Estimating the theoretical uncertainties in FeynHiggs

Henning Bahl

DESY, Hamburg

KUTS X

4.4.2019, Dresden

Intro FO EFT Hybrid Comparison Multi scale scenarios Conclusion ••• Nemember KUTS VII in Karlsruhe, lots of discussion about this plot...

Pietro's intro talk: "For high SUSY scales not only the central value but also the uncertainty estimate should agree."

Introduction

Uncertainty estimate of fixed-order calculation

Uncertainty estimate of EFT calculation

Uncertainty estimate of hybrid calculation

Comparison in single scale scenario

Scenarios with multiple scales

Conclusions

Uncertainty estimate of FO calculation I

- Switching between different parametrizations of the top mass (OS top-quark mass and SM MS top-quark mass),
- Deactivating the resummation of the bottom-Yukawa coupling for large $\tan \beta$,
- ▶ Evaluating the strong gauge coupling at the scales M_t and M_{SUSY} .

	Intro FO $\circ\circ$ $\circ\bullet$		Hybrid 000			
--	---	--	---------------	--	--	--

Uncertainty estimate of FO calculation II

Uncertainty estimate EFT calculation I

- ► High-scale uncertainty:
 - Varying the high-energy matching scale Q_{match} between $[M_{\text{SUSY}}/2, 2M_{\text{SUSY}}]$
 - Reparametrizing the threshold corrections in terms of the MSSM top Yukawa coupling
- ► Low-scale uncertainty:
 - Switching between an extraction of the SM $\overline{\rm MS}$ top Yukawa coupling at the two- and three-loop level
 - Finding the Higgs pole mass employing either the OS top mass or the SM $\overline{\rm MS}$ top mass
- Uncertainty from $\mathcal{O}(v/M_{\text{SUSY}})$ terms:
 - Multiplying the one-loop threshold correction by $v^2/M_{\rm SUSY}^2$

FO 00	EFT o●	Hybrid 000		

Uncertainty estimate EFT calculation II

	FO		Hybrid	Comparison		
00	00	00	000	0	00	0

Uncertainty estimate of hybrid calculation I

Hybrid approach: basic idea

EFT result + $\mathcal{O}(v/M_{SUSY})$ terms of FO calculation

'Old' approach for estimating uncertainty:

▶ Estimate uncertainty of fixed-order calculation without logs

'New' approach for estimating uncertainty:

- Estimate uncertainty of EFT part as for pure EFT calculation (apart of $\mathcal{O}(v/M_{\rm SUSY})$ terms)
- Estimate uncertainty of $\mathcal{O}(v/M_{\text{SUSY}})$ terms as for FO calculation

Uncertainty estimate of hybrid calculation II

- ▶ High-scale uncertainty (estimated in the EFT part):
 - Varying the high-energy matching scale Q_{match} between $[M_{\text{SUSY}}/2, 2M_{\text{SUSY}}]$
 - Reparametrizing the threshold corrections in terms of the MSSM top Yukawa coupling
- ► Low-scale uncertainty:
 - Switching between an extraction of the SM $\overline{\rm MS}$ top Yukawa coupling at the two- and three-loop level
 - Finding the Higgs pole mass employing either the OS top mass or the SM $\overline{\rm MS}$ top mass
- Uncertainty from $\mathcal{O}(v/M_{\text{SUSY}})$ and $\mathcal{O}(\alpha_b)$ terms (estimated in the fixed-order part):
 - Switching between different parametrizations of the top mass (OS top-quark mass and SM $\overline{\text{MS}}$ top-quark mass),
 - deactivating the resummation of the bottom-Yukawa coupling for large $\tan \beta$,
 - Evaluating the strong gauge coupling at the scales M_t and $M_{\rm SUSY}$.

FO 00	Hybrid 00●		

Uncertainty estimate of hybrid calculation III

ro FO 00	Hybrid 000	$\operatorname{Comparison}_{ullet}$	

Comparison in single scale scenario

 \rightarrow good agreement between hybrid and EFT for high scales

	FO		Hybrid	Comparison	Multi scale scenarios	
00	00	00	000	0	••	0

Higgs benchmark scenarios

Benchmark scenarios defined using simple ± 3 GeV estimate.

	FO		Hybrid	Comparison	Multi scale scenarios	
00	00	00	000	0	00	0

Varying the gluino mass

 \rightarrow large logs in $\mathcal{O}(\alpha_s \alpha_t)$ threshold correction

	FO		Hybrid	Comparison		Conclusions
00 0	00	00	000	0	00	•

Conclusions

- Presented new uncertainty estimates for the FO, EFT and hybrid calculation implemented in FeynHiggs
- ▶ Good agreement between EFT and hybrid uncertainty estimate for high SUSY scales
- ▶ Heavy gluino results in large uncertainty estimates

