MSSM parameter space
- ► Precise prediction for low and high SUSY scales → Combine fixed-order and EFT calculations
- ▶ Improved accuracy of EFT calculation
 - Full LL, NLL and $\mathcal{O}(\alpha_s, \alpha_t)$ NNLL corrections
 - Low-energy electroweakino and gluino thresholds
- ▶ Optional DR renorm. and improved pole determination
 → Good agreement with pure EFT codes found for high scales
- ▶ For low M_A , implemented effective THDM as EFT
- \rightarrow All results implemented into public code <code>FeynHiggs</code>