Constraining the MSSM Higgs sector in the low $\tan \beta$ region

Henning Bahl

DESY, Hamburg

Higgs couplings 2019

2.10.2019, Oxford

Constraints on the MSSM Higgs sector

Considered constraints:

properties of the Higgs boson discovered at the LHC,

- mass (predictable in the MSSM),
- couplings,

searches for additional Higgs bosons.

 \rightarrow Evaluate constraints in Higgs benchmark scenarios.

Additional constraints not considered here:

- flavour constraints,
- vacuum stability,
- EWPOs,

> . . .

Higgs benchmark scenarios – why do we need them?

- MSSM has large number of free parameters,
- interpretation of Higgs properties and searches for additional Higgs bosons would require large parameter scans.

₩

Focus on benchmark scenarios with only two free parameters:

- Typically presented in M_A -tan β plane (or $M_{H^{\pm}}$ -tan β),
- other parameters chosen such that one neutral Higgs is SM-like,
- each scenario has a different phenomenology.

Six scenarios with sfermion mass scale $M_{ m SUSY} \sim 1.5$ TeV

 $[{\sf Bagnaschi}, {\sf HB}, {\sf Fuchs}, {\sf Hahn}, {\sf Heinemeyer}, {\sf Liebler}, {\sf Patel}, {\sf Slavich}, {\sf Stefaniak}, {\sf Wagner}, {\sf Weiglein}, 1808.07542]$

Defined using:

- ▶ FeynHiggs \rightarrow Higgs masses and branching ratios,
- ▶ SusHi \rightarrow Higgs production cross-sections,
- \blacktriangleright HiggsBounds \rightarrow direct searches for extra Higgs bosons,
- ▶ HiggsSignals \rightarrow SM-like Higgs signal strengths.

Benchmark scenarios:

- ▶ M_h^{125} scenario → all SUSY particles at the TeV scale,
- $M_h^{125}(ilde{ au})$ scenario ightarrow light Stau, Bino and Winos,
- $M_h^{125}(\tilde{\chi})$ scenario ightarrow light Bino, Winos and Higgsinos,
- $M_h^{125}(\text{alignment})$ scenario \rightarrow alignment without decoupling,
- ▶ M_{H}^{125} scenario → heavy CP-even Higgs is SM-like,
- ▶ $M_{h_1}^{125}(\text{CPV})$ scenario $\rightarrow C\mathcal{P}$ -violation in the Higgs sector.

Six scenarios with sfermion mass scale $M_{ m SUSY} \sim 1.5$ TeV

[Bagnaschi, HB, Fuchs, Hahn, Heinemeyer, Liebler, Patel, Slavich, Stefaniak, Wagner, Weiglein, 1808.07542]

Defined using:

- ▶ FeynHiggs \rightarrow Higgs masses and branching ratios,
- ▶ SusHi \rightarrow Higgs production cross-sections,
- \blacktriangleright HiggsBounds \rightarrow direct searches for extra Higgs bosons,
- ▶ HiggsSignals \rightarrow SM-like Higgs signal strengths.

Benchmark scenarios:

- $\blacktriangleright~M_h^{125}$ scenario \rightarrow all SUSY particles at the TeV scale,
- $M_h^{125}(ilde{ au})$ scenario ightarrow light Stau, Bino and Winos,
- $M_h^{125}(\tilde{\chi})$ scenario ightarrow light Bino, Winos and Higgsinos,
- ▶ M_h^{125} (alignment) scenario → alignment without decoupling,
- ▶ M_{H}^{125} scenario → heavy CP-even Higgs is SM-like,
- ▶ $M_{h_1}^{125}(\text{CPV})$ scenario $\rightarrow C\mathcal{P}$ -violation in the Higgs sector.

Higgs benchmark scenarios 000●		

M_h^{125} and $M_h^{125}(\tilde{\chi})$ scenarios

Blue: Excluded by direct searches for heavy Higgs bosons,

hashed: Excluded by SM-like Higgs signal strengths / mass.

Benchmark scenarios for the low $\tan \beta$ region

[HB,Liebler,Stefaniak,1901.05933]

Use THDM-EFT calculation to define low-tan β benchmark scenarios.

Concept

Take existing scenarios and raise $M_{\rm SUSY}$ at every point such that $M_h \sim 125~{\rm GeV}.$

(upper limit: $M_{\rm SUSY} \leq 10^{16} {
m GeV}$)

Two low-tan β benchmark scenarios:

- $M_{h,\text{EFT}}^{125}$ scenario resembling M_h^{125} scenario,
- $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario resembling $M_h^{125}(\tilde{\chi})$ scenario.

Higgs benchmark scenarios 0000	Low tan β region OO \bigcirc O	
$M_{h, \text{EFT}}^{125}$ scenario		

▶ Gray: *M_h* < 122 GeV,</p>

- blue: Excluded by direct searches for heavy Higgs bosons,
- hashed: Excluded by Higgs signal strengths.

Higgs benchmark scenarios 0000	Low tan β region 0000		
$M_{h, {\sf EFT}}^{125}(ilde{\chi})$ scenario	1		
$M_{h,\text{EFT}}^{125}(\tilde{\chi}) \text{ scenario}$	M _{SUSY} [GeV] 10	$M_{h,\text{EFT}}^{125}(\tilde{\chi}) \text{ scenario } BR(h \to \gamma\gamma)/BR(h \to \gamma\gamma)$) _{SM}

▶ Gray: *M_h* < 122 GeV,</p>

- blue: Excluded by direct searches for heavy Higgs bosons,
- hashed: Excluded by Higgs signal strengths,
- interesting $H, A \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow W^{\pm}, Z$ signatures.

	HL-LHC and ILC projections	
	•0	

HL-LHC projections

[HB,Bechtle,Heinemeyer,Liebler,Stefaniak,Weiglein,to appear]

Assume discovered Higgs to have SM couplings.

What if $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario is realized?

Assume discovered Higgs to have couplings as predicted for $M_A = 1$ TeV and tan $\beta = 3$.

Higgs benchmark scenarios 0000		Conclusions
Conclusions		

- Higgs benchmark scenarios help to interpret LHC results,
- \blacktriangleright to define scenarios valid in the low tan β region large $M_{\rm SUSY}$ needed,
- for accurate prediction of Higgs masses and decay widths THDM as EFT is crucial.
- \rightarrow Two benchmark scenarios for the low $\tan\beta$ region.
- HL-LHC and ILC constraints:
 - $M_{h,\text{EFT}}^{125}$ scenario difficult to constraint,
 - strong constraints on $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario.

Higgs benchmark scenarios 0000		Conclusions •
Conclusions		

- Higgs benchmark scenarios help to interpret LHC results,
- \blacktriangleright to define scenarios valid in the low tan β region large $M_{\rm SUSY}$ needed,
- for accurate prediction of Higgs masses and decay widths THDM as EFT is crucial.
- \rightarrow Two benchmark scenarios for the low $\tan\beta$ region.
- HL-LHC and ILC constraints:
 - $M_{h,\text{EFT}}^{125}$ scenario difficult to constraint,
 - strong constraints on $M_{h,\text{EFT}}^{125}(\tilde{\chi})$ scenario.

Thanks for your attention!

THDM as EFT I

[HB&Hollik,1805.00867]

Procedure:

- ► integrate out sfermions at scale M_{SUSY} → fixes values of THDM Higgs self-couplings,
- > run down to heavy Higgs scale M_A ,
- ► integrate out heavy Higgses → recover SM as EFT,
- run down to electroweak scale
 - \rightarrow check compatibility with SM input parameters.

Result

THDM couplings at M_A , SM Higgs self-coupling at M_t .

All large logarithms resummed

 \rightarrow presice prediction for physical observables.

THDM as EFT II

- EFTs: SM(+EWinos,+Gluino), THDM(+EWinos,+Gluino),
- full LL+NLL and partial NNLL resummation,
- combined with existing 2L fixed-order calculation,
- incorporated into FeynHiggs.

hMSSM comparison


```
M_{h,\text{EFT}}^{125}(\tilde{\chi}) scenario – H, A, H^{\pm} \rightarrow \tilde{\chi}\tilde{\chi}
```


- Interesting multilepton signatures,
- no experimental searches yet.