Pole mass determination in the presence of heavy particles

[based on 1812.06452]

Henning Bahl

DESY, Hamburg

KIT-NEP

8.10.2019, Karlsruhe

Pole determination for mixing scalars

Mixing appears in the SM and many extensions

General problem

How to determine the pole masses?

\downarrow

Use MSSM Higgs pole mass determination as example, but arguments/methods are generally applicable:

- ▶ Tree-level mass eigenstates: CP-even *h* and *H*, CP-odd *A*, H^{\pm} ,
- loop corrections lead to mixing between h and H and A in case of CP-violation (and Goldstone boson G⁰)

Intro Fixed		Improved fixed-order det.		Conclusions
0●000 0	 00	00000	0000	0

- 1. Calculate Higgs self-energies,
- 2. construct inverse Higgs propagator matrix,
- 3. find poles of inverse propagator matrix.

Intro Fixed-or		cal det. Improved fi			
0●000 0	00	00000	00	00 C	, ,

- 1. Calculate Higgs self-energies,
 - ightarrow most work intensive
- 2. construct inverse Higgs propagator matrix,
- 3. find poles of inverse propagator matrix.

Intro Fixed-or		cal det. Improved fi			
0●000 0	00	00000	00	00 C	, ,

- 1. Calculate Higgs self-energies,
 - \rightarrow most work intensive
- 2. construct inverse Higgs propagator matrix, \rightarrow trivial
- 3. find poles of inverse propagator matrix.

Intro					
0000	0	00	00000	0000	0

- $1. \ \ Calculate \ Higgs \ self-energies,$
 - \rightarrow most work intensive
- 2. construct inverse Higgs propagator matrix, \rightarrow trivial
- 3. find poles of inverse propagator matrix. \rightarrow straightforward??

1. Calculate Higgs self-energies

Hybrid approach of FeynHiggs:

$$\hat{\Sigma}_{ij}(p^2) = \hat{\Sigma}^{(1)}_{ij}(p^2) + \hat{\Sigma}^{(2)}_{ij}(0) ig|_{{
m g=g'=0}} + {
m higher-order \ logs}$$

- 1L and 2L self-energies obtained in diagrammatic fixed-order approach,
- approximation of vanishing electroweak gauge couplings and external momentum @ 2L,

 $(\rho^2 \neq 0 \text{ can be included for QCD corrections})$

large logarithms resummed in EFT approach.

```
(full LL+NLL, O(\alpha_s, \alpha_t) NNLL)
```

Intro					
00000	0	00	00000	0000	0

2. Construct inverse Higgs propagator matrix

$$i\Delta_{hH}^{-1}(p^2) = egin{pmatrix} p^2 - m_h^2 + \hat{\Sigma}_{hh}(p^2) & \hat{\Sigma}_{hH}(p^2) \\ \hat{\Sigma}_{hH}(p^2) & p^2 - m_H^2 + \hat{\Sigma}_{HH}(p^2) \end{pmatrix}$$

General remarks:

▶ Discussion here restricted to 2×2 mixing between CP even states *h* and *H*

(but also applies for 3×3 mixing),

- ▶ pole masses labelled by $M_{h_1} \leq M_{h_2} (\leq M_{h_3})$,
- ▶ $M_h \rightarrow h$ -like state, $M_H \rightarrow H$ -like state.

Intro					
00000	0	00	00000	0000	0

3. Find poles of inverse propagator matrix

Have to solve

$$\det\left(\Delta_{hH}^{-1}(p^2)\right)=0.$$

How to solve this equation?

- 1. Fixed-order determination,
- 2. numerical determination,
- 3. improved fixed-order determination,
- 4. numerical determination with heavy-OS field renormalization.

Fixed-order pole determination

- Conceptionally very easy,
- truncate at the 2L level.

Solutions:

$$\begin{split} M_{h_1}^2 &= m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) \Big|_{\mathsf{g}=\mathsf{g}'=0} \\ &+ \left[\hat{\Sigma}_{hh}^{(1)'}(m_h^2) \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \frac{\left(\hat{\Sigma}_{hH}^{(1)}(m_h^2) \right)^2}{m_h^2 - m_H^2} \right]_{\mathsf{g}=\mathsf{g}'=0} \end{split}$$

Fixed-order pole determination

- Conceptionally very easy,
- truncate at the 2L level.

Solutions:

$$\begin{split} M_{h_1}^2 &= m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) \Big|_{g=g'=0} \\ &+ \left[\hat{\Sigma}_{hh}^{(1)\prime}(m_h^2) \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \frac{\left(\hat{\Sigma}_{hH}^{(1)}(m_h^2) \right)^2}{m_h^2 - m_H^2} \right]_{g=g'=0} \end{split}$$

► Problematic term: Gets very large if masses degenerate → break down of perturbative expansion.

Numerical pole determination

Conceptionally very easy,

solve for pole numerically.

1

Solutions:

$$\begin{split} \mathcal{M}_{h_1}^2 &= \left. m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) - \hat{\Sigma}_{hh}^{(2)}(0) \right|_{\mathsf{g}=\mathsf{g}'=0} \\ &+ \hat{\Sigma}_{hh}^{(1)'}(m_h^2) \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \frac{\left(\hat{\Sigma}_{hH}^{(1)}(m_h^2)\right)^2}{m_h^2 - m_H^2} + \dots \end{split}$$

▶ Including higher order terms proportional to $1/(m_h^2 - m_H^2)$ cures perturbative expansion.

	Numerical det.		
	00		

Problems of numerical pole determination

For $M_{SUSY} \gg M_t$, we have

$$\hat{\Sigma}^{(1)} = \underbrace{\hat{\Sigma}^{(1),\text{heavy}}}_{\text{SUSY contr.}} + \underbrace{\hat{\Sigma}^{(1),\text{light}}}_{\text{SM contr.}} =$$

Comparison between EFT and hybrid approach showed:

- $\hat{\Sigma}_{hh}^{(1),\text{heavy'}}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)$ is cancelled by parts of subloop renormalization contained in $\hat{\Sigma}_{hh}^{(2)}(0)|_{g=g'=0}$,
- cancellation incomplete, since terms are included at different orders of accuracy,
- similar incomplete cancellation at higher orders.
- \rightarrow Easy to solve in decoupling limit, but what's for low M_A ?

	Improved fixed-order det.	
	00000	

Improved fixed-order pole determination

Determination of *h*-like state:

- 1. Expand $i\Delta_{hH}^{-1}$ around 1L solution $\left(M_{h}^{(1)}\right)^{2} = m_{h}^{2} \hat{\Sigma}_{hh}^{(1)}(m_{h}^{2})$,
- 2. get eigenvalues of expanded matrix

$$ig(i\Delta_{hH}^{-1,h-\exp}(p^2)ig)_{jk} = (p^2 - m_j^2)\delta_{jk} + \hat{\Sigma}^{(1)}_{jk}(m_h^2) + \hat{\Sigma}^{(2)}_{jk}(0)ig|_{\mathbf{g}=\mathbf{g}'=0} \ - \left[\hat{\Sigma}^{(1)'}_{jk}(m_h^2)\hat{\Sigma}^{(1)}_{hh}(m_h^2)
ight]_{\mathbf{g}=\mathbf{g}'=0} + \Delta^{\log s}_{jk},$$

3. pick *h*-like eigenvalue corresponding to $M_h^2 = m_h^2 - \hat{\Sigma}_{hh}^{(1)}(m_h^2) + \dots$, other eigenvalue would be $m_H^2 - \hat{\Sigma}_{HH}^{(1)}(m_h^2) + \dots$ Determination of *H*-like state analogously, just have to $h \leftrightarrow H$.

		improved fixed-order det.	rieavy=05 field fell.	
00000 0	00	0000	0000	0

Assement of the numerical pole determination

- Includes higher order $1/(m_h^2 m_H^2)$ terms,
- cancellation between different terms of same order ensured,
- faster since no numerical pole search is required.
- \rightarrow Everything fine?

			Improved fixed-order det. ○○●○○	Heavy-OS field ren. 0000	
But:	M_H^{125} scena	ario _{[Bagnaschi,HB,I}	Fuchs, Hahn, Heinemeyer, Liebler, Patel, '	Slavich,Stefaniak,Wagner,Weigle	in,1808.07542]

MSSM Higgs benchmark scenario,

parameters:

$$\begin{split} M_{\rm SUSY} &= 2 \ {\rm TeV}, \ M_{\tilde{Q}_3} = M_{\tilde{U}_3} = 700 \ {\rm GeV}, \\ \mu &= 6 \ {\rm TeV}, \ M_1 = 675 \ {\rm GeV}, \ M_2 = 1 \ {\rm TeV}, \ M_3 = 2.5 \ {\rm TeV}, \\ A_t &= 450 \ {\rm GeV}, \ A_{b,c,s,u,d} = 0, \end{split}$$

▶ scan over $M_{H^{\pm}}$ and tan β .

 M_{h_2} is suppossed to play role of SM-like Higgs boson

	Improved fixed-order det. ○○○●○	Heavy-OS field ren. 0000	

But: M_H^{125} scenario

Assessment of improved fixed-order pole determination

- Algorithm works as wanted,
- 2L truncation, however, introduces "unphysical" jumps close to crossing points,
- reason: found solutions are not poles of every element of inverse propagator matrix.
- \rightarrow Still unsatisfying, can we find better method?

What is the origin of the observed cancellation?

Uncancelled terms originate from p² dependence of heavy (non-SM) contributions to 1L self-energies,

$$\begin{split} \hat{\Sigma}(p^2) &= \Sigma(p^2) + \delta Z \ (p^2 - m^2) - \delta m^2 = \\ &= \Sigma^{\text{heavy}}(p^2) + \Sigma^{\text{light}}(p^2) \\ &+ \delta Z \ (p^2 - m^2) - \delta m^2 + \mathcal{O}(v/M_{\text{SUSY}}) = \\ &= \Sigma^{\text{heavy}}(m^2) + \left(\Sigma^{\text{heavy}}(m^2) + \delta Z\right) \ (p^2 - m^2) \\ &+ \Sigma^{\text{light}}(p^2) - \delta m^2 + \mathcal{O}(v/M_{\text{SUSY}}), \end{split}$$

► higher derivatives of $\hat{\Sigma}^{\text{heavy}}$ suppressed, $\mathcal{O}(v/M_{\text{SUSY}})$

p^2 dep. of "heavy" contributions can be absorbed into Higgs field renormalization

Heavy-OS field normalization

Field (re)normalization

Should drop out if calculating physical observables order by order!

 \rightarrow Reinstates decoupling theorem.

Prevent numerical det. from inducing terms $\propto \hat{\Sigma}^{\text{heavy}}(m^2)$:

• Choose
$$\delta Z = -\hat{\Sigma}^{\text{heavy}}(m^2)$$
, i.e.:

$$\delta^{(1)}Z_{hh}=-\hat{\Sigma}^{\mathsf{heavy}\prime}_{hh}(0),\delta^{(1)}Z_{hH}=-\hat{\Sigma}^{\mathsf{heavy}\prime}_{hH}(0),\ldots,$$

• can be evaluated at arbitrary
$$p^2 \ll M_{
m SUSY}$$
,

	Improved fixed-order det. 00000	Heavy-OS field ren. ○○●○	

 M_H^{125} scenario

		Heavy-OS field ren.	
		0000	

Further implications

Definition of tan β :

• Heavy-OS field renormalization affects definition of $\tan \beta$:

 $\tan \beta^{\text{MSSM}}(\mu_R) \rightarrow \tan \beta^{\text{THDM}}(M_t),$

- \blacktriangleright can be prevented introducing independent finite tan β counterterm.
- Z matrix connecting physical and tree-level mass states:
 - Depends on scheme for Higgs field renormalization,
 - can be transformed back to normal DR scheme,
 - using heavy-OS scheme helps to improve decoupling behaviour of Higgs decay and production calculations.

		Conclusions
		•

Conclusions

- 1. Fixed-order pole determination:
 - breakdown of perturbative expansion close to crossing points, X
- 2. numerical pole determination:
 - ullet smooth behaviour close to crossing points, \checkmark
 - incomplete decoupling of heavy particles, X
- 3. improved fixed-order pole determination:
 - unphysical jumps close to crossing points, X
 - proper decoupling of heavy particles, \checkmark
- 4. numerical pole det. with heavy-OS field renormalization:
 - smooth behaviour close to crossing points, \checkmark
 - proper decoupling of heavy particles.

		Conclusions
		•

Conclusions

- 1. Fixed-order pole determination:
 - breakdown of perturbative expansion close to crossing points, X
- 2. numerical pole determination:

 - incomplete decoupling of heavy particles, X
- 3. improved fixed-order pole determination:
 - unphysical jumps close to crossing points, X
 - proper decoupling of heavy particles, \checkmark
- 4. numerical pole det. with heavy-OS field renormalization:
 - smooth behaviour close to crossing points, ✓
 - proper decoupling of heavy particles.

Thanks for your attention!

Comparison to other methods

Compare in the limit $M_A \gg M_t$:

numerical pole determination:

$$M_{h_1}^2 = \ldots + \hat{\Sigma}_{hh}^{(1)\prime}(m_h^2)\hat{\Sigma}_{hh}(m_h^2) + \ldots$$

fixed-order determination:

$$M_{h_1}^2 = \ldots + \left[\hat{\Sigma}_{hh}^{\text{SM},(1)'}(m_h^2)\hat{\Sigma}_{hh}^{(1)}(m_h^2)\right]_{g=g'=0} + \ldots$$

numerical pole determination with finite field renormalization:

$$M_{h_1}^2 = \ldots + \hat{\Sigma}_{hh}^{\text{SM},(1)'}(m_h^2) \hat{\Sigma}_{hh}(m_h^2) + \ldots$$

Implications for high-scale scenario

all SUSY particles at common scale M_{SUSY} , tan β = 10. Solid: $X_t^{\overline{\text{DR}}}$ = 0; dashed: $X_t^{\overline{\text{DR}}} = \sqrt{6}$

